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Transitory Image Sequences,
Asymptotic Properties, and

Estimation of Motion and Structure
John (Juyang) Weng, Member, IEEE, Yuntao Cui, and Narendra Ahuja, Fellow, IEEE

Abstract —A transitory image sequence is one in which no scene element is visible through the entire sequence. When a camera
system scans a scene which cannot be covered by a single view, the image sequence is transitory. This article deals with some
major theoretical and algorithmic issues associated with the task of estimating structure and motion from transitory image
sequences. It is shown that integration with a transitory sequence has properties that are very different from those with a non-
transitory one. Two representations, world-centered (WC) and camera-centered (CC), behave very differently with a transitory
sequence. The asymptotic error rates derived in this article indicate that one representation is significantly superior to the other,
depending on whether one needs camera-centered or world-centered estimates. To establish the tightness of these error rates, it
has been shown that these reachable error rates are in fact the lowest possible given by a theoretical lower error bound, the
Cramér-Rao error bound. Based on these results, we introduce an efficient “cross-frame” estimation technique for the CC
representation. For the WC representation, our analysis indicates that a good technique should be based on camera global pose
instead of interframe motions. In addition to testing with synthetic data, rigorous experiments were conducted with real-image
sequences taken by a fully calibrated camera system. The comparison of the experimental results with the ground truth has
demonstrated that a good accuracy can be obtained from transitory image sequences.

Index Terms — Motion analysis, struction from motion, image sequences, optimal estimation, Cramér-Rao bound, optical flow.

——————————   ✦   ——————————

1 INTRODUCTION

F a system need to sense a large 3D rigid scene which
cannot be covered by single view, the system may ac-

tively move and scan the scene. In general, during a dy-
namic sensing process, any component of the scene is visi-
ble only in a subsequence, and thus the resulting image
sequence is transitory as we defined in the abstract.

Issues with the transitory nature of scene components
have mostly not yet been investigated. Most works deal
with non-transitory image sequences, and successful im-
provements have been achieved in their fusion (e.g., [4], [6],
[8], [1]). Experiments for scene construction from transitory
image sequence only started recently, and we have so far
seen two efforts by Cui et al. [2] and Tomasi and Kanade
[9], respectively. In Cui et al. [2], some relative accuracy
was reported from a transitory image sequence, which in-
dicated that the accuracy was not further reduced once in-
coming and exiting feature points are comparable. Tomasi
and Kanade [9] conducted experiments with transitory im-
age sequences and discussed how to expand the measure-
ment matrix by filling in “hallucinated” projections. The
results showed that the object structure and camera pose
constructed from two transitory sequences “Ball” and

“Hand” contained larger error than that from the nontran-
sitory sequence “Hotel” [9].

Most questions related to the integration of transitory
sequences are still open. The work reported in this article
addresses these new issues. The new contribution of this
work includes:

1) It is shown that from a transitory sequence, it is inher-
ently not possible to get better estimates with a longer
sequence.

2) Techniques are introduced for two different usages:
global and local (e.g., visual map generation and
global pose determination belong to the former and
obstacle avoidance and object manipulation belong to
the latter).

3) It is demonstrated that different representations result
in very different stabilities. In general, world-centered
(WC) is better for a global usage, and camera-centered
(CC) is superior for a local usage.

4) We establish asymptotic error rates with respect to the
number of frames, which indicates how the error in
the estimates evolves with time and how to minimize
the pace of error accumulation.

5) We establish that the asymptotic error rates are, in
fact, the lowest possible based on the Cramér-Rao er-
ror bound.

6) In order to provide actual accuracy with a real system
setup, careful experiments have been conducted with
a fully calibrated camera system.
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The results have been compared with ground truth for
complete position of test points on the scene and the pose of
the camera system. The algorithm is automatic, including
feature selection, stereo matching, temporal matching and
tracking, 3D structure integration, and motion and pose
estimation.

The work presented here seems to be the first to intro-
duce the concept of transitory sequence and provide ana-
lytical results of this type of sequence. It reports fully veri-
fied accuracy with a real transitory image sequence. The
experiment in Cui et al. [2] used a transitory sequence, but
no particular attention was paid to the nature of transitory
sequence. The work reported here does a systematic study
of transitory sequences. Tomasi and Kanade [9] conducted
experiments using a few nontransitory and transitory se-
quences under the orthography assumption. In [9], camera
orientation and relative structure error were reported only
for nontransitory image sequence “Hotel,” but no accuracy
was reported for the transitory image sequences.

2 BASIC CONCEPTS

We consider a rigid scene and a sensing system (we will
call it a camera system). No matter which is actually mov-
ing, or both are moving, what we need to consider for the
kinematics here is just the relative motion between the two.

We first define the system of reference. Because we are
considering two entities: the scene and the camera system,
it does not help us to place the system of reference on any
object other than these two. If the system of reference is
placed on the scene, the representation with respect to this
system is called WC (also called object-centered). If the
system is placed on the camera system, the representation is
called CC. Fig. 1 shows these two representations. In the
WC representation, the camera is moving with respect to a
static scene, while in the CC representation, the scene is
moving relative to a static camera. To be specific in discus-
sion, we say that the scene is static and camera is moving.
Thus, the world-centered reference system is fixed (with the
scene) and the camera-centered reference system is moving
(with the camera).

