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This paper presents several sufficient conditions for a double or
unique solution of the problem of motion and structure estimation
of a rigid surface from pairs of monocular images. These condi-
tions further the understanding of the uniqueness problem of rigid
motion solution. We will show that five correspondences of non-
colinear points that do not lie on a special type of quadratic curve,
called a Maybank curve, in the image plane suffice to determine a
pure rotation uniquely, and six correspondences of points that do
not correspond to space points lying on a Maybank quadric suffice
to determine a motion with nonzero translation uniquely. We will
show that each Maybank quadric can sustain at most two physi-
cally acceptable motion solutions and surface interpretations, pro-
vided that a sufficient number of correspondences are present. In
particular, we will show that in the plane motion case, six corre-
spondences of points that do not lie on a quadratic curve in the
image plane will admit only the true motion and structure and
their duals as solutions. We will discuss how noise affects the
uniqueness of solution and present a nonlinear algorithm for esti-
mation of motion parameters. We will list several properties of the
essential matrix T X R and the plane motion matrix R + TN~
both of which are frequently used in the motion and structure
estimation problem. Simulation results are provided for verifying
the theorems in this paper. © 1993 Academic Press, Inc.

1. INTRODUCTION

This paper concerns the uniqueness of solution of gen-
eral motion and structure of a rigid surface from two
monocular views. This problem can be stated as follows:
with how many correspondences of image points and un-
der what conditions can we have a unique solution for R
and a solution up to a scalar for T from the motion equa-
tion
1’ 2’ PPN

Zixi,yi, IV = ZRx;, y,, Iy + T, = , n,

(1.1

where (x{, y/) and (x;, y;) are a pair of image point corre-

spondences, R is a rotation matrix, T is a vector, and Z;
and Z; are any positive constants?

* The support of State of Illinois Department of Commerce and Com-
munity Affairs under Grant 90-103 is gratefully acknowledged.

Many algorithms have been proposed for motion solu-
tion (e.g., Tsai [7], Zhuang [6], Weng [19], Longuet-
Higgins [13]). However, the only existing condition for
the unique solution of general surface motion is having
eight correspondences of points that do not lie on a quad-
ric surface passing through the origin of the coordinate
system and —R{T,, where Ry and T, define the true mo-
tion (Longuet-Higgins [14], Zhuang [6]). Although for a
planar surface, we have some conditions for determining
the motion uniquely (Longuet-Higgins [29], Tsai [8],
Weng [18], Hu [26]), so far we do not know if and under
what conditions the motion of a plane admits a solution
leading to a nonplanar surface.

Longuet-Higgins [28] analyzed the problem of estimat-
ing surface structure under the assumption that a suffi-
ciently large number of correspondences are provided.
He obtained the following results:

1. If one interpretation of a pair of photographs locates
the visible texture elements in a plane, then so does every
other.

2. Otherwise, if the images are ambiguous, every in-
terpretation will locate the visible elements on a special
type of quadric surface, called a Maybank quadric; but in
that case the pair of images cannot sustain more than
three distinct and physically acceptable interpretations.

Negahdaripour [12] discussed the relationships of the
multiple interpretations of a Maybank quadric and the
possible surface shapes of a Maybank quadric.

Since each surface structure must be associated with a
motion solution, we then can conclude that a planar sur-
face admits spurious solutions only leading to planes, and
a quadric surface admits at most three spurious solutions
leading to quadric surfaces. However, these conclusions
are made under the assumption that there is a sufficiently
large number of correspondences. But how many corre-
spondences are sufficient and what surface conditions
they should satisfy to yield a unique or a finite number of
solutions are still not known.

The goal of this paper is to present some new and less
stringent sufficient conditions for determining motion
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uniquely or to within two sets. We will investigate the
problem in several different cases. We will give sufficient
conditions for a unique solution of pure rotation, suffi-
cient conditions for unique or double solutions of a gen-
eral motion with nonzero translation, and sufficient con-
ditions for unique or double solutions of plane motion.
Generally speaking, six points satisfying some conditions
suffice to determine the motion uniquely. We will show
that a Maybank quadric including a planar surface can
sustain at most two physically acceptable sets of motion
solutions and surface interpretations. We will also
present some properties of the essential matrix T X R
and the plane motion matrix R + TN".

We will show that it is feasible to solve for the motion
parameters nonlinearly and present an algorithm. Results
of simulations will be presented that show that the
uniqueness condition for a nonlinear method is generally
much less stringent than for a linear method.

When noise is present in the data, the situation is com-
plicated. First, in a strict sense we may not find a rigid
motion that is consistent with all of the correspondence
data. Therefore we can only find the optimal rigid motion
according to some criterion. Then the problem of unique-
ness of motion solution is changed to the uniqueness
problem of a globally optimal solution of motion under
the given criterion. Noise can make a unique solution
nonunique and vice versa.

Section 2 introduces the basic notation and some
preliminary results on the essential matrix. Section 3
presents some sufficient conditions for the unique solu-
tion of a pure rotation. Section 4 presents some sufficient
conditions for unique or double solutions of a general
motion with a nonzero translation. We will show that a
Maybank quadric can sustain at most one other Maybank
quadric as a spurious interpretation of the surface. Sec-
tion 5 investigates the planar surface case and presents
some sufficient conditions under which motion solutions
other than the true and the dual solutions can be ex-
cluded. Section 6 discusses the effect of noise on the
unigueness of the motion solution. Section 7 presents a
nonlinear algorithm for motion estimation and some sim-
ulation results. Section 8 presents a summary.

2. NOTATION AND PRELIMINARY RESULTS

In this section we will first introduce the motion repre-
sentation and some basic notation, and then we present
some preliminary results which are used in the rest of the

paper.

2.1

We will use the following equation to represent mo-
tion:

The Motion Model and Notation
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X' X rn o rz orf X 4

Y| =R Y|+T-= S & Y X Y|+ g,

VA z ry a2 rajlZ h
2.n

where R is a rotation matrix, T is a translation vector,
X=X Y Zy,and X' = (X', Y’, Z') are a pair of
corresponding points in space. Without loss of general-
ity, we assume that the projection relation

2.2)

holds, where (x, y) is the projection of a point (X, ¥, Z} in
space on the image plane. We use @, @' to represent
vectors (x, y, 1)7, (x', y’, 1) so that

X=20, X' =2'09;

we call @ as well as (x, y) as a point in the image plane. In
this paper, all the matrices are 3 X 3 by default.

Our discussion in this paper will be based on the the so-
called essential matrix [22],

E2TxR =GR, (2.3)
where
0 -1 b gi
Gr=Tx=|1t 0 -nl=|g| @9
- 4 0 g

is a skew-symmetric matrix defined by T. The relation
between Gr and T is implied by the notation throughout
this paper. A matrix is called essential or decomposable
if and only if it is decomposable into the form of (2.3) with
T a nonzero vector and R a rotation matrix.

