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Abstract

Recently, nonlinear shape models have been shown to
improve the robustness and flexibility of segmentation. In
this paper, we propose Shape Regularized Active Contour
(ShRAC) that incorporates existing nonlinear shape mod-
els into the classical active contour approach. ShRAC uses
a discrete representation of the contour to allow efficient
combinatorial search. The search for optimal contour is
performed by a coarse-to-fine algorithm that iterates be-
tween combinatorial search and gradient-based local op-
timization. First, Multi-Solution Dynamic Programming
(MSDP) is used to generate initial candidates by minimiz-
ing only the image energy. In the second step, a combi-
nation of image energy and shape energy determined by a
given prior shape model is minimized for the initial candi-
dates using a local optimization method and the best one is
selected. To have diverse initial candidates, we employ a
Clustered Solution Pruning procedure in the MSDP search
space. Finally, Local Shape Regularization is used to feed
shape constraints back into the new MSDP search space
of the next iteration. Our search strategy combines the
advantages of global combinatorial search and local opti-
mization, and has shown excellent robustness to local min-
ima caused by distracting suboptimal segmentations. Ex-
perimental results on segmentation of different anatomical
structures using ShRAC are provided.

1. Introduction

Segmentation of anatomical structures is often a crit-
ical component of medical imaging systems, such as a
Computer-Aided Diagnosis (CAD) system and a Patient In-
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formation System (PIS). In chest radiography, researchers
have developed numerous methods for segmenting the lung
fields, rib cage, heart, clavicles, blood vessels, as well as
abnormal structures such as lung nodules. However, given
the projective nature of chest radiography, superimposed
anatomical structures make images complicated and chal-
lenging for diagnosis for both radiologists and computer-
ized systems. The clinical importance of chest radiography
and its complicated nature continue to drive researches on
developing robust segmentation algorithms to assist radiol-
ogists and improve automation.

While the nature of chest radiography images poses
many challenges for robust algorithms, the limited domain
of the problem also provides an opportunity to incorporate
prior knowledge of the shape, and in some cases the appear-
ance, of the anatomical structures of interest. After the early
years of research, which focused on rule-based reasoning
and hand-crafted shape models [4], more recent approaches
are focusing on statistically learning the shape (and appear-
ance when applicable) of an object from a set of training ex-
amples, and use the learned model to constrain the search.
Active Shape Model (ASM) [2] is such a successful seg-
mentation method that uses linear shape and appearance
models extracted by principle components analysis (PCA).
The problem with linear models is that they admit invalid
shapes when the shape distribution is in fact nonlinear, and
therefore multiple models are necessary to span a nonlinear
shape distribution while excluding invalid shapes.

It is desirable to develop a method to incorporate
prior nonlinear shape constraints into segmenting different
anatomical structures (e.g., lung fields, clavicles, ribs) in
medical images. This method could also serve as a flexible
segmentation tool for those objects whose shapes may vary
nonlinearly, giving rise to what appear to be multiple sub-
classes, without the need to build separate models. For the
specific problem of lung field segmentation, it is desired that
the segmentation algorithm starts with a fixed initial shape
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Figure 1. Starting with the same elliptic shape, a segmentation algorithm should converge to the correct shape without model selection (e.g.
to adapt to whether it is the left or the right lung field). Here we show the result of the proposed ShRAC algorithm: (a) Initial contour on
the right lung. (b) Final contour on the right lung. (c) Initial contour on the left lung (note that it is the same shape as in (a)). (d) Final
contour on the left lung.

(Fig. 1), and automatically adapt and converge to the cor-
rect shape, without any model selection in advance, e.g., to
decide whether it is the left or right lung field. In addition,
the method should also be robust to noise and clutter that
are commonly seen in medical images.

Nonlinear shape priors have been incorporated into non-
linear ASM [9] and variational image segmentation with
nonlinear shape statistics [3]. These algorithms have been
shown to be more flexible and powerful in model building
and therefore more successful in segmenting objects with
nonlinear shape variations. However, they also pose many
difficulties to the design of a search strategy that balances
the use of shape prior constraints and actual image struc-
tures to find a globally optimal solution.