A view u of a 3D feature point x is a two-vector (two di-
mensional vector) in monocular case and a four-vector in
stereo case (left and right views). With random error in the
image measurement u, the 3D position of the point x de-
termined from u becomes a probability distribution whose
extent can be characterized by its error covariance matrix
Gx. The covariance matrix of a 3D point from a monocular
view can be represented by

Gx
tH H=
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where, s3 is an extremely large number or infinity and the
orthogonal matrix H specifies the orientation of the major
axes of the covariance. By using a covariance matrix also for
monocular view, we can treat monocular and multi-ocular
cases in a unified way. Our analysis is applicable to both
perspective and orthographic projections. As a notation, we

write a small perturbation of a vector v by dv and the error

covariance matrix of a vector v by Gv.
First, we examine the error from determination of the

pose m of a camera system in a system of reference, where p
is a six-vector. For example,

m = (qx, qy, qz, px, py, pz)                                (1)

where px, py, pz specifies the position of the camera projec-

tion center and qx, qy, qz specifies the orientation of the pose

represented by a rotation matrix R(qx, qy, qz). The pose is
estimated from x, a set of 3D points, represented in that
reference system and u, their image observations in the
camera. Therefore, the pose is a function of x and u: m(x, u).
We can express the error in m in terms of that in x and u:

d
∂
∂ d

∂
∂ dm x u

m
x

m
u

= +                               (2)

and for its covariance matrix:
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assuming that the correlation between x and u is negligibly
small.

Next, we investigate the error in determining 3D posi-
tion of a set of 3D points y visible by a camera system
whose estimated pose is m. These points in y correspond to
a set of image points v. The estimated 3D position of points
y in the above system of reference is then a function y(m, v).
We can express the error in the estimated y by that of m and
v as
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and for its covariance matrix:
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Fig. 1. Two systems of reference. (a) World-centered. (b) Camera-
centered.
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assuming that the correlation between error in m and v is
negligibly small. The above equation indicates that the er-
ror covariance of the 3D points has two components, one is
caused by the error in the pose estimate, the other results
from error in the feature measurements.

Now, we use the above result to analyze pose determi-
nation from x and the use of estimated pose m to determine
y. We consider two cases:

1) x and y correspond to the same set of scene points, as
shown in Fig. 2a. Thus, u and v are the same in (2) and
(4), which gives
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which gives

G G Gy x
t

v
tA A D D= +                               (7)

where A and D are the appropriate Jacobians.
2)  x and y correspond to different scene points as shown

in Fig. 2b. Substituting Gm in (3) for that in (5), it fol-
lows that

G G G Gy x
t

u
t

v
tA A B B C C= + +                        (8)

where A, B, and C are the appropriate Jacobians. The
first term is caused by the error in the 3D structure x
from which the pose is computed. The second term is
due to error in u, the observation of x. The third term
results from error in the observation of y.

3 ASYMPTOTIC ERROR PROPERTIES OF
DIFFERENT INTEGRATIONS

In this section, we derive how the amount of error in the
estimate changes with integration of various sequences. We
assume that the algorithm obtains a linear minimum vari-
ance estimate in the sense of Gauss-Markov [5], which is
the minimum variance estimate with Gaussian noise.

In order to investigate the best possible result, the proc-
essing method is assumed to be batch unless stated other-
wise. This means that all the observed data are available for
processing and the estimate is computed with all the data
as a single batch. In contrast to batch processing is recursive
processing [5] where data items are used one at a time, each
giving an updated estimate for the result, and once an data
item has been used for updating it is discarded. In other
words, recursive processing imposes a restriction on the
way data are available. Thus, recursive processing may
have a worse asymptotic error behavior than the batch
processing, unless the problem is actually linear [5].

3.1 World-Centered Representation
In the WC representation, every new observation about
object structure is transformed into the WC system of refer-
ence using the estimated camera pose. Then all the trans-
formed structure observations are fused together according
to each’s error covariance matrix.

3.1.1 Ideal Nontransitory Sequence
Consider that a set of feature points y is visible in all the
views in the image sequence, as shown in Fig. 2a. Suppose
that from t = 1 to t = n, n observations are made for struc-
ture y:

y yt yt
= + d                                       (9)

Without loss of generality, we can assume that the pose m is
relative to the pose at t = 1. The correlation of error in d yt

between different ts is weak because error is random. Ac-
cording to the Gauss-Markov Theorem [5], the linear mini-
mum variance estimator of z in the linear equation Az =

b + d, where the noise term d has a covariance matrix Gd, is

z A A A bt t= - - -G Gd d
1 1 1e j  with an error covariance matrix

G Gz
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e j . Thus, the minimum variance linear esti-

mate for y in (9) is
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where Gyt
 is given in (5). The error covariance matrix of y in

(9) is given by

Fig. 2. Transitory and nontransitory sequences. The camera model is rep-
resented by the projection center, the image (a thick line), and the field of
view. (a) Nontransitory. (b) Simple transitory. (c) General transitory.
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It can be shown that if A and B are real symmetric posi-

tive definite matrices, then A - (A-1 + B-1)-1 = A(A + B)-1A, a
positive definite matrix. Using this result, we know from
(11) that any observation yt decreases the expected error in
the structure. In order to give a concise and intuitive ex-
pression about error covariance matrix, we need to assume
some uniformity in the sense that the difference in the error
covariance matrix from each view is neglected and each is
replaced the average error covariance matrix. Here, we as-
sume that difference of Gyt

 among different t is neglected.

