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Abstract 
 

A system of using a planar parallel plate to achieve 
single camera stereo has been proposed by Nishimoto 
and Shirai[5].Their work was based on an assumption 
that the optical axis of the camera was equally displaced 
by a tilted planar plate with two fixed tilt angles. Such 
assumption is invalid in general. In this paper, we 
propose a general framework to more accurately model 
such a single camera system using a planar parallel 
plate and to deal with arbitrary orientation of the plate. 
Our model has no limitation on the FOV of the camera. 
The proposed framework includes: a mathematical 
formulation to calculate the displacement of scene 
points; a plate calibration method to determine the plate 
intrinsic parameters as well as its extrinsic pose, and a 
generalized correspondence method which is capable of 
dealing with arbitrary number of images captured from 
different plate poses; Experimental result is included to 
validate the proposed framework.  

. 
1. Introduction  

Stereopsis has been one of the most widely explored 
topics of 3D vision.  A classical stereo system typically 
includes two cameras placed side by side to capture 
stereo image pairs. The depth information of the 
captured scene is calculated from the disparity map of 
these two images.  Instead of using two or more cameras, 
one can also sequentially capture image pairs by 
repositioning a single camera. The advantage of using a 
single camera over the two-camera systems is that the 
identical intensity response of the stereo pairs captured 
with the same camera can improve the accuracy of 
correspondence matching.  

Besides the approach of displacing a single camera, 
several other single-camera systems have also been 
investigated. Each of them has its own unique features.  
Adelson and Wang designed a plenoptic camera system 
which uses a lenticular array placed in front of the image 
plane to control the light path, and the depth information 
is extracted by analyzing a set of sub-images [1]. Lee 
and Kweon presented a bi-prism stereo camera system 

which forms the stereo pairs on the left and right halves 
of a single CCD sensor by a bi-prism [3]. Nene and 
Nayar investigated stereo imaging using different types 
of mirrors including planar, ellipsoidal, hyperboloidal 
and paraboloidal mirror [4].  

The work most closely related to this  paper is that of 
Nishimoto and Shirai [5]. A planar parallel plate is 
placed in front of the camera as shown in the Fig.1. By 
changing the tilt angle of the plate about vertical axis 
which is normal to the optical axis of the camera, the 
image of scene object shifts horizontally.  In their 
experiment, two images corresponding to two fixed 
poses of the plate are captured. Feature points are 
extracted by looking for zero-crossings on images 
filtered by LOG (Laplacian of Gaussian) filter. The 
correspondences of these feature points are found by 
searching the closest feature points on the horizontal 
scan line. To allow such searching, the plate has to be 
carefully calibrated with the camera, the two tilt angles 
of the plate have to be large. 

In this paper, we propose a general framework to more 
accurately model such a single camera system and to 
allow arbitrary orientation of the plate. Our model has no 
limitation on the FOV of the camera. Furthermore, we 
not only achieve two-view stereo, but also multi-baseline 
stereo by rotating the plate around the optical axis or by 
changing the tilt angle of the plate, as illustrated in the 
Fig. 1. With the large number of extra images captured at 
multiple plate poses, it is possible to construct depth 
maps with higher accuracy.  

 
Fig. 1. Concept illustration (the plate can be rotated 
about either a horizontal axis or a vertical axis) 



  

2. Mathematical model 
2.1 Planar parallel plate 
It is known from optics that light ray passing through a 

planar plate will encounter a lateral displacement d  
given by: 
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Where I is incident angle; n is refractive index and t is 
thickness of the plate [7]. In this paper, the refraction 
index n and thickness t are referred to as the intrinsic 
parameters of the plate. 

 
2.2 Extrinsic parameters and essential points 
Like most vision systems, the camera is assumed to be 

a pinhole which can be simplified as a projection center 
along with it’s intrinsic parameters (focal length f, image 
center (u0,v0) and distortion factor k). A parallel plate is 
placed arbitrarily in front of the camera. Besides the 
intrinsic parameters (n, t), extrinsic parameters described 
below are also necessary to characterize the plate. For 
the proposed system, the plate position is not important 
because the lateral displacement of a ray depends only 
on its incident angle. On the other hand, the plate pose is 
critical for calculating the displacement.  Instead of using 
a normal vector to denote the pose of a plate, we 
introduce the concept of an essential point to specify the 

pose of a plate. As illustrated in Fig. 2, for each plate 
pose, there exists a unique point that is the intersection of 
the plate normal, passing through the camera projection 
center, with the camera image plane. We call this point 
as essential point. The essential point of the plate under 
pose i is denoted as Ei(ue, ve, f).  Given the focal length 
of the camera, two coordinates (ue,  ve) of the essential 
point are enough to specify a plate pose and are referred 
to as extrinsic parameters of the plate. With the two 
intrinsic parameters, a total of four parameters fully 
characterize the plate optical properties and its pose.  

