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ABSTRACT

A method for multidimensional hierarchical clustering that is in-
variant to monotonic transformations of the distance metric is pre-
sented. The method derives atree of clusters organized according
to the homogeneity of intracluster and interpoint distances. Higher
levels correspond to coarser clusters. At any level the method can
detect clusters of different densities, shapesand sizes. The number
of clusters and the parameters for clustering are determined auto-
matically and adaptively for a given data set which makesit unsu-
pervised and non-parametric. The method is simple, noniterative
and requires low computation. Results on various sample data sets
are presented.

1. INTRODUCTION

The problem of hierarchical clustering in multidimensional sample
spacefinds applicationsin many areas. This paper presents an un-
supervised and non-parametric method for hierarchical clustering
in high dimensional data sets. There are many methodswhich give
clustersfor chosen parameters and otherswhich do provide a hier-
archy of clusters. Some of the most popular algorithms avail able
for clustering are k-means algorithm, graph-theoretical algorithms
and linkage methods [1].

The k-means algorithm starts with an arbitrary partition and
consists of alternately computing the centroids of the partitions at
each iteration and reassigning the samples so as to minimize the
sum-total of variances of individual partitions. Because of its de-
pendenceon the centroid this method is more suitable for detecting
compact and globular clusters. For example it can not detect two
distinct clusters having approximately the same centroid like those
shown in figure 1(€). Also it is not invariant to monotonic trans-
formations of the proximity matrix. This meansthat one hasto be
careful in scaling and combining different variablesinto a proxim-
ity measure[2].

Zahn[3] givesanumber of graph-theoretical algorithms based
on MST (minimum spanning tree). Thealgorithm consistsin find-
ingthe M ST of thegiven pattern, identifying and deletinginconsis-
tent edgesin the MST and forming connected componentsof edges
to get the clusters. The method works good on various data sets
including non-spherical clusters and clusters with smoothly vary-
ing point densities but special heuristics are needed to detect in-
consistent edgesin complex situations e.g. in the case of two ho-
mogeneous clusters of slightly different point densities shown in
figure 1(a) the sparse cluster will have many inconsistent edges.
Zahn suggests detecting and deleting the denser cluster first and
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then clustering the remaining data. Also prior knowledge of the
shapesof the clustersis needed to get the proper heuristic for iden-
tifying the inconsistent edges[1]. This can be a problem in more
than two dimensions.

Methods based on Voronoi neighborhood have also been pro-
posed [4, 5] and shown to yield good results for various kinds of
clusters. However such methods have been developed mainly for
two-dimensional datadueto the computational difficultiesin higher
dimensiong[1].

The above methods are inherently partitional. The single and
complete-linkagemethods[2] and Ward'smethod [6] are some com-
monly used agglomerative hierarchical clustering algorithms. In
thesingle-linkagemethod the similarity betweentwo clustersisjudged
by the most similar sample points, onein each cluster, whereasin
the complete-linkage method it isjudged by theleast similar points.
In Ward's method clusters whose union results in minimum loss of
‘information’ are combined at each step. Though these methods
have several desirabletheoretical propertiesthey are biased toward
finding spherical clusters even though the data contains clusters of
other shapes. Also Ward's method performs better when the clus-
ters are approximately same size than when they are of different
sizes. Single and complete linkage methods areinvariant to mono-
tonic transformations of the proximity matrix but Ward’s method
isnot[2].

In this paper we present a method for hierarchical clustering
aimed at removing some of the difficulties mentioned above. The
method can detect spherical or non-spherical clustersandtheseclus-
ters do not have to be compact, i.e., there can be holesin them as
showninfigure1(e). Alsothenotion of density isbuilt inthe method
and hence it can robustly detect even homogeneous clusters that
are close by but differ in point density. The method is unsuper-
vised and non-parametric- it does not need to know the number of
clustersa priori. It is applicableto multi-dimensional dataaswell.
The method is invariant under monotonic transformations of the
proximity matrix because it depends only on the relative ranks of
the sample points. Moreover the method is simple, deterministic
(which implies that it does not depend on the order in which the
points are scrutinized) and has low computational costs.