Thus,

G G Gy n n O ny yt t
= = =- -1 1 1

1e j b g/                      (12)

Thus, it is clear that the expected error variance in the
structure is inversely proportional to the number of frames n.
We call the factor 1/n error rate.

3.1.2 Simple Transitory Sequence
In a simple transitory sequence, each scene point is visible
in two consecutive frames. In this case, the pose m esti-
mated from point set xt = x and its observation ut = u is
used to estimate the new structure xt+1 = y whose observa-
tion is ut+1 = v, as shown in Fig. 2b. From (8), we can esti-
mate the error covariance of the structure xt:
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Thus, using the above expression recursively, we get

G G Gx t u t
t

t v t
t

t

n

n t t
B B C C= +

=Â e j1

where Bt and Ct are the products of the appropriate Jaco-
bian and we have neglected error in the reestimated struc-
ture represented in the WC reference system, just as we did
in the last subsection. Now, we assume a uniformity in
which the difference among the terms under the summa-
tion is neglected. Thus,

G G Gx t u t
t

t v t
t

n t t
n B B C C= +e j                          (14)

In other words, the error covariance in the structure is pro-
portional to the number of frames. This implies that error is
accumulated with the number of frames.

3.1.3 General Transitory Sequence
The general situation with a transitory sequence is shown
in Fig. 2c, where a point can be visible in any number of
frames (except the entire sequence). Detailed formulation
for this general case is tedious and the resulting complex
expression will not give us an insight. Because we are inter-
ested in the asymptotic error behavior, we may make some
assumption about uniformity. Assume that every feature
point is visible in 2k frames. Thus, we regard the entire se-
quence F = {ft|t = 0, 1, 2, L, n} as k subsequences Fl =

{fpk+l |p ≥ 0 is an integer}, l = 0, 1, 2, L, k - 1, so that in each
Fl each point is visible by two frames and each Fl is then a

simple transitory sequence. k is called visibility span. The
entire sequence consists of k subsequences each is a simple
transitory sequence and is of n/k long. According to the
result of simple-transitory case with the uniformity as-
sumption, the error covariance matrix of the linear mini-
mum variance estimate based on each Fl is proportional to
the length n/k:

G G Gx t u t
t

t v t
t

n t t

n
k B B C C O n k= + =e j b g/                  (15)

where the factor in the parentheses should be that for a
simple transitory subsequence. On the other hand, we have
k subsequences, each gives an independent observation of
structure xt. Thus, we can use the result for ideal nontran-
sitory sequence we obtained when we derive (12), which
says that the error covariance matrix is reduced by a factor
of 1/k:

G G Gx t u
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which gives an error rate n/k2 for error covariance matrix
Gxn

. This is a very interesting rate. If the temporal sampling

density is increased by a factor of two with the same scan
trajectory, n and k are both doubled, and the error covari-
ance matrix is reduced by a factor of 1/2! We can also see
that when k = 1, the general rate n/k2 becomes the rate for
the simple transitory case and when k = n it gives that for
the nontransitory case.

The error rate n/k2 in (16) implies that the later a part of
scene enters the view, the larger the number n, and thus the
larger the variance of the error in its position with respect
to the WC reference system fixed at the first view.

In the above particular subsequence decomposition
gives a reachable error rate. Of course, this decomposition
is not necessarily what is done by an actual estimation algo-
rithm. It is to make derivation of error rate more concise
and simpler. This does not affect the asymptotic error rate
n/k2, because the best estimate is still derived by processing
the entire set of structure observations as a single batch.

3.1.4 Global Pose Error
In a nontransitory case, the error covariance matrix is given
in (3) which is almost independent of n.

Now, consider the transitory case. According to (3), the
error variance of camera pose estimate is the sum of two
terms, that from Gu and that from Gxn l-

 where n - l is the

past time frame that shares sufficient features with the cur-
rent view at n. Therefore, we have
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Since l is on the same order of k, the asymptotic error rate is
n/k2. Denote the last term in the above equation by O(1)
indicating it is caused by a single view of u vector. Thus,
the pose error with a transitory sequence has the same as-
ymptotic error rate as that of the structure estimate:

Gxn
O n k O= +/ 2 1e j a f                              (18)
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3.2 Camera-Centered Representation
In the CC representation, object structure is represented in
the camera reference system. In other words, every previ-
ous observation about object structure must be transformed
into the camera reference system at the current frame and
be fused according to the Gauss-Markov Theorem.

An important difference between the WC and CC repre-
sentations is the following. In the WC representation, every
part of the scene that has been observed but is not currently
visible does not need to be updated with the current view,
because the WC reference system does not change with
respect to the scene. In the CC representation, every part of
the scene that has been observed but is not currently visible
must be transformed to the current camera centered system
because the CC reference system moves with respect to the
scene.

With the CC representation, the pose m to be computed
is from the past time t - p to the current time t, p = 1, 2, 3,
L, t - 1. After fusing all the past views with the current
view at t, the resulting structure is called the CC structure.
Theoretically, the structure error should be the same as that
with the WC representation if all the past frames are treated
in a batch fashion. Thus the behavior of the error covariance
matrix for the CC structure is the same as that of the WC
structure estimated with the WC representation, except that
time t is now reversed: the older the frame, the worse the
structure accuracy in the CC representation.

