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Abstract. Learning associations across modalities is critical for robust multi-
modal reasoning, especially when a modality may be missing during inference. In
this paper, we study this problem in the context of audio-conditioned visual syn-
thesis – a task that is important, for example, in occlusion reasoning. Specifically,
our goal is to generate future video frames and their motion dynamics conditioned
on audio and a few past frames. To tackle this problem, we present Sound2Sight,
a deep variational framework, that is trained to learn a per frame stochastic prior
conditioned on a joint embedding of audio and past frames. This embedding is
learned via a multi-head attention-based audio-visual transformer encoder. The
learned prior is then sampled to further condition a video forecasting module to
generate future frames. The stochastic prior allows the model to sample multiple
plausible futures that are consistent with the provided audio and the past context.
Moreover, to improve the quality and coherence of the generated frames, we pro-
pose a multimodal discriminator that differentiates between a synthesized and a
real audio-visual clip. We empirically evaluate our approach, vis-á-vis closely-
related prior methods, on two new datasets viz. (i) Multimodal Stochastic Mov-
ing MNIST with a Surprise Obstacle, (ii) Youtube Paintings; as well as on the
existing Audio-Set Drums dataset. Our extensive experiments demonstrate that
Sound2Sight significantly outperforms the state of the art in the generated video
quality, while also producing diverse video content.

1 Introduction

Evolution has equipped the intelligent species with the ability to create mental repre-
sentations of sensory inputs and make associations across them to generate world mod-
els [9]. Perception is the outcome of an inference process over this world model, when
provided with new sensory inputs. Consider the following situation. You see a kid going
into a room which is occluded from your viewpoint, however after sometime you hear
the sound of a vessel falling down, and soon enough, a heavy falling sound. In the blink
of an eye, your mind simulates a large number of potential possibilities that could have
happened in that room; each simulation considered for its coherence with the sound
heard, and its urgency or risk. From these simulations, the most likely possibility is
selected to be acted upon. Such a framework that can synthesize modalities from other
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Fig. 1: Video generation using our Sound2Sight against Denton and Fergus [10] on
AudioSet-Drums [14]. We also show the optical flow between consecutive generated
frames. The red square indicates the region of dominant motion.

cues is perhaps fundamental to any intelligent system. Efforts to understand such men-
tal associations between modalities dates back to the pioneering work of Pavlov [43]
(on his drooling dogs) who proposed the idea of conditioning on sensory inputs.

In this paper, we explore this multimodal association problem in the context of gen-
erating plausible visual imagery given the accompanying sound. Specifically, our goal
is to build a world model that learns associations between audio and video dynamics
in such a way as to infer visual dynamics when only the audio modality (and the vi-
sual context set by a few initial frames) is presented to the system. As alluded to above,
such a problem is fundamental to occlusion reasoning. Apart from this, it could help de-
velop assistive technologies for the hearing-impaired, could enable a synergy between
video and audio inpainting technologies [28,67], or could even compliment the current
“seeing through corners” methods [35,66] using the audio modality.

From a technical standpoint, the task of generating the pixel-wise video stream from
only the audio modality is severely ill-posed. For instance, a drummer playing a drum to
a certain beat would sound the same irrespective of the color of his/her attire. To circum-
vent this challenge, we condition our video generator using a few initial frames. This
workaround not only permits the generation of videos that are pertinent to the situation,
but also allows the model to focus on learning the dynamics and interactions of the vi-
sual cues assisted by audio. There are several recent works in a similar vein [7,56,1]
that explore speech-to-video synthesis to generate talking heads, however they do not
use the past visual context or assume very restricted motion dynamics and audio priors.
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On the other hand, methods that seek to predict future video frames [10,55,13] given
only the past frames, assume a continuity of the motion pattern and are unable to adapt
to drastic changes in motion that might arise in the future (e.g., the sudden movements
of the drummer in Figure 1). We note that there also exist several recent works in the
audio-visual synthesis realm, such as generating audio from video [27,64,65] that looks
at a complementary problem and multimodal generative adversarial networks (GAN)
that generates a single image rather than forecasting the video dynamics [8,18,58].

To tackle this novel task, we present a stochastic deep neural network: Sound2Sight,
which is trained end-to-end. Our main backbone is a conditional variational autoen-
coder (VAE) [30] that captures the distribution of the future video frames in a latent
space. This distribution is used as a prior to subsequently condition a video genera-
tion framework. A key question that arises then, is how to incorporate the audio stream
and its correlations with the video content? We propose to capture this synergy within
the prior distribution - through a joint embedding of the audio features and the video
frames. The variance of this prior distribution, permits diversity in the video generation
model, thereby synthesizing disparate plausible futures.

An important component in our setup is the audio-visual latent embedding that
controls the generation process. Inspired by the recent success of transformer net-
works [53], we propose an adaptation of multi-head transformers to effectively learn
a multimodal latent space through self-attention. As is generally known, pixel genera-
tions produced using variational models often lack sharpness, which could be attributed
to the Euclidean loss typically used [32]. To this end, in order to improve the gener-
ated video quality, we further propose a novel multimodal discriminator, that is trained
to differentiate between real audio-visual samples and generated video frames coupled
with the input audio. This discriminator incorporates explicit sub-modules to verify if
the generated frames are realistic, consistent, and synchronized with the audio.