2.2

We will frequently use the following property {24, 26]
of a rotation matrix: for any two vectors T and X,

Preliminary Results

R(T x X} = (RT) X (RX) (2.5)
or

R(GrX) = Gpr(RX), (2.6)
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where Ggr is a skew symmetric matrix defined by the
vector RT. We will call (2.5) as the rigidity property,
since it is equivalent to the orthonormality and unit deter-
minant property of R [24, 26]. Equations (2.5) and (2.6)
still hold when X is a matrix.

We first note a duality property of the essential matrix
stated in the following lemma.

LEMMA 2.1. A matrix E can be represented as GrR
with T a nonzero vector and R a rotation matrix, if and
only if it can be represented as R,Gy, for some rotation
matrix R, and some nonzero vector T,. Or, a matrix E is
essential if and only if there exist two rotation matrices
R,,i =1, 2, and a nonzero vector T, such that

E = R,G7,R;. 2.7)
And if we arbitrarily choose one of Ry, Ry, and T: (R;, i =
1, 2, are restricted to be rotation matrices and Ts is a

nonzero vector), then we can always find the other two,
such that (2.7) holds.

Proof. We first prove the first part of the lemma. We
will show that

R[Gr7] = G7R. (2.8)
From Eq. (2.6) we have
R(Gg-7R") = Ggi-r(RR") = Gy, (2.9)

from which Eq. (2.8) follows.

Now let us consider the second part of the lemma. The
necessary part is obvious, since for any arbitrary rotation
matrices R, and R; and any nonzero vector T;, using (2.6)
and (2.8) we have

GsR = RIRi(G7R) = R|Ggr(RR)
= R[Gg-7] = R[Gg-1(R:Ry)] = (RRE)GRZR'TRz

= RIR3(G7R) = Rj[Gg,rR3R] = RiG7(R;R),
(2.10)

where Rs is any rotation matrix such that

R,T =T;. 2.11)
The first, second, or last row of (2.10) shows that one of
R;, R, or T; can be arbitrary (subject to the fact that R,
R; are rotation matrices and T; is a nonzero vector) at a
time. To prove the sufficient part, we now assume that
(2.7) holds. Then according to (2.8) we should have

E = GRIT;(RIRZ)’ (2.12)
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where R,T; is a nonzero vector and R|R; is a rotation
matrix. Therefore E is an essential matrix. Q.E.D.

We immediately have the following corollary.

CorOLLARY 2.1. E is decomposable, if and only if
RE or ER is decomposable, where R is any rotation
matrix; E is decomposable if and only if E" is decompos-
able.

Many necessary and sufficient conditions have been
proposed for essential matrices [19, 22-24]; Weng et al.
and Huang et al.’s condition [19, 23], which is in terms of
the eigenvalues of EE", is the simplest among these (see
the Appendix). In this paper, we obtain a condition that is
expressed in terms of the elements of E and may there-
fore more clearly capture the properties of the essential
matrix. We therefore present the following lemma, a
proof of which is given in the Appendix.

LEMMA 2.2. A matrix E = [e,, e, e;]" can be repre-
sented as T X R, where T = (¢, t2, ;)7 + 0 and R is a
rotation matrix, if and only if there exist three distinct
indices i, j, k among 1,2, 3 such that one of the following
three situations occurs:

1.
eze.‘es + e:?e] + el"?ez =0, (2.13)
where
e, e, 0, foranym+n,mne{l,?2 3. (2.19
In this case,
Lty # 0. (2.15)
2.
ledl = llejl >0, lledl =0, e -e=0. (2.16)
In this case,
t;=1=0, butsf #0. (2.17)
3.
e € =0 e xe=0 [el=]el~+ el
ledl > 0, Jledl >0. (2.18)
In this case,
=0, 45, #0. (2.19)
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Longuet-Higgins derived (2.13) (see [23]), which, of
course, is one of the conditions for a matrix to be essen-
tial.

The next lemma is a generalized version of Zhuang
et al.’s [6] and will be used in this paper.

LEMMA 2.3. Assume an arbitrary matrix K is invert-
ible. Then K'E is skew-symmetric if and only if E = GK
for some skew-symmetric matrix G.

Proof. The sufficient part is obvious since G is skew-
symmetric:

(K'GK) = K'G"(K") = —K'GK, (2.20)

which states that K'E is skew-symmetric. Now let us

prove the necessary part. If K'E is skew-symmetric, then
we should have

K'E = ~E'K; (2.21)
therefore we have
E' = -K'EK™. (2.22)
Let
G = EK; (2.23)
then
G = (K !YE = —(K)"'K'EK"! = ~EK~!. (2.24)

Thus G is skew-symmetric. It therefore follows from
(2.23) that E = GK for a skew-symmetric matrix G.
Q.E.D.

The following lemma is used in this paper.

LEMMA 2.4. For a symmetric matrix A to be decom-
posed into E7 + E for some essential matrix E, the middle
eigenvalue of A must be det(A)/2. Therefore, for a sym-
metric matrix A to have the form E™ + E for some essen-
tial matrix E, there are at most four degrees of freedom
in A plus a scale uncertainty.

Proof. Negahdaripour [12] has proved that if A has
the form E™ + E for some essential matrix E, A’s three
eigenvalues w;, i = 1, 2, 3, satisfy the equation

M1t ops = g (2.25)
Since the sum of the three eigenvalues of A must equal
det(A), the middle eigenvalue of A must equal det(A)/2.

This condition imposes a polynomial equation on the ele-
ments of A and hence restricts at least one degree of
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freedom of A. For example, when A is decomposable
into E” + E, the quadratic curve defined by

O'A® =0 (2.26)
describes the same shape as the one defined by
7 0 0
@10 wmt+tu 0 [|6G=0. 2.27)
0 0 M3

A counterexample is matrix diag(a, 8, y) withg # a + 7y
which cannot be decomposed into E” + E for any essen-
tial matrix E. Since a symmetric matrix has only five free
variables plus a scale uncertainty and since changing the
scale does not change the decomposability of a symmet-
ric matrix, we have thus proved the lemma. Q.E.D.

To simplify the statements, we will call a curve of the
type (2.26), with A an essential matrix, a Maybank curve
from now on.

