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Abstract

This paper presents a new framework for seamless video Editing in the gradient domain. The
spatio-temporal gradient fields of target videos are modified or mixed to generate a new gradient
field, which is usually not integrable. We propose a 3D video integration algorithm, which finds
a potential function, whose gradient field is closest to the resulting gradient field in the sense of
least squares. The video is reconstructed by solving a 3D Poisson equation. We use a fast and
accurate 3D discrete Poisson solver using diagonal multigrids. A set of gradient operators are
defined for user interaction. The resulting video has temporal coherency and no artifacts. We
evaluate our algorithm using a variety of examples.
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Abstract

This paper presents a new framework for seamless video
Editing in the gradient domain. The spatio-temporal gra-
dient fields of target videos are modified or mixed to gen-
erate a new gradient field, which is usually not integrable.
We propose a 3D video integration algorithm, which finds
a potential function, whose gradient field is closest to the
resulting gradient field in the sense of least squares. The
video is reconstructed by solving a 3D Poisson equation.
We use a fast and accurate 3D discrete Poisson solver using
diagonal multigrids. A set of gradient operators are defined
for user interaction. The resulting video has temporal co-
herency and no artifacts. We evaluate our algorithm using
a variety of examples.

1. Introduction

Recently, as more and more digital video camcorders are
introduced to our daily life, people are no longer satisfied
with only capturing still photos but rather they are interested
in capturing motion pictures. For digital photos, some com-
mercially available softwares (e.g. Photoshop [1]) could be
used for interesting seamless editing, such as importing or
deleting an object and some other sophisticated image pro-
cessing tasks.

Correspondingly, there are some video editing tools
available [2, 3], which, however, can only do simple and
common editing tasks, such as cutting and pasting video
segments, resizing, color correction, simple transitions and
titles. These are far from the demands for consumer enter-
tainments. For example, users may want to cut a moving
object from one sequence and paste to another. The chal-
lenges behind this kind of complex video editing tasks lie
in two constraints:

1. Spacial consistency: Imported objects should blend
with the background seamlessly. Hence pixel replace-
ment, which creates noticeable seams, is problematic.

2. Temporal coherency: Successive frames should dis-
play smooth transitions. Hence frame-by-frame edit-
ing, which results in visual flicker, is inappropriate.

If either of the two aspects above is violated, some artifacts
such as flickering may result in the resulting video.

In this paper, we present a seamless video compositing
technique by 3D integration in the gradient domain. This
is a natural extension of poisson image editing by Pèrez et
al. [13] to spatio-temporal space. Rather than processing
the video clips frame by frame, we treat the whole video
as a 3D cube in the spatio-temporal space. To enhance the
speed of processing, we propose using a fast and accurate
3D discrete Poisson solver using diagonal multigrids origi-
nally proposed by Roberts [15]. A 3D integration algorithm
is proposed to generate seamless videos with temporal co-
herency and without artifacts.

2. Related Work

Typical digital video editing tools usually assemble some
video clips with transitions and titles along a timeline to
generate a new video [2, 3]. In this paper, we propose a
new video editing framework by treating the video as a 3D
cube. The idea of 3D cube is not new [11], but we use it in
the context of gradients instead of intensity. A recent work
on video editing based on 3D Cube is proposed by Bennett
and McMillan [4]. They propose a tool called Proscenium
which treats the video data as a three dimensional volume.
Video editing operations, such as object removal, are based
on the warped volume. In our case, all the editing opera-
tions are in the gradient domain. The reason to use gradi-
ent is based on the retinex theory by Land and McCann in
1971 [12] that human visual system is not very sensitive to
absolute luminances reaching the retina, but rather sensitive
to illumination differences.

Gradient domain technique has been widely used in
computer vision and computer graphics. The idea is to min-
imize the gradient difference between the source and tar-
get images when the gradient field of the source image is
modified to obtain the target one. A number of applica-
tions based on this technique have been developed, such as



Figure 1. LEFT: Video frame after frame-by-
frame 2D integration (color); RIGHT: Video
frame after 3D integration of video cube
(color)

image editing by Pèrez et al. [13], shadow removal by Fin-
layson et al. [9], mutispectral image fusion by Socolinsky
and Wolff [16], image and video fusion for context enhance-
ment by Raskar et al. [14] and High Dynamic Range(HDR)
image compression by Fattal et al. [8]. This paper extends
the gradient based technique to 3D by considering both spa-
tial and temporal gradients.