Similar to the use of an epipole in epipolar geometry, 
the use of essential point limits the search for  
correspondences to 1D.  In Fig 2, an object point P(x,y,z) 
is imaged to point p1(u1, v1) on the sensor plane through 
the projection center C and the plate. We denote p(u,v) to 
be the image point of the point P through the projection 
center C without the plate. E1 is the essential point of the 
plate under a certain pose (pose 1). It is evident that the 
essential point E1, image point p and p1 are collinear. We 
define the line passing through those three points as 
essential line of the image point p (or p1; or 3D point P) 
corresponding to plate pose 1. If the plate is repositioned 
to a new pose (pose 2) with the essential point E2, then 
the image of the 3D point P through the plate can be 
found on the new essential line E2p. Therefore, like the 
classical two-camera stereo case, the correspondence 
search is limited to 1D; in other words, search can be 
performed on the essential lines. However, unlike an 
epipolar line pair for which points on the lines can be 

matched one by one in order, there are only two points 
matched on an essential line pair. As illustrated in Fig 3, 
the match point of the neighbor pixel q1 of pixel p1 
cannot be found on the essential line E2p, but on the 
essential line E2q.  Furthermore, any essential line of the 
3D point P passes through its image point p. These 
properties set up the foundation for the correspondence 
matching method we will discuss later and enable us to 
perform only 1D search for correspondence. 

 
2.3 Estimation of the depth of the objects 
For a given object point, we assume that the point is 

shifted by the plate in a plane parallel with image plane. 
As shown in Fig 2, the 3D point P is shifted to point P′  
by the plate and the displacement is denoted as R. The 
image points of P and P′  through the projection center C 
are p and p1 respectively. The displacement of P in 
image space is the distance between p and p1 and is 
denoted as r. If we know both R and r, then the depth of 
P can be calculated by simple triangulation. 

rRfz /*=     (2) 
The problem of finding the displacement r is referred 

to as correspondence problem, and will be discussed in 
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   Fig 2. Projection of a 3D point through a plate 
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Fig 3. Properties of essential line pairs 



  

section 3.2. The displacement R can be calculated by 
equation (1) and following equations: 
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where: a is the angle between line p1E1  and p1C;  d is  
the lateral displacement of the chief ray of P  which is 
given by equation(1); I is the angle between line p1C and 
line E1 C which is the input of equation(1).  

 
3. Plate calibration and correspondence 
matching.  

3.1 Plate calibration 
Calibration is a critical issue for many systems. Good 

calibration can compensate for systematic errors and 
improve system accuracy. For the proposed system, the 
goal of calibration is to accurately estimate both the 
intrinsic and extrinsic parameters of a plate defined in 
the previous section. We also anticipate that the 
calibration process will minimize the error resulting from 
the aberrations introduced by the plate. 

For conciseness, we rewrite Equations (1~5) as a 
single function: 

 ),,,( PXrXFz C=   (6) 
where: z is the depth of a given 3D point; X denotes 

the plate parameters (ue, ve, n, t); r is the displacement in 
image space for a given point; Xc denotes the camera 
intrinsic parameters; P is a 3D object point.  

For plate calibration, we use a set of grid points with 
known depth and estimate the plate parameters by 
solving equation (6) using nonlinear least square solver. 
The displacement in image space is calculated by 
comparing corner coordinates.  The calibration 
procedures is as follows: 

(1) Perform standard camera calibration to estimate the 
intrinsic parameters of the camera [8]; 

(2) Fix the camera on an optical table and place a 
calibration pattern in front of the camera at a 
certain distance. 

(3) Capture a reference image of the calibration pattern 
without the plate, extract corner features, estimate 
the pose of the calibration pattern relative to the 
camera, and determine the depth z of these grid 
points on the pattern. 

(4) Insert the plate in front of the camera at a series of 
desired poses, capture a set of images of the 
calibration pattern corresponding to each pose, and 
extract corners in the images. 

(5) Estimate the displacement r in the image space for 
each corner feature by comparing two sets of 
corners extracted from the reference image and an 
image with the plate at a given pose. 

(6) Given r, z and the coordinates of the corners, 
determine the intrinsic and extrinsic parameters by 
solving nonlinear equation (6) using nonlinear least 
square solver. 