Now let us reformulate the uniqueness problem which
we stated in Section 1 for the sake of obtaining sufficient
conditions. Let Ry and T denote the true motion parame-
ters. The nonuniqueness of the motion solution is equiva-
lent to having a rotation matrix R and a translation vector
T such that (1.1) and one of the following equations hold:

R#*#R;, or TXxT,#0 orboth (when T, # 0)
(2.28)
or
R#Ry, or T+#0 orboth(whenTy=0). (2.29)

When a spurious solution for T and R exists, we must
have the following motion epipolar line equation
(xi, yi» I(T X R)(xi, y;, 1)" = 0. (2.30)
The above equation can always be deduced from (1.1) but
the inverse is not true. It is easy to show that when T # 0
and (2.30) is satisfied then we can always find two num-
bers Z; and Z; (not necessarily positive), which are not
simultaneously zero, such that (1.1) holds. By multiply-
ing (2.30) with the true depths Z; and Z; we obtain
X(TxRX; =0, i=1,2,---,n (231
Equation (2.30) constitutes a necessary condition for the
existence of a spurious solution. Therefore, if we can find
a condition under which (2.30) or (2.31) does not hold for
any spurious solution, then that condition is a sufficient
condition for the unique solution of motion parameters.
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Further, if for all R and T satisfying (2.30) or (2.31), the
computed depths Z; and Z; from (1.1) are not all positive
simultaneously, then the motion is also uniquely deter-
mined by the correspondence data.

With these preliminary results, we can focus now on
the main goal of this paper, which is to show that (2.31)
can be expressed in terms of surface conditions.

3. SUFFICIENT CONDITIONS FOR DETERMINING A
PURE ROTATION

In this section we present some sufficient conditions
under which a unique motion solution is guaranteed when
the motion is a pure rotation. We assume that the true
motion is a pure rotation in this section, but we do not
assume that we know this condition in advance. If the
motion is a pure rotation, then two point correspon-
dences suffice to determine the rotation uniquely [24], as
stated in the following theorem.

THEOREM 3.1. If the motion is a pure rotation Ry,
then two correspondences of image points ©; = (x;, y;,
1y, O, = (x}, yi, 1), i = 1, 2, exclude any spurious pure
rotation solutions, and the rotation matrix is uniquely
given by

R = [v181, 720;, (y,0)) X (y20)][0,, 0,, O, X ©,]".

3.1
where
s Zi _ |10
yi 2 === Vi 4 y2 + DI+ y2 + 1)
Zi e .
i=1,2 (32

To solve for R with the constraint that R is a rotation
matrix it is necessary and sufficient to have
71("); : 7295 =0 -0, 3.3)
as when (3.3) is satisfied and y;, i = 1, 2, are defined by
(3.2), the matrix on the right-hand side of (3.1) is
orthonormal and of unit determinant. This can be readily
shown by proving that R'R = I and det(R) = | with R
represented by the right-hand side of (3.1).

However, this solution can be used only after we have
already known that the motion is a pure rotation. To
make sure the motion is a pure rotation and no other
motion solutions will produce the same projections of
points in the image plane, we need more point correspon-
dences satisfying some conditions. The next theorem
deals with this problem.

THEOREM 3.2. If the motion is a pure rotation, then a
sufficient condition for determining the motion uniquely
is having five correspondences of noncolinear points that
do not lie on a Maybank curve in the image plane.
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Proof. We need only to consider the case where the
spurious solution has a nonzero translation. The case
where the spurious solution is a pure rotation has been
discussed in Theorem 3.1.

Assume R, is the true rotation; then for any image
point correspondence pair @' and © we should have

vi®; = Ry®; for any i, (3.4)
where y; is defined in (3.2). Now if there is another mo-
tion solution R and T with T a nonzero translation vector
such that (1.1) is satisfied, then the motion epipolar line
equation must also be satisfied, i.e.,

G/(GrR)O; = 0. (3.5)
Substituting (3.4) for @/ into (3.5) leads to
B/[RYG7R)]O; = 0. (3.6)

The above equation indicates that the correspondence
points must lie on a quadratic curve in the image plane
unless R{G7R is a skew-symmetric matrix which makes
(3.6) trivial. We now show that the case that R;GrR is
skew-symmetric can be excluded with three noncolinear
point correspondences.
According to Lemma 2.3, RiGrR is skew-symmetric if
and only if
GTR = GT|R0 (3-7)
for some vector T,. Since an essential matrix can have
only two representations of the form GrR and if GrR is a
representation then —G7rR, for some rotation matrix R,
is also a representation [7, 11], (3.7) implies that
First assume that T; = T; then R = R,. Then from the
assumption that T and R constitute a motion solution for
the correspondences, we have
Z0O;=ZRO; + T foranyi, (3.9)
where Z; and Z; are two positive numbers. Substituting
(3.4) into (3.9) leads to

(Z{— v:iZ)®— T =0 foranyi. (3.10)

By assumption that T # 0, we must have
@/ xT=0 foranyi, (3.11)

from which we can conclude that T = 0 with three corre-
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spondences that are not colinear in the image plane, con-
tradicting the assumption that T # 0.
Now assume that T; = —T. Then (3.7) yields
T x (R + Ry} = 0. 3.12)
Again, from the assumption that T and R constitute a
motion solution for the correspondences, we have
Zi® =ZRO; + T foranyi. (3.13)
Multiplying both sides of (3.4) by Z; and then adding the
resulting equation to (3.13), we obtain
(Ziyi + Z)Oi = Z(Ry + R)®, + T.  (3.14)
Using T to cross multiply (3.14) and applying (3.12) to the
resulting equation we obtain
Ziyi + Z)T x @; =0 for any . (3.15)
Because Z;y; + Z; is a positive number, we then must
have (3.11). Again we can conclude that T = 0 with three
correspondences that are not colinear in the image plane.
Therefore, given three or more correspondences of
noncolinear points, if they admit a solution with nonzero
translation, the corresponding points must lie on a qua-
dratic curve defined by (3.6), where R{(G7R) is an essen-
tial matrix. Since Lemma 2.1 shows that any essential
matrix can be put into the form of R{(GrR) for some T
and R, therefore, any Maybank curve of the form (2.26)
would satisfy (3.6). Now assume that A is symmetric;
then if and only if A can be decomposed into E + E" for
some essential matrix E, the curve equation (2.26) can be
reduced to (3.6). Lemma 2.4 states that A has at most
four degrees of freedom. Therefore, given five points, it
is possible that there exists no Maybank curve passing
through all five points. It is therefore sufficient to have
five correspondences of noncolinear points that do not lie
on a Maybank curve in the image plane to exclude any
spurious solution with nonzero translation. Q.E.D.

The condition in the above theorem is generally suffi-
cient but not necessary. It may be possible to determine a
pure rotation from four correspondences only (see the
example in Section 7), although a sufficient condition for
determining a pure rotation with four correspondences is
still not available.

4. SUFFICIENT CONDITIONS FOR DETERMINING A
MOTION WITH NONZERO TRANSLATION

In this section, we consider general motion where T #
0. The situation in this case is much more complicated
than when T = 0.
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There exists a necessary and sufficient condition which
states that if and only if there are eight or more corre-
spondences of points that do not lie on a quadric surface
passing through the origins of the coordinate system be-
fore and after motion then a motion with a nonzero trans-
lation can be determined linearly and uniquely (Longuet-
Higgins {14], Maybank [27]). Thus, any quadric surface
passing through the origin before and after motion will
make the linear solution degenerate.