However, the local structure, i.e., that is visible in the
current frame, does not have the above transitory problem,
simply because it is visible at current time n. Therefore, it
can take the advantage of the situation enjoyed by the ideal
nontransitory sequence. If the CC structure only takes past
b frames into account as a batch, and those b frames share a
considerable number of features with the current view at n.
Then, according to the result (12) derived with uniform
ideal non-transitory sequence, the CC structure of the cur-
rently visible part is of order G Gx b yn t

= 1  where Gyt
 is the

error covariance matrix of the past structure transformed to
frame n, and b is the batch size. For the above expression to
hold true, b should be small enough so that the past b
frames share the structure xn with the view at time n.

Now, we are ready to summarize the asymptotic error
rates using Table 1. In Table 1, n is current time (or frame
number), k the visibility span, and b is the batch size b £ k.
All the structure error is that for the visible part at the cur-
rent nth frame. The camera pose error in CC representation
should be zero in all the cases, because it is defined directly
in the camera system itself instead of being measured. In
the table, “0” is used to indicate this fact.

TABLE 1
ASYMTOTIC RATE FOR ERROR COVARIANCE MATRIX

IN INTEGRATION

Represen-
tation

Estimate Nontransitory Simple
transitory

General
transitory

WC structure O(1/n) O(n) O(n/k
2
)

WC pose O(1) O(n) O(n/k
2
)+O(1)

CC structure O(1/n) O(1) O(1/b)
CC pose 0 0 0

As can be seen from Table 1, with a general transitory
sequence, for global structure representation which is nec-
essary for extended scene reconstruction, one should in-
crease the visibility span k as much as possible. For the
camera-centered local structure which is useful in grasping
or collision avoidance, one should increase the batch proc-
essing size b £ k for the best possible accuracy.

3.3 The Tightness of the Error Rates
The error rates we obtained in Table 1 are achievable How
tight are those rates? Are those rates the best one can possi-
bly achieve?

In general, the observation model of our problem can be
expressed as

$u u u= +a da f                                     (19)

where $u  is a vector of image-plane observations, contami-
nated by noise vector du, and u(a) is the noise-free image

plane vector which depends on the parameter vector a. In
our problem, u consists of image coordinates of all the fea-
tures in all the image frames. du is the error vector which

takes into account a wide variety of errors. The vector a is
the parameter vector one wants to estimate, such as struc-
ture of the currently visible scene, camera pose, motion pa-
rameters, etc.

Suppose that $a  is an unbiased estimator of a from $u  in
(19), the noise vector du has a zero mean and covariance

matrix Gu, and the probability distribution density of the

noise factor is p(u, a). In reality our estimator is not exactly
unbiased and the noise mean does not have to be exactly
zero. We assume that the absolute bias and the noise mean
are negligibly small. The multidimensional version of the
Cramér-Rao error bound [7], [12] gives

E F
t

$ $a a a a a- - ≥ =-b gb g a f1 CRB                  (20)

where E denotes expectation operator, and F is the Fisher
information matrix:
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p u p u
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                  (21)

The inequality in (20) means that the difference matrix of
the two sides is nonnegative definite. In particular, the di-
agonal elements and the trace of a nonnegative definite
matrix are all nonnegative. Therefore Cramér-Rao bound
gives a lower error bound for the error covariance of every
component of the parameter vector a. As indicated in (21),
such a bound is evaluated with noise-free observation u
and true parameter vector a. It is worth noting that the
bound is algorithm independent. It indicates that no matter
what algorithm is used to estimate a, the resulting error
covariance matrix of a cannot be lower than that specified
by the bound.

Next, we investigate the Cramér-Rao bound of the global
pose of the camera system in WC representation. We con-
sider a general transitory sequence of length n, F =
{ft | t = 0, 1, 2, L, n - 1} with a visibility span k. Since we are
investigating asymptotic behavior in which n goes to infin-



456 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,  VOL.  19,  NO.  5,  MAY  1997

ity, without loss of generality, we consider n to be an inte-
gral multiple of k, i.e., n = (j + 1)k, for some positive integer
j.  j + 1 is the length of k subsequences Fl = {fpk+l | p = 0, 1,

L, j} , l = 0, 1, 2, L, k - 1, each of them is a simple transitory
sequence.

3.3.1 The Simple Transitory Case

Consider the subsequence F0, of length j. As explained in
(1), the global position of the camera at the ith frame of F0,
with respect to its global position at 0th frame F0, can be
specified by a column vector

m(i) = (px(i), py(i), pz(i), qx(i), qy(i), qz(i))
t

where p(i) = (px(i), py(i), pz(i))
t and q(i)= (qx(i), qy(i), qz(i))

t

specify the global position and orientation, respectively.
Define incremental interframe displacement

d(i) = m(i) - m(i - 1)                              (22)

i = 1, 2, L, j. From (22), we have the relation
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with I denoting the identity matrix. Alternatively, we write

mj,0 = Mjdj,0

where we denote the left side of (23) by mj,0 and the right
side by the product of the matrix Mj and vector dj,0. Geo-
metrically, mj,0 is the global attitude trajectory of the camera
system while dj,0 is the interframe displacement vector, plus
the initial attitude m(0). According to the definition of the
Cramér-Rao bound, we have
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it follows that

CRB CRBm M d Mj j j j
t

, ,0 0e j e j=                      (24)