Our work is also related to a class of active research in
image/video matting or compositing [7]. Video matting is
to insert new elements seamlessly into a scene or transport
an actor into a completely new scene. Traditional method
like blue-screen matting is usually used in film production.
Due to the requirements of strictly controlled studio envi-
ronments, it is not suitable for home video editing. A recent
method by Chuang et al. overcomes this constraint by seg-
menting a hand-drawn keyframe into trimaps, and then per-
forming interpolation using forward and backward optical
flow. However, this approach is computationally expensive
due to the computation of optical flow. Another technique
was proposed by Burt and Adelson [6], who used a Lapla-
cian pyramid for image blending. Finally, some image in-
painting algorithms use similar techniques as ours by solv-
ings PDEs which are more complex than Poisson equations
[5].

3. Gradient Domain Video Editing

Current gradient domain method [8, 13, 9, 16, 14] can
be considered as a 2D integration of modified 2D gradient
field. The integration involves a scale and shift ambiguity in
luminance plus an image dependent exponent when assign-
ing colors. Hence, a straightforward application to video
frame by frame will result in lack of temporal coherency in
luminance and flicker in color. We instead treat the video
as a 3D cube and solve this problem via 3D integration of a
modified 3D gradient field.

Consider an extreme example to test both approaches.
We deliberately set the small gradients in a video which are

Algorithm 1: General algorithm for video editing
Data: image/video I1, I2

Result: new video I

Compute 3D gradients G1 and G2 (the third
dimension gradient for images is zero);
Modify gradients using gradient operator O ⊂ O;
Compute the divergence from new gradients;
Reconstruct new video I by solving a Poisson
equation;

smaller than some threshold to zero. The video obtained via
2D or 3D integration will have a (cartoon like) flattenned-
texture effect. The frame by frame 2D integration approach
results in noticeable flicker, while the video by 3D integra-
tion shows near-constant and large flat colored regions. This
is illustrated in Figure 1.

To facilitate operations in the spatio-temporal gradi-
ent space, we provide a set of gradient operators, O =
{MAX, MIN, AVG, THRESHOLD, ZERO, · · ·, SUBSTITUTE},
which are used to compare gradients from different chan-
nels or dimensions (spacial dimension, temporal dimension
or both) when editing videos. For example, ZERO operator
makes the gradient in the mask region be zero, which can
be used for inpaining of small scratches in the film or
removing shadows, while MAXTEMPORAL operator can
be used to compare the gradients in the temporal dimension
(basically to capture the large motions of two sequences).
The general algorithm for video editing is described in
Algorithm 1.

3.1. 3D Video Integration

Our task is to generate a new video, I , whose gradient
field is closest to the modified gradient, G. One natural way
to achieve this is to solve the equation

∇I = G (1)

However, since the original gradient field is modified using
one of the operators discussed above, the gradient field is
not necessarily integrable. Some part of the modified gradi-
ent may violate

∇× G = 0 (2)

(i.e. the curl of gradient is 0). This is a special case of the
formulation by Kimmel et al. [10] in the sense that only gra-
dient field is considered here. Kimmel et.al. proposed min-
imizing a penalty function of gradient and intensity using a
variational framework. A projected normalized steepest de-
scent algorithm was proposed to solve this problem. Since
we consider only gradient field, we use a formulation sim-
ilar to that of Fattal et al. [8], and extend it to 3D space by
considering both spatial and temporal gradients.