We conduct experiments on three datasets, two new multimodal datasets: (i) Multi-
modal Stochastic Moving MNIST with a Surprise Obstacle (M3SO) and (ii) Youtube-
Painting, alongside a third dataset – AudioSet-Drums – which is an adaptation of the
well-known AudioSet datset [14]. The M3SO dataset is an extension of stochastic mov-
ing MNIST [10], however incorporates audio based on the location and identity of the
digits in the video, while also including a surprise component that requires learning
audio-visual synchronization and stochastic reasoning. The Youtube-Painting dataset is
created via crawling Youtube for painting videos and provides a challenging setting for
Sound2Sight to associate painting motions of an artist and the subtle sounds of brush
strokes. Our experiments on these datasets show that Sound2Sight leads to state-of-the-
art performances in quality, diversity, and consistency of the generated videos.

Before moving on, we summarize below the key contributions of this paper.
– We study the novel task of future frame generation consistent with the given audio

and a set of initial frames.
– We present Sound2Sight, a novel deep variational multimodal encoder-decoder for

this task, that combines the power of VAEs, GANs, and multimodal transformers
in a coherent learning framework.

– We introduce three datasets for evaluating this task. Extensive experiments are pro-
vided, demonstrating state-of-the-art performances, besides portraying diversity in
the generation process.
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2 Related Works

In this section, we review prior works that are closely related to our approach.
Audio-Visual Joint Representations: The natural co-occurrence of audio-and-visual
cues is used for better representation learning in several recent works [2,4,20,39,40,41].
We too draw upon this observation, however, our end-goal of future frame generation
from audio is notably different and manifests in our proposed architecture. For example,
while both Arandjelović and Zisserman [2] and Owens and Efros [39] propose a com-
mon multimodal embedding layer for video representation, our multimodal embedding
module is only used for capturing the prior and posterior distributions of the stochastic
components in the generated frame.
Video Generation: The success of GANs has resulted in a myriad of image generation
algorithms [11,15,16,30,31,36,61]. Inspired from these techniques, methods for video
generation have also been proposed [46,52,55]. These algorithms usually directly map
a noise vector sampled from a known or a learned distribution into a realistic-looking
video and as such are known as unconditional video generation methods. Instead, our
proposed generative model uses additional audio inputs, alongside encoding of the past
frames. Models like ours are therefore, typically referred to as conditional video gener-
ation techniques. Prior works [17,34,19,42,59] have shown the success of conditional
generative methods when information, such as the video categories, captions, etc., are
available, using which constraints the plausible generations, improving their quality.
Our proposed architecture differs in the modalities we use to constrain the generations
and the associated technical innovations required to accommodate them.
Video Prediction/Forecasting: This is the task of predicting future frames, given a
few frames from the past. Prior works in this area typically fall under: (i) Deterministic,
and (ii) Diversity-based methods. Deterministic methods often use an encoder-decoder
model to generate video frames autoregressively. The inherent stochasticity within the
video data (due to multiple plausible futures or encoding noise) is thus difficult to be
incorporated in such models [44,54,12,25,37,48,22]. Our approach circumvents these
issues via a stochastic module. There have been prior efforts to capture this stochasticity
from unimodal cues, such as [57,10,62,5], by learning a parametric prior distribution.
Different from these approaches, we model the stochasticity using multimodal inputs.

We also note that there are several works in the area of generating human face ani-
mations conditioned on speech [24,26,47,50,51], however these techniques often make
use of additional details, such as the identity of the person or leverage strong facial cues
such as landmarks, textures, etc. - hindering their applicability to generic videos. There
are methods free of such constraints, such as [38], however they synthesize images and
not videos. A work similar to ours is Vougioukas et al. [56] that synthesizes face mo-
tions directly from speech and an initial frame, however it operates in the very restricted
domain of generating facial motions only.

3 Proposed Method

Given a dataset D = {V1, V2, · · · , VN} consisting of N video sequences, where each
V is characterized by a pair (X1:T , A1:T ) of T video frames and its time-aligned audio
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Fig. 2: Overview of the architecture of Sound2Sight. Our model takes F “seen” video
frames (during inference) and all T audio samples, producing T−F video frames (each
denoted by X̂t). During training, the multimodal discriminator predicts if an input video
is real or fake. We construct the fake video by replacing the t-th frame of the ground
truth by X̂t. Note that during training, the generated frames (X̂t) which are input to the
audio/visual transformer, are replaced by their real counterparts (Xt).

samples, i.e., X1:T = 〈X1, X2, ..., XF , XF+1, ..., XT 〉 and A1:T = 〈A1, A2, ..., AT 〉.
We assume that the audio and the video are synchronized in such a way that At cor-
responds to the sound associated with the frame Xt in the duration (t, t + 1). Now,
given as input a sequence of F frames X1:F , (F < T ) and the audio A1:T , our task is
to generate frames X̂F+1:T that is as realistic as possible compared to the true frames
XF+1:T . Given the under-constrained nature of the audio to video generation problem,
we empirically show that it is essential to provide the past frames X1:F to set the visual
context besides providing the audio input.
Sound2Sight Architecture: In this section, we first present an overview of the pro-
posed model, before discussing the details. Figure 2 illustrates the key components
in our model and the input-output data flow. In broad strokes, our model follows an
encoder-decoder auto-regressive generator architecture, generating the video sequen-
tially one frame at a time. This generator module has two components, viz. the Pre-
diction Network and the Multimodal Stochastic Network. The former module takes the
previous frame Xt−1 as input,3 encodes it into a latent space, concatenates it with a
prior latent sample zt obtained from the stochastic network, and decodes it to generate
a frame X̂t, which approximates the target frameXt. Sans the sample zt, the prediction
network is purely deterministic and unimodal, and hence can fail to capture the stochas-
ticity in the motion dynamics. This challenge is mitigated by the multimodal stochastic
network, which uses transformer encoders [53] on the audio and visual input streams
to produce (the parameters of) a prior distribution from which zt is sampled. The gen-

3 Xt−1 is the real frame during training, however during inference, it is the generated frame
X̂t−1 if t− 1 > F .
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Fig. 3: Details of our Multimodal Stochastic Network and our Prediction Network.

erator can thus be thought of as a non-linear heteroskedastic dynamical system (whose
variance is decided by an underlying neural network), which generates X̂t from the pair
(X̂t−1, zt), and implicitly conditioned on the (latent) history of previous samples and
the given audio.