For our purpose of investigating the asymptotic behavior
of the Cramér-Rao bound, we need the uniformity condi-
tion of the motion sequence as we did earlier, since the
behavior of an otherwise arbitrarily changing motion tra-
jectory can depend more on a particular local motion in-

stead of the temporal trend of the error behavior. Now,
we assume a uniformity with which the differences
among the interframe motions d(i), i = 1, 2, L, j are ne-
glected. In other words, the Cramér-Rao bound (CRB) of
interframe motions CRB(dj,0), which is a symmetric ma-
trix, is now a band matrix:

CRB d
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               (25)

In other words, denoting CRB(dj,0) = [Cpq] , then Cpq = Cqp = 0

whenever | p - q | ≥ h, for some constant h. The unfirmity
condition requires that the error bounds for estimating in-
terframe motions di and dj, respectively, are not correlated
when the interframe motions are farther than h frames
apart. This is a reasonable condition because an interframe
motion depends mostly on the two image frames that de-
fined the interframe motion. Although the information
about the scene structure may contribute to the estimation
of interframe motion to some degree, two far apart inter-
frame motions do not share any common scene element
when h is large enough in a general transitory sequence.

Without loss of generality, we can consider h = 2 for a
simple transitory sequence. Thus, (24) and (25), give
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The last element in the bottom row of CRB(mj,0) is the CRB
for the global pose of the camera at frame j of F0, which
gives

CRB m I I I

C C
C C

C
C C

I
I

I

j C jC O j

j ,0

0 1

1 0

1

1 0

0 1

0

0

1 2

e j

b g b g

=

L

N

MMMM

O

Q

PPPP

L

N
MMM

O

Q
PPP

=

+ + =

L
O

O O M        (27)

In other words, we have proved the following theorem:

THEOREM 1. Under the uniformity condition, the CRB of the
global pose error at frame j in a simple transitory sequence
is of the order O(j).

Similarly, the CRB of the global position of the structure
has the same order in error rate as the global pose.

3.3.2 The General Transitory Case

First, we extend the above result for F0 to the other subse-

quences Fl. We extend our notation from mj,0 and dj,0 to mj l
l
,
b f

and dj l
l
,
b f , respectively, to denote the corresponding trajecto-

ries of Fl, starting from frame fl to frame fjk+l, l = 0, 1, L,
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k - 1. Given F, the above discussion still holds for Fl, except
that the meaning of Ci in (25) is the CRB of the correspond-
ing component based on the entire F instead of just F0.

Therefore, the CRB of the error rate of the global pose mj l
l
,
b f

is still of order O(j) = O(n/k):

CRB m O n kj l
l
, /b fe j b g=                             (28)

Consider each scene element xn that is visible from fjp+l,

the last frame of Fl, l = 0, 1, L, k - 1. Since CRB is a lower

bound and Table 1 means that CRB(xn) £ O(n/k2). To estab-

lish CRB(xn) = O(n/k2), all we need to prove is CRB(xn) ≥
O(n/k2). To do the latter, we can neglect some errors with-

out affecting the order. For l = 1, 2, L, k - 1, we neglect the
interframe pose error between frame f0 and fl, and the error
in the process of constructing xn from frame fjp+l. Thus, xn is
determined by the camera global position at fjp+l by a func-
tion g:

x g m m m g mn j j j k
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where we define m m m mj j j j k
k t
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, , ,, , ,0
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1
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1
1a f a f b fe jK . Since all sub-

sequences Fl are independent with each other, the CRB of mj

is a block diagonal matrix:
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Using the variable change technique as we used before,
we have
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Since CRB(mj) is block diagonal, then so is its inverse. The
above inequality gives
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the last equation used the result in (28). Therefore, we have
CRB(xn) = O(n/k2).

The CRB for global pose can be directly derived from that
of the global position of the structure. The derivation for the
order of CRB in nontransitory case is simple and is omitted.

In summary, we have established the following result:

THEOREM 2. The asymptotic error rates in Table 1 are not only
reachable but also the theoretical lowerest possible specified
by the Cramér-Rao lower bound. This is true for any distri-
bution as long as the uniformity condition is satisfied.

These error rates are determined by the nature of the
transitory sequence. Although we have used the uniformity
condition so that the rate can be expressed simply, the uni-
formity condition can be applied to ensemble average in
terms of random process. Passing without a rigorous proof,
the rates stated in Theorems 1 and 2 are probably true for
general random motion sequences in the sense that they are
average rates as long as the uniformity is true on average.

4 METHODS AND ALGORITHMS

The above analysis motivated our method of keeping two
representations, WC for global measurements and CC for
local measurements. To be specific, we assume a stereo
camera system. The method can be directly extended to
monocular case without any major modification.

We first consider estimation with a nonlinear observa-
tion function f. Suppose that an observation vector y is re-
lated to a parameter vector m by a nonlinear equation y =
f(m) + dy where dy is a pairwise uncorrelated random noise
vector with zero mean, and covariance matrix Gy y y

tE= d d .

The maximum likelihood estimate with Gaussian noise dy

or minimum variance linear estimate with a general noise
distribution calls for minimizing

y f m y f m
t

y- --a fc h a fc hG 1                           (32)

with respect to m. In other words, the optimal parameter
vector m is the one that minimizes the matrix-weighted dis-
crepancy between the computed observation f(m) and the
actual observation y. At the solution that minimizes (32),
the estimated $m  has a covariance matrix

G G$ $ $ ~
$ $

m
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yE m m m m
f m
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f m
m= - - -
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b gb g b g b g∂ ∂1

1

         (33)

One of the advantages of this minimum variance criterion
is that we do not need to know the exact noise distribution.
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4.1 Cross-Frame Approach With CC Representation
Let Xp denote the 3D positional vector of a point repre-
sented in the CC system at frame p. Point Xq represented in
the CC system at frame q is moved to Xp in the CC system
at time p: Xp = Rp,q Xq + Tp,q where Rp,q and Tp,q are a rotation
matrix and a translation vector, respectively. Let mp,q which
is a function of Rp,q and Tp,q, denote the relative pose from q
to p.