But how many correspondences are needed and what
conditions the points should satisfy to uniquely deter-
mine the motion nonlinearly are still not known. We now
present some sufficient conditions for unique solution of
motion parameters, which are less stringent than the
above stated necessary and sufficient condition for the
linear algorithm.

First we have the following theorem which gives a suffi-
cient condition for excluding a pure rotation as a solution
and it is quite similar to Theorem 3.2.

THEOREM 4.1. If the true motion involves a rotation
Ry and a nonzero translation Ty, a sufficient condition for
excluding a pure rotation as a solution is having five
correspondences of noncolinear points that do not lie on
a Maybank curve in the image plane.

Proof. Let® = (x',y, 1) and ® = (x, y, 1) be a
correspondence pair in the image plane. Then the motion
epipolar line equation must hold, i.e., we should have

®'(Ty) X Ry)® = 0. 4.1)

Now assume a pure rotation R yields the same corre-

spondence pair, then we should also have

v®' = RO, 4.2)

where vy is similarly defined as v; is in (3.2). Substituting
(4.2) into (4.1) gives

OR(Ty X Ry)® = 0. 4.3)

Equation (4.3) indicates that the points must lie on a

Maybank curve. As in the proof of Theorem 3.2, we can

then conclude that a sufficient condition for excluding a

pure rotation as a solution is having five correspondences

of noncolinear points that do not lie on a Maybank curve
in the image plane. Q.E.D.

But how many point correspondences are needed and
what condition should they satisfy to exclude any spuri-
ous solution with nonzero translation? The theorem be-
low deals with this problem. However, before we present
the theorem, we consider two particular spurious solu-
tions: in one only the translation is distinct; in the other
only the rotation matrix is distinct.
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First, let us consider the situation where only the trans-
lation is distinct.

LEMMA 4.1. If the true motion is given by Ry and
Ty #+ 0, then three correspondences of points that are
non-colinear in the image plane will be sufficient for ex-
cluding any spurious solution with the rotation Ry and a
translation T not parallel to T,.

Proof. For a given rotation Ry, the translation T, can
be uniquely determined with two correspondences @,
®;,i=1,2, from

O/ XxRB) -Ty=0, i=1,2, (4.4)
if and only if the four points ®; and R¢®;, i = 1, 2, are not
colinear in the image plane. Therefore three correspon-
dences of points that are non-colinear in the image plane
will be sufficient for excluding any spurious solution with
the rotation R, and a translation T not parallel to T,.

Q.E.D.

We now consider the situation where only the rotation
matrix is distinct.

LEMMA 4.2. If the true motion is given by Ry and T,
a sufficient condition for excluding any spurious solution
with a rotation R # Ry and a translation T parallel to T,
is having five correspondences of points that do not lie on
a Maybank curve in the image plane.

Proof. Given a space point correspondence X' =
Z'® and X = ZO, we have

X' = RX + T,. (4.5)
Although we only know @’ and @, Z’ and Z are uniquely
determined by (4.5) unless ©’ is parallel to Ty. In any
case, for the true depths Z' and Z, Eq. (4.5) is always
satisfied. Now assume we have a spurious motion solu-
tion R and T # 0. Then the motion equipolar line equa-
tion

O"E® =0 (4.6)

must be satisfied, where E = GyR. Multiplying the left
side of (4.6) by Z'Z yields

X"EX = 0. 4.7)
Substituting (4.5) into (4.7) we obtain
X (RZE)X + TREX = 0. (4.8)

Equation (4.8) is called Maybank quadric [28]. With
T X Ty = 0, (4.8) reduces to a Maybank curve:

X(RIE)X = O(R{G7R)O = 0. (4.9)
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According to the results in the proof of Theorem 3.2, five
correspondences of image points that do not lie on a
Maybank curve suffice to invalidate (4.9) and, hence, ex-
clude a spurious solution with a translation vector paral-
lel to the true translation. Q.E.D.

Finally, let us consider the situation where R # Rg and
T x Ty # 0. Let us rearrange (4.8) as

X (RIE + E'RpX + 2(RiTo)(RGE)X = 0. (4.10)

It has been shown [6] that if and only if R = Ry and
T X Ty = 0, (4.10) will become trivial. Therefore (4.10)
implies that unless the points used for correspondences
lie on a quadric surface, called a Maybank quadric, no
spurious solution with nonzero translation can produce
the projections of the image correspondence points. We
then have the following theorem, whose proof is pre-
sented in the Appendix.

THEOREM 4.2. If the true motion is Ry and T, then a
sufficient condition for excluding any spurious solution R
and T such that R # Ry and T # Ty is having six corre-
spondences of points that do not lie on a Maybank
quadric.

The above theorem gives a condition which is suffi-
cient but not necessary. A necessary and sufficient condi-
tion is generally expressed in nonlinear equations such as
those in (2.13), (2.16), or (2.18), which are no easier than
the motion epipolar line equation.

A Maybank curve is a degenerate form of Maybank
quadric; that is, a Maybank curve is the interception of a
Maybank quadric with a plane passing through the origin.
Therefore, if the space points do not lie on a Maybank
quadric, their projections in the image plane cannot lie on
a Maybank curve. Summarizing the discussion in this
section and the last section, we have the following
theorem.

THEOREM 4.3. Six correspondences of image points
that do not correspond to space points lying on a May-
bank quadric suffice to determine a motion uniquely.

Recall that in the pure rotation case we only need five
correspondences of image points that do not lie on a
Maybank curve to determine the motion. But when there
is a translation, we need one more correspondence and
the requirement that the image points do not correspond
to space points lying on a Maybank quadric. Whether the
image points lie on a Maybank curve can be tested before
solving for the motion, but whether the image points cor-
respond to space points lying on a Maybank quadric can-
not be tested before solving for the motion. Thus, when
the translation is not zero, we so far have no means to
ensure that the motion is uniquely determined by a given
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number of correspondences before we obtain one solu-
tion of it.

It is almost certain that five points define at least one
Maybank quadric, as shown in the proof of Theorem 4.2
(see, also, the example in [22]). Therefore, if it is ever
possible that five correspondences give a unique solution
of motion, the probability for this to occur is zero. We
will now discuss the following problem: if the Maybank
quadric is uniquely defined, how many spurious solutions
can the surface sustain? This is equivalent to Longuet-
Higgins’ problem of multiplicity of surface interpreta-
tions. We will show that at most one spurious solution
can be sustained.

Assume Ry, T, represent the true motion and that R,,
T, and R;, T; are two sets of spurious solutions such that
R, # R, T; xT; # 0, for any i # j, i,j € {0, 1, 2}. Other
situations have been discussed in Lemma 4.1 and Lemma
4.2. Then for a given correspondence ®' and ® in the
image plane, we should have

2’0 = ZR® + Ty, (4.11)
where Z' and Z are the true depths for ®' and @, respec-
tively. Similarly, for the two spurious solutions, there
must exist positive numbers D', D, p', and p such that

D'® =DR® + T,
p'@' = pRz@ + Ts.