2. OVERVIEW AND MOTIVATION OF THE
ALGORITHM

The algorithm consists of deciding on the neighbors of each point
and then finding connected componentsto get the clusters in the
given data. The data to be clustered is a set of N L-dimensional
pointsonwhich asuitablemetric d isdefined. Theinput tothealgo-
rithm isthe proximity matrix (i.e. the d valuefor all pairs of points)
of thisset and the outputisahierarchy of clusters. Our definition of



the neighborhood of a given point dependson what is called as the
mutual neighborhood value (mnv) [7] between two given points.
Let P and @ be two points of the given data set. If P isthe mth
nearest neighbor of @ and @ is the nth nearest neighbor of P then
the mnv between P and @ isdefinedto be m + r». The main moti-
vation for this definition is that two points P and @@ have a higher
tendency to group if not only P iscloseto @ but also @ is close
to P. Themnv is a semi-metric and does not satisfy the triangle
inequality.

We first present a basic scheme and then motivate two impor-
tant improvementsto this schemewhichlead to our final algorithm.
A parameter My is used to denote the acceptability of points as
neighborsin terms of their mnv. Given apoint P belonging to the
dataset all points @ suchthat mnv( P, Q) < Mt aresaidto belong
to the neighborhood of P. This gives us a neighborhood graph on
the data set whose connected componentsare the required clusters.
Thisissimilar to the schemedescribedin [ 7] but there aretwo mod-
ificationsthat makeit attractive as explained below.

First consider figure 1(a) which showstwo clusters of different
densities that are close by. Points P and @ have an mnv of 7 be-
tweenthem. Soif My issay 8 (whichisnot very large) then @ will
be called neighbor of P (and vice-versa) and this one link would
merge thetwo clusters. Point X hasonly anmnv of 6 w.r.t. (J even
thoughit is at alarger distancefrom @ than P is. Thishappensbe-
cause P hasahigher density of pointsaround it and henceislikely
to belong to a different cluster. This suggeststhat we should stip-
ulatethat if mnv(Q, P) > mnv(Q, K) thend(Q, P) > d(@Q, K).
Else P should beregarded as not belonging to the neighborhood of
Q. We shall call suchapoint P invalidw.rt. @ .

Second point to noteis the dual of the point mentioned above.
@ will never be marked invalid w.r.t. P because of the large dis-
tanceof @@ from P (compared to other points closeto P) and hence
itslarger mnvw.rt. P seemsjustified. Henceunder our basic scheme
with just the abovemodification @ will belong to the neighborhood
of P and hencethe two clusterswill merge. Hencewe need to stip-
ulate that a point ¢ will not belong to the neighborhood of point P
if P doesnot belong to the neighborhood of @ (i.e. if P isinvalid
w.rt. Q).

This explains the two modifications we make. Then the algo-
rithm just consists of creating a neighborhood graph on the given
data (keeping in mind the above two stipulations and the thresh-
old My onmnv) and finding connected components. Note how the
above two stipulations help detect clusters of different point den-
sities more robustly than simply using the mnv. Also the method
isinvariant to monotonic transformations of the proximity matrix
since the mnv and the above two stipulations depend only on the
relative distances among the points (since if P is at a larger (or
smaller) distance from @ it will also remain so under any mono-
tonic transformation). Further since we only use the metric d the
method is equally applicable in more than two dimensions.

Theaboveobservationsare formalized in the definition of neigh-
borhood of a given point: a point P belongs to the neighborhood
of point @ if and only if all the following conditions hold :

1 mnv(@,P) < Mr;

2. Thereexistsno point X st. mnv(Q, K') <mnv(Q, P) but
d(Q, K) > d(Q, P). A point P violating this constraint is
caledinvalidw.rt. Q.