Two sets of calibration results corresponding to two 
plate poses are listed in table 1. We can see that the root-
mean-squared error is less than 0.1 pixels. This indicates 
that the proposed plate parametric model is very accurate 
and is capable of fully characterizing the plate and its 
poses. The actual thickness of the plate we used is 
12.96mm. For pose 1, the calibrated thickness is almost 
identical to the ground truth. But for the 50-deg tilt angle 
(pose 2), the discrepancy in the thickness is about 
0.9mm, and in the index is about 0.1. We observe that 
such discrepancies at a large tilt angle might relate to two 
aspects. Firstly, the plate, bought from a glass shop, is 
not optical-grade glass.  Its refractive index and 
thickness may not be constant across the plate. Secondly, 
the aberrations introduced by the plate at a large tilt 
angle will cause additional displacement in the image 
space. In order to obtain accurate plate intrinsic 
parameters (thickness and index), it would help to 
perform calibration at a small tilt angle, and then fix 
intrinsic parameters when calibrating the poses at large 
tilt angles. However, keeping the intrinsic parameters as 
variables at large tilt angles could possibly better 
compensate for the artifacts caused by the aberrations 
and the imperfect glass quality than varying just two 
extrinsic parameters. In our implementation, we treat all 
four parameters as variables for all the plate poses. 

Table 1. Two sets of calibration results 
 Pose1 (0° tilt) Pose2 (50° tilt) 
ue (pixel) 733.45 3289.9 
ve (pixel) 484.6 465.1 
Refractive Index 1.46 1.576 
Thickness (mm) 12.974 13.84 
Residual (pixel) 0.049 0.075 
 
 3.2 Correspondence 

There are two ways to extract depth from the images 
captured by varying the plate pose. The straightforward 
method is  to directly conduct 2D search in the images to 
identify the best matching features or pixels, and then to 
use the recovered disparity map to calculate the depth of 
the scene by equations (1) through (5). Obviously, 2D 
search will be expensive. Based on the analysis in 
section 2.2, we could search for the best matching points 
on the essential lines. In order to do so, besides the 
images we captured at different plate poses, we introduce 



  

a reference dummy image, which can be thought of as 
the image captured by the camera without the plate, to 
bridge those images. 

Fig. 4 shows a set of images I1, I2, …, In  which 
correspond to n plate poses. The image on the second 
row is the dummy image I. Given a pixel p in image I, 
one can calculate the displacement of corresponding 3D 
point P by equations 3. If the depth of the point P is 
known, then corresponding pixels p1,  p2, …, pn in the 
images I1, I2, …, In  can be computed. Normally, p1, p2, 
…, pn are not integers and the intensity values of these 
pixels have to be interpolated from their neighbors. 
However, the depth of the given 3D point P is something 
we want to find. So instead of using one depth, we 
specify a depth range Zmin to Zmax and for each depth 
level, identify the corresponding pixels in given images. 
The depth of given point P will be the one for which the 
intensity values of p1, p2, …, pn  best match. Of course, 
matching one pixel will not give us a good depth 
estimate in general; a block around pixel p has to be 
used. The matching cost function could be any of the 
functions commonly used in standard stereo case. In our 
implementation, we use SAD (sum of absolute 
differences)[2,6]. Note that one advantage of such a 
single viewpoint camera is that the image intensity of 
corresponding points can be safely assumed to be 
invariant regardless of scene and surface complexities. 

   
4. Experimental results and conclusion 

In this section, we show that the proposed method is 
able to accurately estimate depth map. In our experiment, 
a Sony DFX900 color camera with 1280x960 resolution 
was used to capture images. The plate was mounted on a 
rotation stage to change the plate pose about vertical 
axis. Totally 15 poses were calibrated using the 
calibration method described in the Section 3.1. Figure 5 
shows a box (Fig. 5a) and its front surfaces reconstructed 
from two images with block size 9x9 (Fig. 5b) and from 
multiple images (15 images totally) with block size 3x3 
(Fig. 5c). While two views are sufficient to recover the 
depth, multiple views yield smoother depth estimates. 
More quantitive and complete analysis of the accuracy of 
depth estimation will be carried out in future work. In 

summary, the proposed framework is capable of 
extracting depth with a single camera and is able to 
handle arbitrary number of images captured from 
different plate poses. By increasing the number of 
images, our method has the potential of recovering depth 
map and 3D shapes with high accuracy. 
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Fig.4. Illustration of the multi-image matching 
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Fig 5. Reconstructed front 
surface of a box object: (a) 
An image of the object; (b) 
Reconstruction from two 
views; (c) Reconstruction 
from multiple views (15 
images totally). 