(4.12)
4.13)

From (4.12) and (4.13), we have the following motion
epipolar line equations:

(T, x R)O® £ O'(E)O = 0 (4.14)

and

@' (T; X R,)O £ O'(E)O = 0. (4.15)

il

Now multiplying Eqgs. (4.14) and (4.15) by the true depths
Z' and substituting Z'® by (4.11), we obtain

ZO(RGE)G + TIE,O = 0,
ZO(RIE)O + THE,0 = 0.

(4.16)
4.17)

Each of (4.16) and (4.17) defines a Maybank quadric.
They must give the same depth for any correspondence
except one, as the depths Z' and Z for all correspon-
dences except one are uniquely determined by (4.11).
The exception occurs when @’ X T, = 0. But in this case,
the translation is uniquely determined, and L.emma 4.2
shows that five correspondences of points that do not lie
on a Maybank curve uniquely determine the rotation.
Therefore the motion in the exceptional case can be
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uniquely determined. In the discussion below we assume
that such exceptions do not occur for all motion solutions
and correspondence data. That is, T, X & # 0 for any
available correspondence ®' and any T;, i = 0, 1, 2.

Since (4.16) and (4.17) must give the same depth for
any correspondence, they must be identical. That means
we must have

TE, = ToE,, (4.18)
and
RIE, + E'R, = RJE, + EIR,. (4.19)
Rewriting (4.19) we obtain
RYE, — E;) = —(E, — E)'Rq. (4.20)

The above equation shows that Ri(E; — E,) must be
skew-symmetric. Lemma 2.3 states that there must exist
some vector T; such that

E, — E, =T; X Ry. 4.21)
Then from (4.18) we know that T, must be parallel to T;
since

To(E; — E») = TH(T; X Ry) = 0. 4.22)

Therefore we can assume that T; = oyTy. Then (4.21)
gives

E, - Ez = a()Tg X Ry = aoE(). (4.23)
For the same reason, for R, and T, to constitute a valid
motion, we must have the following equations:

DO(RTE)O + TE, = 0, (4.24)
DO(RIE,)®O + TiE; = 0. (4.25)

From (4.24) and (4.25) we have
E; - Eg = oK, (4.26)

for some constant «;. Similarly,
E; — E, = a;E;. 4.27)

For all three solutions to be acceptable simuitaneously,
(4.23), (4.26), and (4.27) must hold at the same time. If
any constant «;, { = 0, 1, 2, is zero, then one of the
solutions must be identical to another, contradicting the
assumption that the three solutions are distinct. So in the
following we assume a; # 0,/ = 0, 1, 2. Adding (4.23),
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(4.26), and (4.27) gives

0= a()EO + a|E| + azEz. (428)
Comparing (4.28) with (4.23) we have
(e + DE; = (1 — xy)E;. 4.29)

It is well known that an essential matrix can have at most
two decompositions of the form V X U with V a nonzero
vector and U a rotation matrix (see also the Appendix).
And if V; x U, and V, x U, are two distinct decomposi-
tions of an essential matrix then we must have V; = —V,.
Since E, and E, are all essential matricesand T; X T> # 0
by assumption, then we must have

ap = —1, ap=1. (4.30)
But comparing (4.28) with (4.26) we also have
Qy = 1, ay = _1, (43])

which contradicts (4.30). Therefore, there exist no three
motion solutions which are mutually compatible. As the
true motion solution must always hold, therefore there is
at most one other solution which gives an alternate inter-
pretation of the surface and the motion.

As it is possible that six points uniquely define a May-
bank quadric or exclude the possibility that they lie on
any Maybank quadric, to summarize the discussion
above, we have the following theorem.

THEOREM 4.4, When a translation is not zero, if six
pairs of image points correspond to space points that
uniquely define a Maybank quadric, then the six corre-
spondences suffice to determine the motion parameters
to within two sets; if the six pairs of points correspond to
space points that do not lie on a Maybank quadric, then
the six correspondences suffice to determine the motion
uniquely.

5. SUFFICIENT CONDITIONS FOR UNIQUE OR
DOUBLE SOLUTIONS OF PLANE MOTION

When the points used for correspondences lie on a
plane, the eight-point linear algorithm will fail. For a
given plane, although it might not pass through the origin
of the coordinate system and —R{T,, where Ry and T, are
the true motion parameters, we can always find another
plane which passes through the above two points such
that the two planes construct a quadric surface and hence
violate the requirement of the applicability of the linear
algorithm. Therefore we can only rely on plane motion
algorithms or nonlinear algorithms to solve for plane mo-
tion. A question that immediately arises is whether corre-
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spondences of coplanar points admit motion solutions
leading to nonplanar surface structures. We will now dis-
cuss this question.

It has been shown [8, 29, 18, 26] that when the points
are coplanar in space, there generally exists a dual mo-
tion which always accompanies the true motion and can-
not be removed with a rigidity constraint; unless the dual
motion is identical with the true motion or vields negative
depths for some visible points, the dual motion cannot be
removed. Even worse, there exists an uncertain situation
where an infinite number of motion solutions arise, al-
though this situation occurs with zero probability (28,
26]. Longuet-Higgins has proven [28] that a planar sur-
face admits spurious motion solutions leading to only pla-
nar surfaces. However, how many correspondences are
needed and what conditions they should satisfy to ex-
clude other solutions leading to non-planar surfaces are
questions that still need to be answered. In the following
we shall show that six or more correspondences satisfy-
ing a certain condition suffice to exclude all spurious so-
lutions leading to non-planar surfaces and admit only the
dual motion as a spurious solution, provided that the un-
certain situation does not occur.

Assume that a plane in the space has an equation

NiX = 1 (5.1
and is subject to a motion Ry and Ty. Equation (5.1) is the
non-degeneracy condition of the projection of a plane
[26]. Only when the projection of a plane is not degener-
ate in both image planes is it possible to find point corre-
spondences. Then it is well known that an image point
correspondence pair @ and @ are interrelated by

y®' = (R + TNpO £ KO, (5.2)
where
y = VO'K'KO/0'"0’ (5.3)
and
K = Ry + T,Nj. (5.4)

A matrix K of the type (5.4) is called a plane motion
matrix, and Ry, Ty, and Ny are called the motion decom-
position of K. It has been shown (Hu [26], Tsai [8]) that
unless R™T is parallel to N, the plane motion matrix in
(5.4) will still have another decomposition R;, T,;, and
N, called the dual solution, with Ny X Ny # 0. Therefore,
as we have shown in [26], the dual solution cannot be
removed by the motion model and rigidity constraint,
although it can sometimes be identified using a positive
depth constraint [29]. There exists an uncertain situation,
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where K°’K = I and det(K) = —1. In this case, K has an
infinite number of plane motion decomporitions [26]. For
this to occur, either the object is transparant and rotated
by a half revolution or one of the images is taken through
a mirror; we assume this situation does not occur in the
discussion below. That is, we assume K has at most two
plane motion decompositions.