All the structure observed in the past needs to be trans-
formed to the CC system at frame p and properly fused.
There are two basic approaches in the fusion of the past
structure.

1) Recursive method: frame by frame. The fused struc-
ture at previous frame is transformed to the current
frame p and fused with the new observation at p ac-

cording to the estimated interframe motion mp,p-1.

2) Batch method: cross-frame. For each q Œ {p - 1, p - 2,
L, p - b + 1}, estimate the cross-frame motion mp,q and
transform Xq to frame p and fuse with the new obser-
vation at p.

The first method involves two frames at a time, p - 1 and
p. As we discussed before, the fused structure has an error

covariance matrix of G G Gm x pp
+ +F

HG
I
KJ-

-
-

-

1

1
1

1

e j  where Gp is the

error covariance matrix of single observation at p and Gxp -1

is due to the error in interframe motion estimate. A struc-
ture estimate at from p - l will undergo l such deteriora-
tions under the frame-by-frame recursive method and thus,
when l > 1, the old structure estimate is hardly useful in the
fusion with that in view p.

Under the second cross-frame method, each previous
structure estimate at p - l is directly transformed to p under
one transformation. Thus the transformed structure dete-
riorates by the motion error only once. Fig. 3 graphically
explains the advantage of using cross-frame motions.

In practice, we define a number K, called extra batch
size, to be the number of extra image (stereo) frames that
are processed as a batch in additional to the last two. Thus,
at current frame number p, the image frame batch consists
of frames from p - K - 1 to p. According to our discussion
about non-transitory and transitory image sequences, it is
useful for K to span a subsequence that is nearly nontran-
sitory. With a batch at frame p, the current active cross-
frame motion set is denoted by

W p m R Tp i p i p i
i p K

p

b g e j{ }=
= - -

-

, , ,,
1

1

U .

The cross-frame motion set completely defines the motion
between any two frames within the batch. When K = 0, we
have just an interframe motion in W(p).

Let N be the total number of feature points being consid-
ered; xi,s denote the 3D local structure of ith point in sth
camera-centered system; ui,j,s be the 2D image coordinate
vector of ith point on the jth side (left, right) at the sth

frame. Assuming that the noise in the observations (ui,j,s) is

uncorrelated and has the same variance s su v
2 2,e j in the two

image coordinates, expression (32) that is to be minimized
can be written the following form
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In the above expression, X(ms,p, xi,p) is the transformation
function to transform the point xi,p from camera coordinate
system at frame p to frame s based on the motion parame-
ters ms,p. Function u(ms,p, xi,p) is the noise-free projection
computed from ms,p and xi,p, which includes transformation
and projection. This objective function has two terms. The
first term, A, reflects the integrated 3D structure in the past
up to time p - K - 1. The second term, B, is used to mini-
mize the image plane error of the frames within the batch
from from p - K up to p. The summation bound for i can be
modified to include only those points that are visible in
each frame so that a point does not have to be visible
through the entire batch.

Fig. 3. Using cross-frame motions to integrate many views. Each elon-
gated ellipse indicates the uncertainty in 3D point position transformed
from a single previous stereo view to the current view. The integrated
uncertainty is greatly reduced using the multiple cross-frame motions
instead of interframe motions.
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4.1.1 Minimization of the Objective Function
The objective function in (34) is neither linear nor quadratic
in terms of cross-frame motion parameters, m, and 3D fea-
ture points, x. An iterative algorithm is required to search
for the solution of m and x. The dimension of the unknown
parameters is intractably huge due to a typically large N.
Thus, a direct optimization is impractical. Our two proce-
dures play a central role in resolving this problem:

First, a (suboptimal) closed-form solution for interframe
motion from p - 1 to p is first computed. This interframe
motion is used together with previous pose estimate to
compute a preliminary estimate for all the cross-frame mo-
tions needed.

The second is to eliminate iteration on the structure. The
gradient-based search is only applied to cross-frame mo-
tions, because given each candidate set of cross-frame mo-
tions the best structure for (34) can be directly computed in
a closed-form. To show how, let us examine the objective
function (34). The second term of the objective function cor-
responds to minimizing the image vector error within the
batch. An alternative way to approximate this is to use the
matrix-weighted discrepancy of xi,p - X(mp,j, xi,j), the 3D po-
sition difference, to give the total discrepancy

min ,
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where xi s,
*  is computed from the triangulation at frame s,

Gxi s,*
 is the estimated covariance matrix of xi s,

*  for triangula-

tion. Substituting the second term of objective function (34)
with (35), we minimize
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given any W(p). The above is a linear minimization prob-
lem, for which we just need to solve the following linear
equation [3],
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which gives
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Its error covariance matrix is estimated by [3]
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4.2 World-Centered Representation
The WC representation follows a similar derivation. The
difference is that the structure does not move in WC sys-
tem. Thus, the structure integrated in the WC system up to
any time can be used directly for later WC integration.