In the work by Cremers et al. [3], a Mumford-Shah func-
tional type image energy and a shape energy derived from
Kernel Space Density Estimation (KSDE) are combined to
construct an energy function for segmentation. The KSDE-
based shape energy enforces object-specific nonlinear shape
constraints, in contrast to general smoothness constraints in
conventional snakes [5]. However, this shape energy term
makes it difficult to minimize the energy function globally.
Instead, gradient-descent is employed in their work, which
often converges to a local minimum.

Algorithms developed for ASM [2] address this prob-
lem by not minimizing a single energy function. Instead,
the search iterates between two steps. In one step, ASM
searches for the best landmarks, which is equivalent to min-
imizing an image energy term. In the other step, the contour
is regularized to the space of training shapes, which can be
viewed as minimizing a shape energy term. Although this
alternating process provides certain capabilities for the al-
gorithm to jump out of a local minimum and find a better
solution, the lack of a global energy function may introduce
oscillations when trying to minimize two separate targets.
Therefore, a more robust method is needed to avoid poten-
tial oscillations.

In this paper, we propose the Shape Regularized Active
Contour (ShRAC) and the associated search strategy under

the framework of energy minimization. ShRAC incorpo-
rates nonlinear shape priors through Kernel Space Density
Estimation, similar to [3]. Our search strategy combines the
advantages of combinatorial search, which provides global
optimality, and gradient-based local optimization. In partic-
ular, we propose to first use Multi-Solution Dynamic Pro-
gramming (MSDP) to minimize the image energy as the
initial candidate selection step, and then use a local opti-
mization method that eventually minimizes a combination
of the image energy, and shape energy determined by the
prior shape models. In addition, we propose a Clustered So-
lution Pruning process in the MSDP search space to ensure
the diversities of the selected candidates. Local Shape Reg-
ularization is also used to help feed the shape information
from local optimization back into the MSDP search space
for the next iteration. Our combined search strategy results
in improved robustness to image noise and various distract-
ing structures that present in medical images.

Although the main problems solved in this paper are in
the context of medical image segmentation, the framework
and the associated search strategies should be applicable to
other object segmentation tasks involving joint constraints
from image features and prior shape models.

This paper is organized as follows: Section 2 gives
our formulation of ShRAC. Section 3 presents the iterative
search strategy. Section 4 uses two experiments to demon-
strate the robustness of ShRAC, and Section 5 gives some
conclusions and outlines our related future work.

2. Problem Formulation

We formulate ShRAC based on a nonlinear shape dis-
tance measure instead of the smoothness term used in a
conventional active contour. It is inspired by the work of
Cremers et al. [3] that uses nonlinear shape priors for vari-
ational image segmentation. In particular, we are inter-
ested in a discrete formulation so that efficient combinato-
rial search methods can be applied.



2.1. A Discrete Formulation for ShRAC

Similar to the conventional Active Contour, ShRAC tries
to find a contour c that minimizes an energy function E(c),
which is the weighted sum of two terms:

E(c) = Eshape(c) + wEimage(c) (1)

where Eimage(c) is the image energy term, and Eshape(c) is
the shape energy term that measures the difference between
the contour c and the training shapes. We adopt the shape
energy measure used in [3], which uses a distance measure
based on Kernel Space Density Estimation (KSDE):

Eshape(c) =
r∑

j=1

(
m∑

i=1

αj
i k̃(ci, c)

)2

· (λ−1
j − λ−1

⊥ )

+λ−1
⊥ · k̃(c, c) (2)

where αj
i is the jth eigenvector of the centered kernel ma-

trix, k̃(·, ·) is the centered kernel function, and ci is the ith
training example. Furthermore, λj = (1/m)λ̃j , where λ̃j is
the jth eigen value of the centered kernel matrix, m is the
number of training examples, and λ⊥ is a constant value
chosen to replace all the smaller eigenvalues.

We define the image energy in terms of the intensity dif-
ferences on two side of a contour. This is because many
anatomical structures do not have homogeneous intensities,
therefore a piecewise constant intensity model is not always
appropriate. Eimage(c) can be computed as the integration
of local edge strength he(·) along the contour.

Eimage(c) =
∫

he[v(s)]ds

L(c)
(3)

where v(s) can be viewed as a parametric representation
of points on the contour. L(c) is the length of the contour
which is used as a normalization term. The term he(·) can
be computed as the absolute or signed intensity difference
between pixels on the two sides of the contour. In many
medical applications, such as lung field segmentation or rib
segmentation, a signed intensity difference will give better
performance since the intensity difference generally has the
same sign along the contour.