During training, two additional data flows happen. (i) The transformer and the
stochastic network take as input the true video sequence X1:t as well. This is used to
estimate a posterior distribution which is in turn used to train the stochastic prior so that
it effectively captures the distribution of real video samples. (ii) Further, the generated
frames are evaluated for their realism and audio-visual alignment using a multimodal
adversarial discriminator [15] (shown in Figure 2). This discriminator uses X̂t – the
synthetic frame, inserted at the t-th index of the original sequence, and Xt−R:t+(k−1)
the set of R past, and (k − 1) future frames, along with the corresponding audio, and
compares it with real (arbitrary) audio-visual clips of length R + k from the dataset.
Since discriminators match distributions, rather than matching individual samples, this
ensures that incorporating the generated frame X̂t results in a coherent video that is
consistent with the input audio, while permitting diversity. In the following, we revisit
each of the above modules in greater detail and layout our training strategy.
Prediction Network: Broadly speaking, the prediction network (PN) is a standard
sequence-to-sequence encoder-decoder network. It starts off by embedding the previ-
ous frame Xt−1 into a latent space. We denote this embedding by f(Xt−1), where f(·)
abstracts a convolutional neural network (CNN) [33]. Each layer of this CNN consists
of a set of convolution kernels, followed by 2D-Batch Normalization [23] layers, Leaky
ReLU activations, and has skip-connections to the decoder part of the network. These
skip connections facilitate reconstruction of static parts of the video [45]. The embed-
ding of the frame f(Xt−1) is then concatenated with a sample zt ∼ N (µφ, Σφ), a
Gaussian prior provided by the stochastic module (described next) where µφ and Σφ
denote the mean and a diagonal covariance matrix of this Gaussian prior. Our key idea is
to have zt capture the cues about the future as provided by the available audio, as well
as the randomness in producing the next frame. We then feed the pair (f(Xt−1), zt)
to a Long-Short Term Memory (LSTM) [21], parametrized by θL within the PN; this
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LSTM keeps track of the previously generated frames via its internal states. Specifi-
cally, if ht−1 denotes the hidden state of this LSTM, then we define its output ηt as:

ηt = LSTMθL((f(Xt−1), zt) , ht−1) . (1)

The LSTM output ηt is then passed to the decoder network g, to generate the next
frame, i.e., X̂t = g(ηt). The decoder consists of a set of deconvolution layers with
Leaky ReLU activations, coupled with 2D-Batch Normalization layers.
Multimodal Stochastic Network: Several prior works have underscored the impor-
tance of modeling the stochasticity in video generation [5,10,57,62], albeit using a sin-
gle modality. Inspired by these works, we introduce the multimodal stochastic network
(MSN) that takes both the audio and video streams as inputs to model the stochastic ele-
ments in producing the target frame Xt. As alluded to earlier, such a stochastic element
allows for capturing the randomness in the generated frame, while also permitting the
sampling of multiple plausible futures conditioned on the available inputs. As shown
in Figure 3, the stochastic network is effectuated by computing a prior and a posterior
distribution in the embedding space (from which zt is sampled) and training the model
to minimize their mutual discrepancy. The prior distribution is jointly conditioned on
an embedding of the audio sub-clip A1:t+(k−1) and an embedding of the video frames
X1:t−1, both obtained via transformer encoders. We denote the t-th audio encoding
by OAt , while the (t − 1)-th video encoding is denoted by MV

t−1. Let the prior distri-
bution be pφ(zt|OAt ,MV

t−1), parametrized as a Gaussian, with mean µφ and diagonal
covariance Σφ. Likewise, the posterior distribution pψ(zt|OAt , QVt ), which is also as-
sumed to be a Gaussian N (µψ, Σψ), is jointly conditioned on audio clips A1:t+(k−1)
and visual frames X1:t. Its audio embedding is shared with the prior distribution and
its visual input is obtained from the t-th transformer encoding is denoted QVt . Here, it
is worth noting that the visual conditioning of the prior distribution, unlike the poste-
rior, is only upto frame t − 1, i.e. the past visual frames. Since the posterior network
has access to the t-th frame in its input, it may attempt to directly encode this frame
to be decoded by the prediction network decoder to produce the next frame. However,
due to the KL-divergence loss between the prior and the posterior distributions, such a
direct decoding cannot happen; unless the prior is trained well such that the KL-loss is
minimized; which essentially implies the prior pφ(zt|OAt ,MV

t−1) will be able to predict
the latent distribution of the future samples (as if from the posterior pψ(zt|OAt , QVt )),
which is essentially what we require during inference.