4.2.1 Objective Function
Without loss of generality, let the world coordinate system
coincide with the camera-centered coordinate system of the
first frame.

M m n m R Ti
i m

n

i i
i m

n

, ,, , ,c h n s n s= =
= =

1 1 1U U

is the collection of all the global motions, where R Ti i, ,,1 1d i  is

the rotation matrix and translation vector from frame 1 to i.
For each feature points i, we have structure Gi correspond-
ing to the world coordinate system. Now slightly modify-
ing the equation (34), we get the appropriate objective
function for the WC representation:
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In the objective function, u(ms,1, Gi) is the noise-free pro-
jection computed from ms,1 and Gi. The essence of the above
objective function is that newly updated global structure Gi
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takes into account the old observation Gi
*  integrated up to

frame p - K - 1, but it considers all the observations in the
batch as image vectors, all properly weighted in the sense
of Gauss-Markov.

Similar to computation for the CC representation, no it-
eration is needed for the structure part, and a suboptimal
closed-form solution is computed first for motion and
structure which is used as the initial guess for minimiza-
tion. The following equation gives the closed form solution
for structure parameters Gi when the motion parameters
M(m, n) are given:
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where Gi,s is the estimation based on the single frame s. The
estimated error covariance matrix of the newly updated the

structure is G GG Gs p K
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. This WC based objec-

tive function is in essence similar to those of [4] and [6]. The
differences are:

1) a batch parameter K is used to better deal with the
transitory sequence;

2) the image-plane discrepancy is minimized to auto-
matically take into account nonsymmetrical nature of
error distribution in 3D point positions; and

3) the algorithm can automatically handle leaving points
and coming points which is required with transitory
sequences.

5 EXPERIMENTS

We conducted experiments with synthetic and real word
images in order to experimentally examine the error rates
listed in Fig. 1 and compare the WC and CC representations.

5.1 Simulation
The 3D feature points were generated randomly for each
trial, between depth 2,000 mm and depth 3,000 mm, with a
uniform distribution. The entire scene is covered by 31
frames and the distance between consecutive frames is
roughly 200 mm. A small rotation is added between each
pair of two consecutive frames. Fig. 4 illustrates the simu-
lation environment. This environment is similar to the real
setup to show later. The average errors we will show were
obtained through 100 random trials each with a different
set of 3D points. With our setup, in order to let the first and
the last frame in the batch share at least 30 percent of the
scene, the batch size should not be larger than three.

5.1.1 Results

Fig. 5 shows the current camera position error (Ri,1, Ti,1)
for different frames. It can be seen from the figure that the
batch size has more impact in the CC representation than
WC. This is because in the CC representation, the refer-
ence frame moves, which introduces more nonlinearity
than the WC case when the old observation is trans-
formed into the current CC reference system. The struc-
ture error is shown as the average error of all the visible

feature points at the current frame. The result indicates
that a larger batch size is very effective to reduce both the
local and global structure errors, for CC representation, as
we predicted in Section 4.1. A larger batch size does not
improve much for WC representation due to dominantly
linear nature of the WC structure fusion. The figure also
shows that the WC representation performs better for es-
timating the global structure while the CC representation
does better for local structure, as predicted by Table 1. A
point worth noting here is the fact the local structure error
with the CC representation is constant, while that with the
WC representation grows with time, also a property pre-
dicted by Table 1.

5.2 Experiments With a Real Setup
A challenging task facing the area of motion and structure
analysis is to provide data from rigorous experiments that
verified the actual accuracy of the results with an automatic
algorithm, so that we can evaluate whether passive struc-
ture sensing is possible and reliable in real world. The re-
sult reported here is an effort toward this goal.

The setup used for our image acquisition is a Denning
MRV-3 mobile robot and a pair of stereo cameras, 265 mm
apart, mounted on a custom-designed stereo positional
setup that allows step-motor controlled pan and tile for
each camera from a computer, as shown in Fig. 6. The ste-
reo camera system was calibrated with distortion compen-
sation using an algorithm from Weng et al. [11]. The field of
view of each camera is about 36 degrees diagonally, and
each digitized image has 512 ¥ 480 pixels. An image se-
quence of 151 frames was acquired from the moving mobile
robot. It contains a left-view sequence and a right-view se-
quence. The entire stereo sequence was used for automatic
feature extraction, matching and tracking. A temporally
subsampled (one sample every five frames) subsequence of
31 frames was used for motion and structure estimation
with a consideration that this subsequence is dense enough
for estimation and yet enables cross-frame motions to cover
more original frames with a relatively small batch size.
Fig. 6 shows a few images in the 151-frame sequence.

Fig. 4. Simulation environment, where 7,000 mm distance is covered
by the 31 frames.
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A feature point detector has been developed for this
project to automatically detect feature points from images.
The feature detector first computes the cornerness measure
(the degree a point looks like at a corner) at every pixel.
Then the local peaks of this cornerness measure are de-
tected to form a peak histogram, ranked with the corner-
ness measure. The program automatically determines the
threshold so that the required number of features are given
from top rankings. An area-directed analysis is incorpo-
rated into the scheme so that the detected feature points
evenly spread across the entire image.

Stereo matching was done using the image matching al-
gorithm from Weng et al. [10], which provides a dense dis-
placement field with a disparity vector for every pixel. The
disparity vector at every feature point is extracted from this
field.