3. Qisnotbeinvalidw.rt. P.

It should be noted that the last two stipulations can give rise
to some small clusters because of the strict condition that neither

point should regard the other asinvalid if they are to be neighbors
of each other. But at the same time these stipulations also make
it possibleto identify problematic clusterslike those that are close
by but haveslightly different densities. To addressthiswe do some
post processing of the small clusters (say of size < 5) : we check
to which clustersindividual points of the small cluster would have
belongedif one of thelast two stipulationsisrelaxed. The smaller
cluster is merged with larger cluster which gets maximum number
of votes. Note that if a small cluster is perceptualy distinct from
other clustersthan all of its points would satisfy the last two stipu-
lations and hence this cluster would not be merged with any larger
cluster. Also notethat we do not just activateall the linksthat come
up when one of the last two constraintsis relaxed becausethis can
cause two bigger clusters to each merge with the smaller one and
thus merge themselvesin one cluster.

3. THEHIERARCHY

Thefinal clusters we get depend on the parameter M+ . If My is
increased the clusters start merging. Note that increasing M can
only merge clusters but can never split them. Therefore if for a
certain range of M valuesthe number of clusters remainsthe un-
changed then the actual clusters corresponding to these values of
M must be the same. This suggeststhat if we plot a graph of the
number of clustersvs. the M value at which those many clusters
are obtained (we shall call it the stability curve) then any constant
levels (plateaus) of this graph will indicate that clusters have not
changed even though the M is increased. Therefore such clus-
ters denote a valid partition of the data at some scale. These clus-
tersform alevel of the cluster hierarchy indexed by the correspond-
ing range of My values. Parts of the stability curve containing no
plateausaretransientswhere someclustersmergeas M isincreased.
Suchclustersandthe corresponding M+ valuesarediscarded—they
do not correspond to valid groupings at any scale.

4. THEALGORITHM

The algorithm consists of the following steps:

Step 1 (Sorting thedistancepairs): Let D = [d(z, )] denote
the proximity matrix and let m = My — 1. Since Mr is
the maximum allowd value of mnv between two neighbors,
we need to consider only upto mth nearest neighbors of a
given point. Sort D to identify m nearest neighbors. Let
the matrix thus got be denoted by R = [r;;],s = 0to N —
1,7 = 0tom — 1 wherer,; isthe jth nearest neighbor of
1.

Step 2 (Findingthemnvs) : R contains entries for a maximum
of Nm pairs of points. Use R to construct a matrix con-
taining mnvs of these pairs of points.

Step 3 (Sortingthemnvs) :  Sort the mnvs computed in step 2.
Let the matrix containing the sorted mnvs be called V' =
[vi;],i =0t0 N — 1,7 = 0tom — 1 wherev,; isthe point
that is jth closest to : in terms of mnv of : with all points.

Step 4 (Making neighbors): Let: = 0,7 = 1andr = 0. If
mnv(s, vi;) < Mr andd(s, vi;) > r then mark v,; asthe
neighbor of ¢ andr « d(i,vi;). j < 7+ 1. If j >=m
or mnv(s, v;) >Mp theni < ¢+ 1. If i >= N stop else
repeat this step.



Note that we have taken care of conditions 1 and 2. Condi-
tion 3 is now enforced by removing any neighborhood rela-
tions that are not symmetric.

Step 5 (Finding connected components) :  Find connected com-
ponentson the neighborhood graph obtained aboveandiden-
tify any small clusters.

Step 6 (Post processing) :  If thereareany small clustersthenfind
out if they would mergewith any larger cluster if one of con-
ditions 2 and 3 is relaxed as described in section 2 and mod-
ify theneighborhoodlinksaccordingly. Hencefor each point
of the small clusters we need to find out which all of its m
nearest neighbors would belong to its neighborhood if the
condition mentioned is relaxed. Connected components of
this graph give the required clusters.