To generate the prior distribution, we concatenate the embedded features MV
t−1 and

OAt as input to an LSTMφ. Different from standard LSTMs, this LSTM predicts the
parameters of the prior distribution directly, i.e.,

µφ, logΣφ = LSTMφ(O
A
t ,M

V
t−1). (2)

The posterior distribution parameters are estimated similarly, using a second LSTM, de-
noted LSTMψ that takes as input the embedded and concatenated audio-video features
OAt and QVt to produce:

µψ, logΣψ = LSTMψ(O
A
t , Q

V
t ). (3)
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Audio-Visual Transformer Encoder: Next, we describe the process of producing the
prior and posterior distributions from audio-visual joint embeddings. As we want these
embeddings to be “temporally-conscious” while computable efficiently, we bank on
the very successful Transformer Encoder Networks [53], which are armed with self-
attention modules that are well-known to produce powerful multimodal representations.
Re-using the encoder CNN f from the prediction network, our visual transformer en-
coder takes as input the matrix F = 〈f ′(X1), f

′(X2), · · · , f ′(Xt−1)〉 with f ′(Xi)
in its i-th column, where f ′(Xi) denotes the feature encoding f(Xi) augmented with
the respective temporal position encoding of the frame in the sequence, as suggested
in [53]. We then apply `-head self-attention to F by designing Query (Q), Key (K), and
Value (V) triplets via linear projections of our frame embeddings F ; i.e., Qj = W j

qF ,
Kj = W j

kF , and Vj = W j
vF , where W j

q ,W
j
k ,W

j
v are matrices of sizes dk × d, d is

the size of the feature f ′, and j = 1, 2, · · · , `. Using an `dk × d weight matrix Wh, our
self-attended feature M̂V

t−1 from this transformer layer is thus:

M̂V
t−1 = concat`j=1

(
softmax

(
QjK>j√
dk

)
Vj

)
Wh, (4)

where concat denotes the concatenation operator. We use four consecutive self-attention
layers within every transformer encoder, which are then combined via feed-forward
layers to obtain the final encoding [53] MV

t−1, which is subsequently used in the MSN
module. Likewise, the re-purposed visual features for the posterior distribution, QVt ,
can also be computed by employing a separate transformer encoder module, which en-
sures a separation of the visual components of the prior and the posterior networks. To
produce the audio embeddings OAt , we first compute STFT (Short-Time Fourier Trans-
form) features (S1, S2, ..., St+(k−1)) from the raw audio by choosing appropriate STFT
filter sizes and strides, where each Si ∈ RdHA×dWA and encode them using an audio
transformer.
Generator Loss: To train our generator model, we directly maximize the variational
Empirical Lower BOund (ELBO) [30] by optimizing the following objective:

LV =

T∑
t=F+1

E
zt∼pφ

log pφ(X̂t|MV
t−1, zt) −βKL

(
pψ
(
zt|OAt , QVt

)
‖ pφ

(
zt|OAt ,MV

t−1
))
,

where the KL-divergence matches the closeness of the posterior distribution and the
prior, while β is a regularization constant. Casting the above objective as a minimization
and approximating the first term by the pixel-wise `2 error, reduces the objective to:

LV ≈
T∑

t=F+1

‖Xt − X̂t‖22 + βKL(pψ||pφ). (5)

Multimodal Discriminator Network: Matching the synthesized frames against the
ground-truth using only pixel-wise loss, as in (5), implies biasing one possible outcome
over other plausible ones; which can discourage generative diversity. We seek to rectify
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this shortcoming by further scrutinizing the output of our PN module using a multi-
modal discriminator (see Fig. 2). This discriminator is designed to match the distribu-
tion of synthesized frames against the ground truth distribution of audio-video pairs. In
contrast to conventional image-based GAN discriminators [6,15], our variant couples a
classifier, denoted Dstd, and an LSTM D, to produce binary labels indicating if the t-th
frame is from the real data (drawn from the distribution pD) or a synthetic distribution
produced by the generator pG. This is done via using a set of ground-truth audio-visual
frames from the neighborhood of the generated frame, where this neighborhood spans
the previous R and future (k − 1) frames. When judging its inputs, the discriminator,
besides looking into whether the t-th frame appears real or fake, also looks at how well
the regularities of object motions are preserved with respect to the neighborhood via a
motion dynamics (MD) loss, and if the frames are synchronized with the audio via an
audio alignment (AA) loss. With these additional terms, our discriminator loss is:

Ladv = −
T∑

t=F+1

E
X′
t∼pD

logDstd(X
′
t)+ E

X̂t∼pG
log(1−Dstd(X̂t))

+ E
X′
t∼pD

logD(X ′t|A′t, B′t+(k−1), · · · , B
′
t+1, B

′
t−1, · · · , B′t−R)︸ ︷︷ ︸

Real Data - Motion Dynamics (MD)

+ E
X′
t∼pD

log (1−D(X ′t|A′t′ , C ′t+(k−1),t′+(k−1), · · · , C
′
t+1,t′+1, C

′
t−1,t′−1,· · · ,C ′t−R,t′−R))︸ ︷︷ ︸

Real Data - Audio Alignment (AA)

+ E
X̂t∼pG

log (1−D(X̂t|At, Bt+(k−1), · · · , Bt+1, Bt−1, ..., Bt−R))︸ ︷︷ ︸
Synthetic Frame - Motion Dynamics (MD)

+ E
X̂∼pG

log (1−D(X̂t|At′ , Ct+(k−1),t′+(k−1), · · · , Ct+1,t′+1, Ct−1,t′−1,· · · ,Ct−R,t′−R))︸ ︷︷ ︸
Synthetic Frame - Audio Alignment (AA)

(6)
where (X ′t, A

′
t) denotes a visual frame X ′t and its associated audio A′t from a clip B′ =

(X ′1:T , A
′
1:T ) arbitrarily sampled from the training set. Similarly, we define Ct,t′ =

(Xt, At′), t′ 6= t, Bt = (Xt, At), C ′t,t′ = (X ′t, A
′
t′), B

′
t = (X ′t, A

′
t), Xt 6= X ′t,

At 6= A′t. The first term in (6) defines a standard image-based GAN loss, while D in
the other terms denotes a convolutional LSTM. The motion dynamics loss captures the
consistency of the generated frame against other frames in the sequence (i.e.,X ′t against
B′ on the real, and X̂t against B on the generated), while the audio alignment of the
generated frame X̂t against arbitrary audio samples A′ is captured in the last term. We
optimize for the discriminator parameters via minimizing this loss above.