For efficiency, the algorithm uses a corner tracking
mechanism as much as possible. Only when the tracking is
not successful based on the closeness measure used by
tracking, is the matcher called. The trace record of the entire
sequence is shown in Fig. 7. About 100 feature points were
automatically kept at any time. Since some points may go
out of view and some points may become inactive, the
number of active points may fall below a tolerable number
(90 in our experiment). If this happens, the feature detector
is called which provides additional points from the image
and then the stereo matcher is called to give stereo match-

ing for these new points. The time when the feature detec-
tor was automatically called can be clearly identified in
Fig. 7. Fig. 8 presents an example of temporal matching-
and-tracking. A careful visual inspection of entire point
trace indicates that there was no visible errors.

To verify the accuracy of structure estimates as well as
camera pose estimates, the global coordinates of a set of test
points were carefully measured to within an error of 1 mm.
The selection of test points were based on ease of measure-
ment and was not based on automatically selected features.
Thus, each test point is not necessarily a part of the feature
points used for the automatic algorithms, although many of
them are. The image coordinates of the test points were
manually measured from digital images. The accuracy of
the reconstructed structure error was measured by the fol-
lowing steps:

1) Compute the WC and CC representations for feature
point position and camera pose using the fully auto-
matic algorithm described above.

2) Manually measure the image coordinates of the test
points.

(a)

     
         (b)    (c)

     
          (d)   (e)

Fig. 6. The robot and a few stereo frames in the 151-frame sequence.
(a) Robot. (b) Left image of frame 0. (c) Left image of frame 50. (d) Left
image of frame 100. (e) Left image of frame 150.

Fig. 5. The error versus time for the simulation result. The CC repre-
sentation on the left column and WC on the right.
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3) Perform a multiframe triangulation to get the 3D po-
sition of the test points. The number of frame used is
according to the corresponding batch size.

4) Measure the global position error as the difference
between the true and estimated test points.

This way of measuring error tests not only the pose of the
camera, but also some of the reconstructed feature points, if
they are also test points. Table 2 lists some data of the real
setup. Fig. 9 shows the test points of one frame.

Fig. 9. Sample test points on one frame. Each cross shows the location
of a test point.

TABLE 2
SOME DATA FOR THE REAL SETUP

Number of frame 31 Distance traveled (mm) 3,097
Number of feature

points
387 Number of test points 85

TABLE 3
AVERAGE IMAGE PLANE RESIDUAL

Representation batch size 0 batch size 3
WC 0.76 pixel 0.68 pixel
CC 0.45 pixel 0.51 pixel

First, to show how well the estimated structure and
camera pose agree with the automatically detected feature
points, the estimated 3D feature points were projected onto
the image plane according to the pose. The average distance
difference between every projected point and actually de-
tected feature point is called image plane residual and is
shown in Table 3. The values are around a fraction of a
pixel for both representations. These numbers also indicate
that camera distortion compensation in the calibration was
very effective.

Fig. 10 shows the actual camera orientation error. Al-
though the image sequence here is transitory, the pitch and
row errors are comparable with those in the nontransitory
“Hotel” sequence experiment by Tomasi and Kanade [9]
over the entire sequence. The visibility span of our setup is
about four. At frame four, the yaw error has the same mag-
nitude as that in [9]. After frame four, the error tends to
increase due to the transitory nature of the sequence. It is
interesting that roll and pitch errors did not increase

(a)

(b)

Fig. 8. Stereo matching and temporal matching-and-tracking. (a) An
example of stereo matching (frame 0). (b) An example of temporal
matching and tracking (frame 24 to 69). A needle is drawn from the
feature point to its position in the target frame. Due to camera ver-
gence, the orientation of the needles in (a) is correct.

Fig. 7. The tracking record of the feature points through the 151 frames
in the sequence. If a point k is successfully tracked from frame i to
frame j, a vertical line is shown at point number k from frame i to frame
j. (Due to the limit of the printer resolution, lines are merged in the plot.)
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quickly with time. After traveling about 3,000 mm, the total
orientation error is not more than 0.02o in roll, 0.23o in pitch,
and 2o in yaw with the WC representation.

Fig. 11 shows the camera position error and Fig. 12 pres-
ents the global error of the test points visible at the current
time. As we predicted, the error increases with the time. But
the estimates appear good. After traveling about 3,000 mm,
the estimated camera global position error is less than 60 mm
in depth Z (less than 2.3 percent), about 43 mm horizontally
and under 25 mm vertically with the WC representation. This

seems to indicate that reasonable results can be obtained with
a fully automatic algorithm, even with a transitory image
sequence. Fig. 13 shows the reconstructed 3D surface.

CONCLUSIONS

In this article, we introduced the concept of transitory im-
age sequence for structure and motion estimation from long
image sequences. It has been shown that integration for
transitory sequence has asymptotic error rates that are very
different from those with a nontransitory one. The theoreti-
cal error rates listed in Table 1 indicates that the WC repre-
sentation is better for global estimates and the CC represen-
tation is superior for local estimates.

The verified accuracy in our experiment appears to indi-
cate that with off-the-shelf cameras, one can automatically
determine the scene structure and pose of the camera with
a good accuracy, although the image sequence here is of a
more difficult transitory type (compared with nontransitory
ones).
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Fig. 12. Structure error versus time.

Fig. 13. Reconstructed 3D surface integrated from many partial
views in the sequence, shown with original intensity viewed from an
arbitrary direction.

Fig. 10. Camera rotation error versus time.

Fig. 11. Camera position error versus time.
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