To use efficient combinatorial optimization methods, we
represent the contour as a set of control points c = {vi|i =
1...N} sequentially connected by line segments. Then we
rewrite Equation (3 ) in a discrete form as:

Eimage(c) =
∑n−1

i=0 he[ �vivi+1] ∗ l( �vivi+1)
L(c)

(4)

where he[ �vivi+1] represents the average edge strength along
�vivi+1 and l( �vivi+1) is the length of �vivi+1. To fur-

ther simplify the image energy term, we ignore the length

Figure 2. Comparison of distance functions learned by PCA (lower
left) and KSDE (lower right) from the training shapes of both left
(+) and right (x) lungs.

difference between different contour segments and treat
l(vivi+1)/L(c) as a constant. This simplification is appro-
priate because the control points in all the training examples
are equally spaced, and therefore the shape energy will push
these control points towards the equally spaced positions.
This enables us to write the discretized energy function as:

E(c) = Eshape(c) + w′
n−1∑
i=0

he[ �vivi+1] (5)

2.2. Nonlinear Shape Learning in ShRAC

The nonlinear shape model adopted in ShRAC allows us
to capture a set of shapes containing nonlinear variations.
For example, we can put together training shapes from both
left and right lungs and build a single shape model to repre-
sent the distribution of the acceptable shapes.

Fig. 2 contrasts the performance of PCA and KSDE in
modeling the shape energy for a set of lung shapes. Both
left and right lung shapes (Fig. 2, first row) are aligned into
a common coordinate space and represented as a sequence
of control points. The learned Mahalanobis distances from
PCA and from KSDE using (2) are plotted in the second
row, along the axes spanned by the eigenvectors that corre-
spond to the largest two eigenvalues of PCA. Clearly, KDSE
shows two clusters, separated by a high-energy ridge (in
light gray) in the shape space, for left and right lung fields.
It gives a better characterization of the training shape distri-
bution than the single cluster energy from PCA, which ac-
tually assigns the lowest energy (highest likelihood) to the
invalid shapes in between the two clusters.



Generate candidates via 

Multi-Solution Dynamic 

Programming

Minimize joint energy of 

candidates via local 

optimization

Construct search space

Local window 

small enough?

No

Yes

Segmentation Results

Initial Contour

Select the minimum contour

MSDP

Stage

Local

Optimization

Stage

Figure 3. The flow diagram of the proposed search strategy.

3. Search Strategies for ShRAC

3.1. Combinatorial Search v.s. Local Optimization

Note that the image energy term in the energy function
(5) has a good property: it can be expressed as a sum of
functions of two consecutive control points. Functions of
this form can be optimized efficiently using combinatorial
search methods such as Dynamic Programming. Dynamic
programming guarantees finding a global minimum within
polynomial time [1]. This ensures the robustness of the al-
gorithm to initial conditions and local minima.

The shape energy term has a more complex form. The
addition of this term makes the whole function no longer
decomposable into a sum of functions of two consecutive
control points. Except for stochastic minimization (often
impractical), we can only rely on local gradient-based opti-
mization to solve this problem. Unless the energy function
is convex, local gradient-based optimization usually finds
a local minimum that is close to the initial contour. With
the presence of imaging noise and distracting structures in
typical medical images, a local optimization method can be
easily trapped in local minima.

Previous research has shown that combinatorial search
strategies can be used to generate good initializations for
various snake algorithms [7]. We adopt a hybrid search
strategy for ShRAC that combines the advantages of com-
binatorial search and local optimization. The algorithm it-
erates between the following two stages. In the first stage,
we use Multi-Solution Dynamic Programming (MSDP) to
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Figure 4. A MSDP search space constructed from an initial con-
tour. {Vij} are candidate points for control point i and {ei

jk} are
candidate contour segments between control point i and i + 1.