First let us consider a spurious solution with a zero
translation. Suppose there is a pure rotation R which
produces the same image correspondences as K does.
Then we should have

BB’ = RO, (5.5)
where
B = |ell/ie; (5.6)
(5.6) and (5.2) imply that
(K—1R>®=0 (5.7)
B
or
Ya = Rrr
-0 = R'KO. (5.8)
B
The above equation indicates either
K=R, y=283, (5.9

or ® is an eigenvector of R'’K. Assume R’K # 1. Then
there are at most three vectors ©,,7 = 1, 2, 3, of the form
(x, y, 1)7 such that

R'K®;, = \0, i=1,23, (5.10)
where A;, i = 1, 2, 3, are the eigenvalues of R"’K. But (5.9)
must hold for all correspondence data. Consequently,
any four correspondences of points suffice to exclude the
possibility that R’K # 1. But when R’K = I, R is the
same as K. Therefore, only the true solution is admitted.
As aresult, any four correspondences of points suffice to
exclude a pure rotation as a spurious solution.

Now let us consider a spurious motion solution R and
T with T # 0. Then for any image correspondence pair @’
and ®, there exist two positive numbers Z' and Z such
that

Z'0 =ZRG + T. (5.11)

As a consequence, the motion epipolar line equation

O (T XR®O=0 (5.12)
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must hold. Now substituting (5.2) into (5.12) vields

@K (T x R)® = 0. (5.13)
The above equation again describes a quadratic curve in
the image plane, but a more general one than the one
described by (3.6). Equation (5.13) states that except for
those spurious solutions which make K(T X R) skew-
symmetric, all other spurious solutions with a nonzero
translation can be eliminated by six correspondences of
image points that do not lie on a quadratic curve. It can
be directly verified that if

K = Ry + ToNj = R, + T;NJ, (5.14)
then both K'(Ty X Ry) and K(T; x R,) will be skew-
symmetric. Therefore, the dual motion cannot be elimi-
nated. In the following we shall show that if K(T x R) is
skew-symmetric, then T and R must represent either the

true motion or the dual motion.
(5.2) and (5.11) lead to

(% K - ZR) =T (5.15)

Using T to cross multiply both sides of (5.15) we obtain
Zl
(—y—TxK—ZTxR)@=O. (5.16)

Now because K(T x R) is skew-symmetric, Lemma 2.3
states that there exists a vector T; such that

TxR=T, xK. (5.17)
Substituting (5.17) and (5.2) into (5.16) gives
(T - aT)) x Q' =0, (5.18)

where a = yZ/Z' > 0; (5.18) must hold for all ®’. Thus,
with three non-colinear correspondences we can con-
clude that

T—aT, =0 (5.19)

for some constant «. But (5.19) and (5.17) imply that

TX(K—éR)éTxG=O; (5.20)

(5.20) indicates that the rank of G is at most one. There-
fore, we can find two vectors T; and N such that

G = T;N". (5.21)
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Substituting (5.21) into (5.20) leads to either G = 0 or
TxT;=0.

In the following we shall assume G # 0, but T X Ty =
0. The case G = 0 can be treated similarly. Without loss
of generality we assume T; = T. From (5.20) and (5.21)
we can write

K=£R+nw=ém+anw) (5.22)

for some positive constant . Now K and R + «T;N" are
both plane motion matrices. Recall [18, 26] that a matrix
P can be a plane motion matrix if and only if the eigen-
values A\; of PP, i = 1, 2, 3, satisfy
In other words, ¢P and P cannot both be plane motion
matrices unless ¢2 = 1. Therefore for both (1/a)(R +
«T;N7) and (R + oT3N7) to be plane motion matrix, we
must have o’ = 1. Since o must be positive we have
a = 1. Hence

K=R+ TN =R + TN", (5.24)
which shows that R and T belong to one of the plane
motion decompositions of K. Thus, only the true and the
dual motions are admitted. The following theorem sum-
marizes the discussion in this section.

THEOREM 5.1. If the points used for correspondences
are coplanar and the uncertain situation defined by
K'K =1 and det (K) = —1 does not occur, then six
correspondences of image points that do not lie on a
quadratic curve in the image plane suffice to exclude all
spurious motion solutions other than the true solution
and the dual solution.

6. THE EFFECT OF NOISE ON UNIQUENESS
OF SOLUTION

The discussion so far assumes that there is no noise in
the correspondence data. When noise is present in the
data, the uniqueness condition can be affected severely.
In this section, we will only give a qualitative analysis of
the effect of noise on the uniqueness condition of the
solution by considering three qualitatively different situa-
tions.

When the problem is overdetermined, that is, when the
given noise will not make the motion undetermined, then
noise may prohibit finding a solution consistent with all
correspondence data. Therefore an optimal solution must
be sought to minimize, say, the squared sum of the differ-
ences between the correspondences estimated from the
motion parameters and the observed correspondences.
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But for a given optimality criterion, there might be multi-
ple locally and even globally optimal solutions for a given
number of correspondences. Therefore, an overdeter-
mined problem may not have a unique solution. Even if
only one globally optimal solution exists, unless one
searches all the possible solutions, one may not necessar-
ily obtain the best solution for the given criterion.

If the problem is underdetermined, for example, when
insufficient correspondence data are available, noise gen-
erally cannot change the uniqueness condition of solu-
tion. That is, noise cannot make the solution unique.
However, exceptions can occur in some extreme cases,
for instance, when noise makes a motion with nonzero
translation look like a pure rotation. Since the uniqueness
condition for determining a pure rotation is less stringent
than that for determining a general motion, noise can also
make an undetermined problem determined.

The most complicated situation occurs when the prob-
lem is critically determined, i.e., when no correspon-
dence may be neglected to determine the motion
uniquely. In this case, both situations mentioned above
can occur so that noise may severely affect the unique-
ness condition and result in wrong estimates. For exam-
ple, noise can make a planar surface look nonplanar and
vice versa, or it can make a pure rotation look like a
motion with nonzero translation and vice versa. Even if
the problem is still determined, the solution could hardly
be robust, as any change in the correspondence data must
cause a visible change in the solution.

Therefore, to make the solution unique and robust,
more than the minimum required number of correspon-
dences are desired. We will not discuss this problem fur-
ther here. How to make algorithms efficient and robust
will be the subject of a forthcoming paper.

7. A NONLINEAR ALGORITHM AND SIMULATIONS

We have developed a robust nonlinear algorithm and
run a number of simulations to verify the theoretical
results in this paper. The experimental results are all con-
sistent with the theoretical results. We will first briefly
describe the algorithm and then present two examples.
The algorithm is divided into two steps: first estimate the
rotation matrix R = (r;) nonlinearly and then estimate the
translation vector T linearly.