Combining the adversarial losses above with (5), our final objective for optimizing
the generator is:

L = LV − γLadv, (7)

where γ is a constant. We minimize (7) using ADAM [29], while employing the repa-
rameterization trick [30] to ensure differentiability of the stochastic sampler.
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4 Experiments

To benchmark the performance of our model, we present empirical experiments on a
synthetic and two real world datasets, which will be made publicly available.
Multimodal MovingMNIST with a Surprise Obstacle (M3SO): is a novel exten-
sion of the stochastic MovingMNIST dataset [10] adapted to our multimodal setting.
Stochastic MovingMNIST consists of digits from the MNIST dataset [33] moving along
rectilinear paths in a fixed size box (48× 48) which bounce in random directions upon
colliding with the box boundaries. In M3SO, we make the following changes: (i) we
equip each digit with a unique tone, (ii) the amplitude of this tone is inversely propor-
tional to the digit’s distance from the origin, and (iii) the tone changes momentarily
when the digit bounces off the box edge. We make this task even more challenging
by introducing an obstacle (square block of fixed size) at a random location within the
unseen part of the video. When the digit bounces against the block, a unique audio fre-
quency is emitted. The task on this dataset is not only to generate the frames, but also
to predict the location of the block by listening to the tone changes. See supplementary
materials for details. We also construct a version of the dataset, where no block is intro-
duced, called M3SO-NB. We produced 8,000 training, 1,000 validation, and 1,000 test
samples for both M3SO and M3SO-NB.
AudioSet-Drums: includes videos from the Drums class of the AudioSet dataset [14].
We clipped and retained only those video segments from this dataset for which the drum
player is visible when the drum beat is heard. This yielded a dataset consisting of 8K
clips which we split as 6K for training, 1K for validation, and 1K for test. Each video
is of 64× 64 resolution, 30fps, and is 3 seconds long.
YouTube Painting: To analyze Sound2Sight in a subtle, yet real world setting, we
introduce the Youtube Painting dataset. The videos in this dataset are manually collected
via crawling painting videos on Youtube [3]. We selected only those videos that contain
a painter painting on a canvas in an indoor environment, and which have a clear audio of
the brush strokes. These videos provide a wide assortment of brush strokes and painting
colors. The painter’s motions and the camera viewpoints are often arbitrary which adds
to the complexity and diversity, making it a very challenging dataset. Here the task is to
generate video frames showing the dynamics of the painter’s arms, while preserving the
static components in the scene. We collected 4.8K videos for training, 500 for validation
and 500 for test. Each video is of 64× 64 resolution, 30fps, and 3s long.
Evaluation Setup: On the M3SO dataset, we conduct experiments in two settings:
(i) in M3SO-NB, all methods are shown 5 frames and the full audio, with the task to
predict the next 15 frames at training and 20 frames at test time, and (ii) using M3SO in
which blocks are presented, we show 30 frames at training and 30 frames are predicted,
however the block appears at the 42-nd frame. We predict 40 frames at test time. For
both the real-world datasets, we train all algorithms on 15 seen frames and task is to
predict the next 15 during training and 30 at test.
Baselines: To the best of our knowledge, this is the first attempt at future frame gen-
eration from audio applied to generic videos. To this end, we compare our algorithm
against the following closely related baselines which we adapt to make them applica-
ble to our setting: (i) Audio-Only: we train a sequence-to-sequence model [49] taking
only the audio as input and generate the frames using an LSTM (thus, the past con-
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text is missing), (ii) Video-Only, where we design three baselines: (ii-a) the recent work
of Denton and Fergus [10], (ii-b) the approach of Hsieh et al. [22], and (iii-c) an ab-
lated variant of our model with the audio modality turned off (Ours - No audio), and
(iii) Multimodal: in this scenario too, we develop multiple baselines: (iii-a) we compare
against the approach of Vougioukas et al. [56], that predicts the video from audio and
the first frame, albeit in a very restricted setting of generating faces from speech, (iii-b)
the approach of Vougioukas et al. [56], modified to use a set of seen frames rather than
one (Multiframe [56]), (iii-c) an ablated variant of our model without the AA loss term
in the discriminator (Ours - No AA), and (iii-d) an ablated variant of our model without
the AA and MD loss terms in the discriminator (Ours - No AA, MD).
Evaluation Metrics: We use the standard strutural similarity (SSIM) [60] and the Peak
Signal to Noise Ratio (PSNR) scores for quantitative evaluation of the quality of the
generated frames against the ground-truth. Additionally, for the real-world datasets,
we also report their realism and audio consistency as measured via the discriminator
fooling rate, and through human preference evaluation on a subset of our test sets.
Implementation Details: The PN module uses an LSTM with two layers and produces
128-D frame embeddings. We use 10-D stochastic samples (zt). The prior and poste-
rior LSTMs are both single-layered, each with 256-D inputs from audio-frame embed-
dings (which are each 128-D). All LSTMs have 256-D hidden states. Each transformer
module has one layer and four heads with 128-D feedforward layer. The discriminator
uses an LSTM with a hidden layer of 256-D, a frame-history R = 2, and look-head
k = 1. We train the generator and discriminator jointly with a learning rate of 2e-3
using ADAM [29]. We set both β and γ as 0.0001, and increased γ by a factor of 10
every 300 epochs. All hyper-parameters are chosen using the validation set. During in-
ference, we sample 100 futures per time step, and use sequences that best matches the
ground-truth, for our method and the baselines.