Figure 5. A search grid constructed from the initial elliptical shape
for lung field segmentation. Each line is a search direction for a
control point and each + sign is a candidate control point.

generate initial candidates by minimizing Eimage alone. In
the second stage, we add the shape regularization term and
use a local optimization method to minimize the entire en-
ergy in (5), starting with these candidates. After local op-
timization, a best contour is selected and used as the input
of the next iteration. We also use a coarse-to-fine scheme
involving multiple cycles: initally we use a large window
to compute the edge energy and a large step size in MSDP,
which can be viewed as a coarse search stage, and then re-
duce both of them to perform finer searches. The whole
algorithm is illustrated in Fig. 3.

3.2. Multi-Solution Dynamic Programming

First, we generate initial candidates for local optimiza-
tion by minimizing the image energy Eimage alone. This is
done by first constructing a search space arround the initial
contour and then using Dynamic Programming to select a
closed contour that minimizes the image energy.

Fig. 4 illustrates the construction of a search space from
an initial contour. First, we choose a search direction for
each control point. These directions can be the normal to
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Figure 6. The Multi-Solution Dynamic Programming Algorithm.

the initial contour, radial directions from the center of mass
of the initial contour, or other object-specific directions.
Next, we construct a search grid by placing equally spaced
control point candidates along the search direction on both
sides of the initial positions of the control points. Directed
edges are created to connect neighboring control point can-
didates, and they become the candidates for the contour
segments. In this directed graph, each edge is assigned
a weight he(ViaV(i+1)b) which is the local edge strength.
This way, we construct a directed graph with vertices rep-
resenting control point candidates and edges representing
contour segment candidates. All possible closed contours in
this directed graph constitute the search space for Dynamic
Programming. Fig. 5 shows a search grid (constructed for
lung field segmentation), where the search direction at a
control point is chosen to be the average of the normal di-
rection and the radial direction.

Dynamic Programming [1] is used to efficiently find a
minimum-weight contour in such a search space. In order
to generate several different initial candidates for the subse-
quent local optimization, we modify the dynamic program-
ming algorithm to find the first p closed contours that min-
imize the image energy Eimage. The modified algorithm,
named Multi-Solution Dynamic Programming (MSDP), is
summarized in Fig. 6. Note that standard Dynamic Pro-
gramming is a degenerate case of MSDP when p = 1.

The computational complexity of the original dynamic
programming algorithm is O(nm2), where n is the num-
ber of control points and m is the number of candidates for
each control points. The MSDP’s complexity is O(pnm2),
which means it grows linearly with the number of candidate
contours needed.

3.3. Clustered Solution Pruning for MSDP

The solutions from MSDP alone consist of top ranking
contours that minimize the image energy Eimage. Since
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Figure 7. Clustered Solution Pruning: blue edge ei
01 is only pre-

served if its image energy is less than both of the red edges ei
00

and ei
02.

these results are used as initial candidates for the subse-
quent local optimization, we argue that it is often critical
that these candidates be as diverse as possible for the fol-
lowing reasons.

First, the image energy is a continuous function, which
means minimum contours from MSDP will often cluster to-
gether and might not include the optimal contour for the en-
tire energy. Second, medical images are intrinsically noisy
and ambiguous, and often many competing interpretations
exist. It is critical to preserve multiple, and more impor-
tantly, distinct solutions when only image energy is mini-
mized. If we apply local optimization starting from similar
candidates, the final solution often converges to the same
minimum, which may or may not be global, thus defeating
the purpose of using MSDP.

We propose to prune the search space of MSDP so that
with a moderate p we can obtain a diverse set of initial can-
didates. We refer to this process as Clustered Solution Prun-
ing, which is similar in spirit to the procedure employed in
[10] where non-distinct proposals are pruned by minimiz-
ing the approximate Kullback-Leibler (KL)-divergence. In
practice, we propose a simple yet effective scheme. For
each directed edge ei

jk in the search graph (Fig. 7), we com-
pare it with its two neighboring edges ei

jk+1 and ei
jk−1; the

edge is pruned from the search graph if it is not the mini-
mum among the three edges.

This pruning reduces the search space to that only con-
sists of candidate segments with locally minimum image
energy. In essence, this makes our search focus on local
minima of the image energy. By starting from multiple
locally minimum solutions to the image energy, the sub-
sequent local optimization of the whole energy will have
a better chance to reach a global minimum solution. Fig.
8 shows an example where the proposed pruning method
helps MSDP to find more diversified initial candidates that
eventually lead to the desired solution.
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Figure 8. Effect of Clustered Solution Pruning. (a) Initial candi-
dates selected by MSDP without pruning. (b) Local optimization
result of the candidates from (a). (c) Initial candidates selected by
MSDP with pruning. (d) Local optimization result of candidates
from (c). The bold blue contours are the finally selected solutions.
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Figure 9. MSDP Search graph before (left) and after (right) Local
Shape Regularization.