Given n (=5) correspondences ©; = (x;, y;, 1) and
O/ =(x;,y,1)y,i=1,2,- - -, n, fromthe motion epipolar
line equation we have

(©1 X ROy

(@ X ROy

T2 UT=0. (7.1

(@, X RO,
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The algorithm will search R and T such that the following
optimality criterion is minimized:

S, = ||U, T2 (7.2)
Since T can be determined only to within a scalar, we can
restrict |[T]] = 1 without loss of generality. Now, for a
given estimate R, the optimal estimate of T corresponds
to the eigenvector of U, U, associated with U U,’s least
eigenvalue A,,, which is just the minimum value of S;.
Therefore, minimizing §, can be reduced to minimizing
Am, which is a function of only the rotation matrix. The
algorithm is thus divided into two steps: first search for R
to minimize the least eigenvalue of U,U,; then estimate T
in a closed form by solving for the eigenvector of U,U,
associated with the least eigenvalue.

The first step of the algorithm is nonlinear, but the
second step is linear and gives a closed form. Therefore
most of the computation is spent on the first step. Fortu-
nately, only the rotation matrix R and, hence, only three
unknowns are involved in the first step; thus even an
exhaustive search algorithm can be applied to estimate
R. To do this, we represent the rotation matrix by

R = Ax(wx)Ay(wy)Az(wz), (7.3)
where
1 0 0 ]
Ay=1]10 coswy -sinwy],
| 0 sinwy cos wy |
[ coswy 0 sinwy |
Ay = 0 1 0 ,
| —sinwy 0 cos wy |
[ cos wz; —sinwz; 0]
A= | sinw; cosw, 0 (7.4)
| 0 0 I

The algorithm exhaustively searches all possible values
of wy, wy, and wz to obtain a rough estimate of the angles
to within 1° precision, minimizing A,, of U;U,. Then we
refine the estimates of wy, wy, and wz to within a preci-
sion of 0.05° by searching in the neighborhood of the
rough estimates, still minimizing A,,. After the rotation
matrix R is solved, we then estimate T in a closed form
by solving for the eigenvector of U,U, associated with
A

If ®; X R®; is close to zero for all correspondences,
then T must be zero. To determine if the translation is
zero or not, another criterion
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8§, = 2 (u; — xD? + (v — ) (7.5

is used, where

_xit royitors
b
X torpyi + oy

rXxi + roy; +r
p = AN 22)i B (7.6)
raxi + rayi+ory

If S, is small, then the translation is zero; otherwise, not.

This algorithm, although inefficient, is feasible and can
be implemented in parallel. In practice, one does not
need to search angles larger than 90°, as when the rota-
tion is too large, it is impossible to find the correspon-
dences. In principle the algorithm can minimize any opti-
mality criterion and obtain the globally optimal estimate,
because it searches all possible values. Therefore it gives
better performance than linear algorithms. It also re-
quires a less stringent condition for a unique solution of
motion parameters.

In the experiments presented below we assume that
focal length f = 500, and the coordinate origin O lies at
the center of the 512 x 512 image plane, that is, O = (256,
256). The algorithm records five sets of rotation parame-
ters separated sparsely and yielding the minimum values
of §,. It is found that the true motion parameters always
yield a much smaller value of S, than other motion pa-
rameters in the experiments when six or more correspon-
dences are used. The following are just two typical exam-
ples.

The first example shows that even four correspon-
dences uniquely determine a pure rotation. We simulated
a pure rotation with
Wy = 2.00,

Wy = 1.00, Wz = 0.4°

The four original points are

(x, y1) = (100, 400),
(x3, y3) = (400, 400),

(x2, y2) = (400, 100),
(x4, ya) = (100, 100),

and the exact correspondences are

(x1, y1) = (78.718, 410.060),
(x5, ¥3) = (381.546, 111.761),

(x3, ¥3) = (380.951, 408.932),
(xs, y4) = (82.508, 106.615).

When the motion is estimated with the exact correspon-
dences, the estimates are exactly the same as the true
motion parameters. When the motion is recovered from
the correspondences with truncated errors, that is, when
the correspondences used are
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(x1, y1) = (78.0, 410.0),
(x3, y3) = (380.0, 408.0),

(x5, y3) = (381.0, 111.0),
(xs, v4) = (82.0, 106.0),

the estimated angles are

wy = 0.9°, wy=2.05°, wz=05°
and the estimated translation is zero.

The next example illustrates that five correspondences
uniquely determine a motion with nonzero translation.
The true motion parameters are

Wy = 10.030, Wy = 0.00, wz = 2.06°.

T

- 4
T= max(0.1, 0.2, 0.01)

T = (0.1, 0.2, 0.01)",

= (0.5, 1.0, 0.05)".
The correspondences used are

(x1, y1) = (100, 100},
(x2, y2) = (100, 400),
(x3, ¥3) = (400, 100),
(x4, ¥4) = (400, 400),
(xs, ¥s) = (200, 200),

(x1, ¥1) = (92.672, 154.742),
(x5, v3) = (55.016, 440.138),
(x5, ¥3) = (347.749, 101.813),
(x5, ys) = (364.979, 433.230),
(x4, v&) = (177.862, 242.340).

The associated depths are
Z, =30, Z,=20, Z;=10, Z,=15, Zs;=23.

The estimated motion parameters are

wy = 10.0°, oy = 0.0°, ;= 2.0°,
T = (0.500, 1.000, 0.050)"

I

In the second example, when the coordinates are trun-
cated into integers, then even six correspondences give a
quite different result. This means that the motion solution
is much more sensitive to noise when the translation is
not zero than when the translation is zero.

From the above results we see that the nonlinear algo-
rithm gives a unique solution with much less stringent
conditions, compared with the linear methods. Actually,
nonlinear algorithms are generally more robust than lin-
ear algorithms. Although the nonlinear algorithm cannot
give a closed-form solution, it can give the globally opti-
mal solution if only the given problem is determined. If a
problem is linearly determined, it must be nonlinearly
determined, but not vice versa, as the above examples
and the theorems in this paper show. A more detailed
discussion on nonlinear algorithms will be presented in a
forthcoming paper.
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8. SUMMARY

Our main results in this paper can be summarized as
follows:

1. When the motion is a pure rotation, five correspon-
dences of points that do not lie on a Maybank curve in the
image plane suffice to determine the motion uniquely.

2. When the motion involves a translation, six corre-
spondences of image points that do not correspond to
space points lying on a Maybank quadric suffice to deter-
mine the motion uniquely.

3. When the points all lie on a plane and the uncertain
situation characterized by KTK = I and det(K) = —1 does
not occur, six correspondences of points that do not lie
on a quadratic curve in the image plane suffice to restrict
the motion to the true and to the dual plane motion solu-
tions.