4.1 Experimental Results

M3SO Results: Table 1 shows the performance of our model versus competing base-
lines on the M3SO dataset in two settings: (i) without block (M3SO-NB) and (ii) with
block (M3SO). For M3SO-NB, we observe that our method attains significant improve-
ments over prior works, even on long-range generation. In M3SO, when the block is
introduced at the 42-nd frame, the generated frame quality drops across all methods.
Nevertheless, our method continues to demonstrate better performance. Figure 6 (left)
presents a visualization of the generated frames by our method vis-á-vis prior works on
the M3SO dataset. Contrasting the output by our method against prior works clearly re-
veals the superior generation quality of our method, which closely resembles the ground
truth. The figure reveals that among existing approaches, Denton and Fergus [10] comes
closest to generating frames that look realistic, however they fail to capture the appear-
ance of the digit. We find that the method of [10] fares well under uncertainty, however
our task demands reasoning over audio - an element missing in their setup. Further
note that our model localizes the block in time (i.e. after the 42nd frame) better than
other methods. This is quantitatively analyzed in Table 3 by comparing the mean IoU
of the predicted block location in the final generated frame against the ground truth; our
scheme outperforms the closest baseline [10] by ∼30%.
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Table 1: SSIM, PSNR for M3SO-NB and M3SO. Highest, Second highest scores.
Experiments with M3SO-NB with 5 seen frames

Method Type SSIM PSNR
Frame 6 Frame 15 Frame 25 Frame 6 Frame 15 Frame 25

Our Method Multimodal 0.9575 0.8943 0.8697 21.69 17.62 16.84
Ours - No AA Multimodal 0.9547 0.8584 0.8296 21.80 17.36 16.97
Ours - No AA, MD Multimodal 0.9477 0.8546 0.8251 21.16 16.16 15.49
Ours - No audio Unimodal - V 0.9556 0.8351 0.6920 22.66 15.59 12.40
Multiple Frames - [56] Multimodal 0.9012 0.8690 0.8693 18.09 15.23 15.33
Vougioukas et al. [56] Multimodal 0.8600 0.8571 0.8573 15.17 14.99 15.01
Denton and Fergus [10] Unimodal - V 0.9265 0.8300 0.7999 18.59 14.65 13.98
Audio Only Unimodal - A 0.8499 0.8659 0.8662 13.71 13.16 12.94

Experiments on M3SO with 30 seen frames (Block is introduced in the 42nd frame)
Frame 31 Frame 42 Frame 70 Frame 31 Frame 42 Frame 70

Our Method Multimodal 0.8780 0.6256 0.6170 19.50 9.39 9.41
Multiple Frames - [56] Multimodal 0.8701 0.6073 0.6050 15.41 8.53 8.53
Vougioukas et al. [56] Multimodal 0.8681 0.6009 0.6007 15.17 8.48 8.48
Denton and Fergus [10] Unimodal - V 0.7353 0.5115 0.4991 12.25 7.13 7.00
Audio Only Unimodal - A 0.6474 0.5397 0.5315 12.39 9.25 8.84

Comparisons on Real-world Datasets: As with M3SO, we see from Table 2 that our
approach outperforms the baselines, even at long-range generation. Due to the sim-
ilarity in visual content (e.g., background) of the unseen frames to the seen frames,
prior methods (e.g., [56] and [10]) are seen to copy the seen frames as predicted ones,
yielding relatively high SSIM/PSNR early on (Figures 1 and 5 that show that drum-
mer’s and painter’s arms remain fixed); however their performances drop in the long-
range. Instead, our method captures the hand motions. Further, our generations are free
from artifacts, as corroborated by the fooling rate on the fully-trained discriminator, that
achieves 79.26% for AudioSet Drums and 65.99% for YouTube Painting.
Human Preference Scores: To subjectively assess the video generation quality, we
conducted a human preference evaluation between a randomly selected subset of our
generated videos and those produced by the closest competitor- Vougioukas et al. [56]
on both the real-world datasets. The results in Table 4 evince that humans preferred our
method for more than 80-90% of the videos against those from [56].
Sample Diversity: In Figure 6(b), we show the diversity in the samples generated on
the M3SO dataset. We see from this figure that the trajectory of the digit (‘1’) changes
across generated sequences, each plausible. Figure 4(b) shows quantitative evaluation
of diversity. Specifically, we generated a set of K futures at every time step (for |K|
ranging from 1− 100), and plotted the SSIM of the samples which matched maximally
with the ground truth. As is clear, this plot shows an increasing trend suggesting that
samples closer to the ground-truth are obtainable by increasing K; suggesting genera-
tive diversity. We further analyze this over SSIMs on optical flows computed from the
Youtube Painting and Drums datasets. In Figure 4(c), we plot the intra-sample diver-
sity, i.e., the average pairwise SSIMs for sequences in K; showing a downward trend,
suggesting these sequences are self-dissimilar within K.
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Table 2: SSIM, PSNR for AudioSet, YouTube Painting. Highest, Second highest scores.
Experiments on the AudioSet Dataset [14], with 15 seen frames