3.4. Local Shape Regularization for MSDP

The MSDP search space constructed in Section 3.2 cov-
ers a wide range of complex shapes. This allows the search
results from MSDP depend less on the initialization and are
more robust to local minima. However, usually after the
first iteration of the search algorithm, the contour selected
as input for the next iteration already has fairly good infor-
mation about the expected shape in the image. Therefore, it
is not necessary to search again the fully connected search
graph as in Fig. 4. For example, it is not necessary to in-
clude the edge Vi0V(i+1)4 of Fig. 4 in the search graph since
it is very different in orientation from the initial contour.

We use the following Local Shape Regularization pro-
cess in constructing the MSDP search space. All the edges

in the search graph are compared to the corresponding edge
in the initial contour. Those edges with orientation differ-
ences larger than a threshold are removed from the search
graph (see Fig.9). This procedure further prunes the search
space and allows computation to be focused on those can-
didates that have similar shapes to the initial contour. It
helps feed the shape information from local optimization
back into the MSDP search space.

4. Experimental Results

4.1. Lung Field Segmentation

First, we applied ShRAC to the lung field segmenta-
tion to demonstrate the power of using the nonlinear shape
model to capture widely different set of shapes as a sin-
gle class. We trained a single shape model, using manually
segmented image masks of both left and right lungs (200
shapes). A set of 60 control points is used to represent the
contour of a lung field (left or right). Each shape is aligned
with a coordinate system that has the origin at the shape
center and y-axis coincides with the shape’s major axis. It
is also scaled to have unit area. Such normalization ensures
that the shape training uses common reference coordinates.
The two intersection points of a contour with the x-axis are
used as anchor points and the other 58 control points are
evenly distributed between these anchor points (29 on each
side).

Our segmentation algorithm follows the flow diagram in
Fig. 3. We chose to perform two iterations of the coarse-
to-fine search. The search area covered by MSDP is large
enough to account for possible poor initializations (Fig. 5).
In MSDP, we empirically chose the top 5 contours as the ini-
tial candidates for local optimization. The local optimiza-
tion method we used is the BFGS Quasi-Newton method
for unconstrained nonlinear minimization in Matlab [8].

To evaluate the performance of the algorithm, we imple-
mented another algorithm as a proxy of the method in [3].
It is a coarse-to-fine iterative algorithm, which at each iter-
ation uses the same local optimizer as used in ShRAC. The
algorithm starts with a large windows size to compute edge
energy and image gradient, and gradually reduces them at
each iteration. We refer to this algorithm as IQN (Iterative
Quasi-Newton) method.

Both of these algorithms are initialized by a program that
computes a rough center line of each lung field (by search-
ing for valleys in the image). The center line is used to scale
and orient an elliptical shape to roughly cover the lung field.
Note the initialization algorithm is not supposed to be robust
and it sometimes fails to cover the entire lung field correctly.

Fig. 10 shows two x-ray images segmented by ShRAC
and IQN. The results show that IQN is more susceptible
to local minima and therefore to initialization. On the other
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Figure 10. Segmentation results of IQN and ShRAC for lung fields.
(a, b) Initial contours, (c, d) Segmentation result by IQN, (e, f)
Segmentation result of ShRAC.

hand, ShRAC shows good robustness with respect to initial-
ization. To compare the performances quantitatively, we ran
these two algorithms on two data sets (CR - 136 images and
JSRT - 247 images) for which manually segmented ground
truth is available. We use the following overlap ratio Ω to
measure performance:

Ω = TP/(TP + FP + FN) (6)

where TP stands for true positive (the area correctly classi-
fied as object), FP for false positive (area incorrectly clas-
sified as object), and FN for false negative (area incorrectly
classified as background).