4. Each Maybank quadric can sustain at most two
physically acceptable solutions. Therefore, if a Maybank
quadric surface is uniquely defined by six or more space
points, then the motion and the surface can be deter-
mined to within two solutions.

5. A nonlinear solution of the motion parameters is
feasible and will generally give better performance than
linear solutions, as linear solutions only constitute a sub-
space of nonlinear solutions. Although inefficient, a non-
linear method requires a less stringent condition for a
unique solution of motion parameters and gives more ro-
bust results.

The importance for investigating degenerate surface
situations should not be underestimated. Although strict
Maybank quadrics rarely occur in reality, a surface patch
(e.g., a human face) viewed at a distance can often be
approximated by a Maybank quadric, or even a plane.
Therefore, degeneracy has to be considered in any practi-
cal algorithm that estimates motion and structure.

The results of this paper are not constructive proofs
and, hence, cannot be used to construct algorithms for
determining the motion and surface interpretation
uniquely or to within two sets. Practical nonlinear algo-
rithms for solving motions of arbitrary rigid surfaces in-
cluding planes and Maybank quadrics have been devel-
oped which comply with the results in this paper. The
discussion of such algorithms is the subject of a forth-
coming paper.

APPENDIX

In this appendix we will first establish the following
lemma' and then prove Lemma 2.2 and Theorem 4.2.

! The proof here is a simplified version of the original, inspired by an
anonymous reviewer.



174

LEMMA A.1. A matrix E is an essential matrix if and
only if there exists a nonzero vector T = (11, ty, t3)” such
that

EE" = G;G; = -G} = —(Tx)2, (A.1)
where
0 -5 n g
Gr=Tx = 13 0 i ] = g; . (A2)
- 4 0 g3
Proof. Let
el
E=|¢€ (A.3)
e3

The necessary part is direct: if E is an essential matrix,
there will be some nonzero vector T and a rotation matrix
R such that E = T X R; and then T satisfies (A.1).

The sufficient part is simple, too, using the results of
Huang and Faugeras [23]. Assume T is a nonzero vector
satisfying (A.1). Then we can show that the eigenvalues
of EE" are 0, |T|?, and |T|?>. Assuming « is an eigenvalue
of EE™ and V is the associated eigenvector, then

EE'V=-Tx (T XV)=aV (A.4)

or

—[(T - V)T — |T[*V] = aV, (A.5)
from which we can conclude that either « = 0 or & = |[T|P.
Further, we know that the eigenvectors satisfy
VAT-V)=T/T|? or T-V=0. (A4
|T|? is a double eigenvalue since it corresponds to two
independent eigenvectors. Therefore, according to
Huang and Faugeras’s theorem (23], E is an essential
matrix. Q.E.D.

Now let us prove Lemma 2.2 in Section 2.

Proof of Lemma 2.2. Although we can prove the the-
orem constructively, to make use of the existing results
and hence simplify the proof, we will follow the proof in
Lemma A.l and consider three different situations: 1.
it #0;2. ti=t;,=0and 1, # 0; 3. 1, =0and #;4, # 0;
where i, j, k are any three distinct indices among 1, 2, 3.

Equation (A.1) is equivalent to the equations

led? = & + 17, e-e=—ny, i#j,i,j€E{1, 23}
(A.5)
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We now consider three different situations in which (A.5)
can be satisfied:

1. It has been shown [23] that when e; - e; # 0, for any
i, j, then the following equation is necessary for E to be
essential:

€ € 4 €3 =0
€ €3 €3 € € € ’

(A.6)

It now remains to show that when the above equation is
satisfied, E can find an decomposition of T x R. It suf-
fices to show that there exist three nonzero numbers, ¢,
i =1, 2,3, such that (A.5) is satisfied. To show this, we
lets;, i = 1, 2, 3, be so chosen that

e e = —Il,

€ e =~z e e = —hiy.

(A7)

Assume that (A.6) is satisfied. Now usinge;,i= 1,2, 3, to
have inner product with both sides of (A.6), we then have

[les]
llesll

Therefore, (A.5) is satisfied.
2. For the same reason as above, when

ez = e, - e; =7 + 13,
(A.8)

=1+ 4,
2 2
g+ 8.

€ - €
€3 - €3

il
Il

ledl = ledl >0, fledi = 0. e-e=0, ij kel 23}
(A.9)

then if and only if

i = tj = 0, i = i“ei“ = ||ej||, (AIO)
is Eq. (A.5) satisfied.

3. It is also direct to verify that in Eq. (A.5), to have a
solution of the form (2.19) it is necessary and sufficient
that (2.18) is satisfied. In this case, T = (¢, 15, t3)" is given
by

=0, tf=le?, =1lelf, tn=—¢-e. (Al

Since the above three situations are the only possible
cases in which (A.5) is satisfied, we have proven the
lemma. Q.E.D.

We now prove Theorem 4.2.

Proof of Theorem 4.2. We first examine the surface
shapes that can be represented by (4.10). First, the quad-
ric must pass through the origin and —R{T,. Lemma 3.1
indicates that RJE is an essential matrix. From results in
[12], we know that (4.10) can only represent a subset of
quadrics (such as hyperbolic paraboloids, circular cylin-
der, and intersecting planes). There exist other quadrics,
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such as an elliptic sphere, a one or two sheet hyperbo-
loid, and a cone, which cannot be represented by (4.10).
Given a quadric surface
XA + A)X + 2B'X = 0, (A.12)
to express it in the form of (4.10), B must be dependent
on A and A must be an essential matrix. That is, we must
have some T and R such that
A=T xR, B = (R;T)A. (A.13)
Therefore, only the elements of A can be free variables.
But A can have only five free elements because the larg-
est element of A can be normalized to unity and A must
satisfy (2.13), (2.16), or (2.18) to be an essential matrix. It
is then possible that five points define a finite number of
Maybank quadrics of the type (4.10). It follows six points
may exclude the possibility that they lie on any Maybank
quadric, e.g., when the six points together with the coor-
dinate origin and —R{T, define a cone. The existence of
such possibility can be shown through numerical exam-
ples (see the results in Section 7 and Example 4 in [31]).
We now show that it is actually possible to determine any
motion Ry and T, with six pairs of correspondences.

In Theorem 5.1 we have shown that in the plane mo-
tion case six correspondences of image points that do not
lie on a quadratic curve in the image plane admit only the
true motion solution and the dual solution. It has been
known [8, 26] that the dual solution will be identical to
the true solution if R{Ty is parallel to N, where N is the
plane normal. Therefore, a given motion Ry and T, can be
uniquely determined by any six pairs of points that corre-
spond to space points lying on a plane orthogonal to RIT,
and do not lie on a quadratic curve in the image plane.
This completes the proof. Q.E.D.
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