Method Type SSIM PSNR
Frame 16 Frame 30 Frame 45 Frame 16 Frame 30 Frame 45

Our Method Multimodal 0.9843 0.9544 0.9466 33.24 27.94 26.99
Multiple Frames - [56] Multimodal 0.9398 0.9037 0.8959 26.21 23.78 23.29
Vougioukas et al. [56] Multimodal 0.8986 0.8905 0.8866 23.62 23.14 22.91
Denton and Fergus [10] Unimodal - V 0.9706 0.6606 0.5097 30.01 16.57 13.49
Hsieh et al. [22] Unimodal - V 0.1547 0.1476 0.1475 9.42 9.54 9.53
Audio Only Unimodal - A 0.6485 0.6954 0.7277 18.81 19.79 20.50

Experiments on the novel YouTube Painting Dataset, with 15 seen frames
Frame 16 Frame 30 Frame 45 Frame 16 Frame 30 Frame 45

Our Method Multimodal 0.9716 0.9291 0.9110 32.73 27.27 25.57
Ours - No AA Multimodal 0.9588 0.9244 0.9076 30.32 26.58 24.75
Ours - No AA, MD Multimodal 0.9552 0.9196 0.9022 29.45 26.04 24.75
Ours - No audio Unimodal - V 0.9524 0.9166 0.8986 29.24 25.90 24.59
Multiple Frames - [56] Multimodal 0.9657 0.9147 0.8954 30.09 25.40 24.08
Vougioukas et al. [56] Multimodal 0.9281 0.9126 0.9027 26.97 25.58 24.78
Denton and Fergus [10] Unimodal - V 0.9779 0.6654 0.4193 32.52 16.05 11.84
Hsieh et al. [22] Unimodal - V 0.1670 0.1613 0.1618 9.11 9.57 9.72
Audio Only Unimodal - A 0.5997 0.6462 0.6743 16.75 17.53 18.04

Table 3: Block localization on M3SO.
Method Localization IoU
Our Method 0.5801
Denton and Fergus [10] 0.2577
Vougioukas et al. [56] 0.1289

Table 4: Human preference score on sam-
ples from our method vs. [56]

Datasets Prefer ours
AudioSet- Ours vs. [56] 83%
YouTube Painting-Ours vs. [56] 92%
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Fig. 4: Ablation and diversity studies (see text for details).

Ablation Results: To study the influence of the transformer network, we contrast our
model by substituting the transformer by an LSTM with 128-D hidden states. Fig-
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Fig. 6: Generated M3SO digits against baselines (left) and diversity (right).

ure 4(a) shows the result, clearly suggesting the benefits of using transformers. From
this plot, we also find that having our discriminator is important. Tables 1 and 2 show
that removing the AA and MD loss terms from the discriminator hurts performance.

5 Conclusions

In this work, we explored the novel task of video generation from audio and the vi-
sual context for generic videos. We proposed a novel deep variational encoder-decoder
model for this task, that also characterizes the underlying stochasticity in real-world
videos. We combined our video generator with a multimodal discriminator to improve
its quality and diversity. Empirical evaluations on three datasets demonstrated the supe-
riority of our method over closely-related baselines.
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Appendix

In this supplementary materials, we include the following:

1. Additional details about the three datasets and the associated tasks in Sections A.1,
A.2, A.3, and A.4 respectively.

2. The architecture of Sound2Sight and details of the training procedure.
3. Standard Deviation measures of the model performance.
4. Auxiliary evaluation of the quality of the generated videos.
5. Performances from ablative studies of our model, the effect of the choice of hyper-

parameters, per-sample comparisons with competing methods, and a study of the
effectiveness of teacher forcing training strategy. Also included are plots show-
casing the diversity of our model. Further, the alignment of the generated frames
against the input audio is quantitatively evaluated.

6. Qualitative experimental results vis-á-vis competitive baselines and figures illus-
trating the diversity of the samples generated by our model.

7. Failure cases of our model.

A Datasets and Tasks

As described in the main paper, we present results on three Audio-Visual datasets for
our video generation task, namely (i) the Multimodal Moving MNIST with (and with-
out) a Surprise Obstacle (M3SO), and its variant without the obstacle (M3SO-NB), (ii)
the Audioset-Drums [14], and (iii) YouTube-Painting. Here, we provide more details of
these tasks. Please see the supplementary video samples for a better understanding
of the task. Figure 8 shows samples from all three datasets and Table 5 presents the
statistics of these datasets and the training/val/test splits.

A.1 Multimodal Moving MNIST with a Surprise Obstacle (M3SO)

This is a novel synthetic dataset, where a randomly chosen MNIST digit [33] moves in
a box (of size 48 × 48), along rectilinear trajectories, in the seen part of the sequence
(30 frames for example). While doing so, the digit occasionally bounces against the
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walls of the box which alters its trajectory of motion randomly. The digit then traverses
this path of motion linearly till the next collision happens. Additionally, we associate
audio with each digit (a unique tone for the digit), and the amplitude of this tone is
inversely proportional to the distance of the moving digit from the lower-left corner of
the box. When the digit bounces off the box edges, a different tone is emanated (i.e. the
frequency of the audio changes). The audio then reverts to the original tone of the digit
as it continues its motion. This process sustains as we transition from the “seen” frames
to the ensuing “unseen” part.