5. COMPUTATIONAL COMPLEXITY

In step 1 for agiven point it takes O( N log m) to get the m near-
est neighbors and then O(m log m) to arrange them in ascending
order of their distances. Hence this step has a total complexity of
O(((N + m)logm)N) for all N points. In step 2 for each entry
in R matrix we haveto searchin theworst casealist of m pointsin
the other row to find out the mnv. Hencethe worst case complexity
of this step caseis O(Nm?). Step 3has O(N x mlog m) com-
plexity. In step 4 we needto visit e pointsin worst casearound any
point to get its neighbors. Hencethis step has O( N m) complexity.
Steps 5 and 6 each have O( N'm) complexity.

Note that m will be usually much smaller compared to NV and
hencethe major computational loadisin thefirst part in sorting the
distances. This computation may be reduced if some organization
of the data already exists for the particular application. Also note
that for computing the stability curve we need to repeat only the
last three stepswhich are O( N ) complexity.

6. RESULTS

Figure 1(a)(left) curvefor the datapoints showninfigure 1(a)(right).
Thestability curveisshown only starting from an M of 5 because
there are no plateaus before that. Let » denote number of clusters.

We seethat we haveadistinct plateau at » = 2. Thecorresponding
clusters are shownin figure 1(a)(right). \We also conducted experi-

mentsto seehow the stability curvewouldlook likeif theclustering

wasdone only on the basisof mnv (i.e. using only condition 1). It

was found that in that case the stability curve had no plateaus ex-

cept for n = 1. Thisillustrates the crucial role played by the other

two conditionsin deciphering valid clusters.

Similar results for another data set are shown in figure 1(b).
Here we have plateausfor n = 3 and 2. Theresultsfor n = 3 are
shown in figure 1(b). At the next plateau correspondingto n = 2
the clusters shown by 0 and + merge. We can argue that thisis de-
sired because the density of o points is closer to that of + points
than * points. The algorithm achievesthis because the concept of
invalid points(in conditions 2 and 3) capturesthe notion of density.

Figure 1(c) showstheresultsfor another dataset. Herewehave
alarge number of plateausin the stability curve. Theplateauatn =
15 correspondsthe 15 perceptually distinct clusters in the data set
which can be easily perceivedin thefigure. This correspondsto the
finestlevel of detail. Figure 1(c) showsthegrouping corresponding
to the plateau at n» = 2 . We can note that thisisin fact what one
would perceive when seen from avery course level.

Finally figures 1(d) & (€) showsthe results for two more data
set. Theresults for the n = 2 plateaus (which are the only signifi-
cant plateaus) are shownin figures 1(d) and 1(e). Againwe seethat
the clusters have been captured successfully.

7. CONCLUSION

An unsupervisedmultidimensional hierarchical clustering algorithm
that is able to detect clusters with different densitiesin a more ro-
bust way compared to using only the mutual neighborhoodvalueis
developed. Results on various data sets have been presented which
illustrate the efficacy of the method in detecting clusters of various
kinds. Although results for only 2-D are presented the method is
applicable just as well in higher dimensions. The salient features
of the algorithm are:

1. It canrobustly detect clustersthat are close by and differ in
point density. It has no difficulty in detecting clusters that
are well separated.

2. It gives a hierarchy of clusters that are perceptually mean-
ingful.

3. Itisinvariant to monotonic transformations of the distance
metric. Hencethedifficultiesinvolved with scalingand com-
bining different variablesinto the distance metric are of less
concern.

4. 1tisnot limited spherical or equal sized clusters or any par-
ticular metric.

5. It doesnot require any user specified parameters such asthe
expected number of clusters or astarting classificationasre-
quired by many other algorithms.

6. It does not depend on the order in which the points are pro-
cessed.

7. It issimple, non-iterative and has low computation cost.
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