Then, our task is to find a potential function I , whose
gradients are closest to G in the sense of least squares by
searching the space of all 3D potential functions, that is,
to minimize the following integral in 3D space (hence the
reference to 3D video integration in the sequel):

f = min
∫∫ ∫

F (∇I,G)dxdydt (3)

where,

F (∇I,G) = ‖∇I − G‖2

= (
∂I
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∂y
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According to the Variational Principle, a function F that
minimizes the integral must satisfy the Euler-Lagrange
equation:
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We can then derive a 3D Poisson Equation:

∇2I = ∇ • G (4)

where ∇2 is the Laplacian operator,

∇2I =
∂2I

∂x2
+

∂2I

∂y2
+

∂2I

∂t2

and ∇•G is the divergence of the vector field G, defined as

∇ • G =
∂Gx

∂x
+

∂Gy

∂y
+

∂Gt

∂t

3.2. 3D Discrete Poisson Solver

In order to solve the 3D Poisson equation (Equation 4),
we use the Neumann boundary conditions ∇I ·�n = 0, where
�n is the normal on the boundary Ω. For 2D image integra-
tion, we can simply use a four-neighbor grid to compute the
Laplacian and divergence through discretization approxi-
mation as in [8]. For 3D video integration, due to large data
and increased computation complexity, we need resort to a
fast algorithm. For this purpose, we use a diagonal multi-
grid algorithm originally proposed by Roberts [15] to solve
the 3D Poisson equation. Unlike conventional multigrid al-
gorithms, this algorithm uses diagonally oriented grids to
make the solution of 3D Poisson equation converge fast. In
this case, the intensity gradients are approximated by for-
ward difference:

∇I =


 I(x + 1, y, t) − I(x, y, t)

I(x, y + 1, t) − I(x, y, t)
I(x, y, t + 1) − I(x, y, t)




(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 2. Buddha example (color) (a): origi-
nal buddha image; (b): the head of the bud-
dha image; (c): an example of replacing the
pixels in the original buddha image by corre-
sponding pixels in the video; (d-f): original
video sequence; (g-i): reconstructed video
using our 3D video integration algorithm

We represent Laplacian as:

∇2I = [−6 · I(x, y, t) + I(x − 1, y, t) + I(x + 1, y, t)
+I(x, y + 1, t) + I(x, y − 1, t) + I(x, y, t + 1)
+I(x, y, t − 1) ]

The divergence of gradient is approximated as:

∇ • G = Gx(x, y, t) − Gx(x − 1, y, t) + Gy(x, y, t)
− Gy(x, y − 1, t) + Gt(x, y, t) − Gt(x, y, t − 1)

This results in a large system of linear equations. We
use the fast and accurate 3D multigrid algorithm in [15] to
iteratively find the optimal solution to minimize Equation
3. Due to the use of diagonally oriented grids, this algo-
rithm does not need any interpolation when prolongating
from a coarse grid onto a finer grid. Actually, a red-black
Jacobi iteration of the residual between the intensity Lapla-
cian and divergence of gradient field avoids interpolation.
Most importantly, the speed of convergence is much faster
than usual multigrid scheme.

4. Results

In this section, we present several examples using some
of the gradient operators to illustrate our algorithm. We as-



Figure 3. Flame-Hut example (color). LEFT:
original fire video MIDDLE: original hut im-
age RIGHT: reconstructed video using our 3D
video integration algorithm based on gradient

sume all the video sequences are well registered, so we only
need to initialize the first frame.

Figure 2 shows a smiling buddha example using the
SUBSTITUTE operator, that is, the 3D gradients in the video
are substituted by those of the image in the mask region,
M , which is manually selected in the first frame, G =
G1M + G2(1−M), where G1 and G2 are the gradients of
buddha image and speaking video, respectively. The facial
expressions of the person are seamlessly transferred to the
buddha image. A naı̈ve approach to combine image/video
in the intensity space is also given for comparison. Figure 3
is another example using SUBSTITUTE operator.

Figure 4 shows an example combining two video se-
quences using THRESHOLD operator. We consider the tem-
poral gradient of the fountain sequence because large tem-
poral gradient is corresponding to large motion. The corre-
sponding gradients in the ocean sequence are replaced by
those of the fountain sequence, where the temporal gra-
dients of the fountain sequence are larger than some user
given threshold. This is a challenging example due to the
non-rigid motion of fountain. We believe that none of the
previous video editing tools can complete this task.
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