The overlap ratios obtained by these two algorithms on
the two data sets are listed in Table 1 (excluding training im-
ages). For these two data sets, we also list the performance
data of an ASM implementation from another study. Recall
that the ASM algorithm uses linear models, so two separate
models are built for left lung and right lung, and a model
selection stage is used to select the correct model before the

Table 1. Accuracy comparison (mean and standard deviation of
the overlap ratio Ω) of the three segmentation algorithms on lung
field segmentation for two data sets (CR - 136 images, JSRT - 247
images).

IQN ShRAC ASM
CR 0.841±0.081 0.891±0.037 0.893±0.060

JSRT 0.881±0.070 0.907±0.033 0.920±0.022

algorithm begins. The ASM algorithm also requires more
elaborate training because many landmarks need to be iden-
tified and meticulously located to properly train the object
appearance model.

In Table 1, ShRAC clearly outperforms IQN. The use of
MSDP in ShRAC leads to 2.6% - 5.0% increase in over-
all segmentation performance. Visually, JSRT is consider-
ably easier than CR, partially explaining why the increase
is smaller. It is noteworthy that the improvement is due
to capturing of shape details near the lung boundary, and
therefore translates into substantial visual improvement in
the segmentation. For a blob-like object such as the lung
field, getting the bulk of the lung field right is almost trivial
compared to locating the tips and corners accurately; for ex-
ample, the dramatic improvement shown in Fig. 8 amounts
to only a 10% change in the overlap ratio. Our ShRAC al-
gorithm achieves almost the same performance as the two-
model ASM algorithm that requires accurate landmarks in
training. Along with the other advantages mentioned ear-
lier, this shows the promise of ShRAC as a more flexible
and powerful segmentation tool.

4.2. Clavicle Segmentation

To verify the generality of ShRAC, we also applied it to
segmenting clavicles. Segmenting clavicles is quite chal-
lenging because there are many similar structures in the
vicinity, including the first three ribs and shoulder joints.
Since the two clavicles are always symmetric, we merge
them together and represent them as a single contour (Fig.
11).

We used 30 manually segmented contours as the training
examples. The search directions for clavicles in MSDP are
restricted to the vertical direction since the bones are very
thin and lack of horizontal features. The same lung field
centerlines are used to estimate a rough position and scale of
the initial mean shape. Fig. 11 shows three results obtained
by ShRAC and IQN. Locating bone structures is even more
difficult for a local optimization algorithm such as IQN be-
cause there are many local minima created by other bones
in the neighborhood. However, the MSDP-based ShRAC
is capable of jumping out of local minima and finding su-
perior solutions. For quantitative evaluation, we computed
the vertical displacement of the extracted control points to
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Figure 11. Segmentation results of IQN and ShRAC for clavicles. (a) Initial contours, (b) Segmentation results of IQN, (c) Segmentation
results of ShRAC. The average vertical displacement over 100 images (size 512x625, only upper half are shown in the figure) using IQN
and ShRAC is 13.6 pixels and 2.3 pixels, respectively.

their projections in the vertical direction on the manually
segmented ground truth contours. The average vertical dis-
placement over 100 images (size 512x625) using IQN and
ShRAC is 13.6 pixels and 2.3 pixels, respectively.

5. Conclusions and Future Work

We have presented the Shape Regularized Active Con-
tour approach along with an associated robust search strat-
egy. ShRAC uses a nonlinear prior shape model obtained
using Kernel Space Density Estimation, which makes it
suitable for segmenting a class of objects that has nonlin-
ear within-class shape variations. Our search strategy for
ShRAC is implemented as a coarse-to-fine iterative algo-
rithm that combines the advantages of combinatorial search
and local optimization. It uses Multi-Solution Dynamic
Programming to generate initial candidates that have mini-
mal image energies, and then uses local gradient-based min-
imization of the entire energy to select the final optimal
contour. A Clustered Solution Pruning process is applied
to MSDP search space to reduce the number of redundant
candidates. Local Shape Regularization is also used to feed
shape information back into the MSDP search space for the
next iteration. Our experiments demostrate robustness of
our search strategy to initialization and distracting struc-
tures in medical images.

There are a few directions to extend ShRAC. Incorporat-
ing powerful appearance models, preferrably nonlinear, will
be of major interest. Another direction is to extend ShRAC
to 3D object segmentation, where Dynamic Programming
can be replaced by other combinatorial search methods such
as Graph Cuts [6].
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