At a pre-selected frame in the “unseen” part (the 42nd frame, i.e. the 12th unseen
frame) , a square obstacle is introduced in the box at a randomly chosen spatial location.
When the digit bounces off this obstacle yet another different but unique tone is played
(i.e. the frequency changes again). Post the collision, the digit continues its linear mo-
tion in a random direction, with its accompanying tone switching back to the original
tone of the digit.

Given this setting, our task is to use sound to generate the unseen frames which
involves capturing the dynamics of the digit, and also placing the obstacle accurately
both in time and space. For our experiments, we train all algorithms with 30 seen frames
and the task is to predict the next 30 for training. Additionally, in order to evaluate the
generalizability of the model into the distant future, we ask all methods to predict 60
unseen frames at test time. The obstacle is introduced in the 42nd frame, i.e. the 12th

unseen frame. Figure 7 represents this setup visually. Figure 8 shows some sample
frames from a clip in this dataset.

A.2 M3SO-NB

We also conduct experiments on the proposed Multimodal Moving MNIST dataset
without the surprise obstacle component (M3SO-NB). In this setting, we train with 5
seen frames and predict the next 15 frames. However at test time all competing models
predict 25 frames.

A.3 Audioset-Drums

This dataset was constructed by collecting videos from the Drums class of the AudioSet
dataset [14]. This particular class of videos is unique in the sense that most of the
videos in this class have correlated visual and auditory information. We selected those
videos from this class which clearly had some body-parts (mostly hands and head)
of the drummer visible - playing his (or her) drum kit in an indoor environment. We
removed videos that had animations, and those clips in which the sound source (i.e., the
drum kit) was not clearly visible. All video clips were resized to a frame resolution of
64 × 64 at 30fps and the audio was sampled at 44kHz. Figure 8 shows some sample
frames from this dataset. For this dataset, we train all competing techniques with 15
seen frames and predict the next 15. At test time however, we predict further into the
future by predicting the next 30 frames after the 15 seen frames.
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Audio Amplitude vs time plotMoving away from 
lower-left corner

Moving closer to 
lower-left corner

Bouncing at box edges Bouncing at obstacle edges

Audio Frequency vs time plot

Seen Frames
Unseen Frames

Obstacle introduced in unseen frames at random location
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Fig. 7: An illustration of our proposed “Multimodal Moving MNIST with a Surprise
Obstacle” (M3SO) dataset. The top row shows a few salient frames in a sample video.
The two rows below it show the frequency (middle row) and amplitude (bottom row)
of the audio signal plotted against time. When the digit bounces on the edges, it has a
momemtary tone change, seen on the left part of the middle row, and when the digit
bounces against the block, there is a different tone played mometarily, as is shown by
the first spike on the right side of the middle row. The last row shows the change in
amplitude of the tone as the digit moves closer/farther away from the bottom left corner
of the canvas.

A.4 YouTube-Painting

Apart from the constrained or simplified audio-visual prediction context, as captured
in the previous two datasets, we decided to introduce a more challenging dataset, that
is still constrained in its context, however is diverse and loose in its spatio-temporal
dynamics. After looking at a tradeoff between various possibilities on a large collection
of Youtube videos, including diversity in camera view angles, types of actor motions,
kinds of visual context, and a clear and distinctive audio cue, we decided to use videos
containing an actor painting some art. We realized that there exists a good collection
of such videos on Youtube, which can provide a good training set for our scheme.
While, this dataset may not be characteristic of large motions, it contains videos taken
from multiple viewing angles, periodic motions (while painting), diversity in the visual
context (such as different mixes of colors, paint brushes, etc.), different painters, and
different orientations and types of painting canvas, brush, etc at the same time contain-
ing clear sound of the painter’s brush touching the canvas. With this idea, we present
our Youtube-Paining dataset.

The YouTube-Painting dataset was constructed by collecting videos from YouTube
where a painter (or a part of his/her body) is seen painting an acrylic painting, inside a
room [3]. We used “Taylor ASMR” as the search query to crawl these videos. Besides
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Table 5: A summary of the statistics of the different datasets.
Datasets # Train # Test # Val # Frames/video
M3SO 8000 1000 1000 100
AudioSet-Data 6000 1000 1000 90
YouTube-Painting 4800 500 500 90

the visuals of the painter painting, there is accompanying audio emanating as a result
of the painter’s brush movements upon the canvas. The videos do not feature too much
camera motion and thus the change in audio frequency is a cue for the distance of the
brush from the camera. Akin to the AudioSet-Drums dataset, the chosen videos in this
dataset also do not contain animations, shot changes, etc. Further, videos for which the
sound source, i.e., the brush, was not clearly seen, were dropped from the dataset. Video
clips in this dataset have frames of size 64× 64 at 30fps, while the audio is sampled at
44kHz. Figure 8 shows sample frames from this dataset. Here too, we train our models
with 15 seen frames and predict the next 15. At test time however, we predict further
into the future by predicting the next 30 frames after having seen the first 15 frames.

t=1 t=90

Multmodal Moving MNIST

Sampled Frames

Painting Dataset

AudioSet Data

t=30 t=60

Fig. 8: Sample frames from the three datasets that we used in our experiments.
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Table 6: Standard Deviation Scores of SSIM, PSNR on the test set of M3SO-NB and
M3SO Datasets.

Experiments with M3SO-NB with 5 seen frames
Method Type SSIM PSNR

Frame 6 Frame 15 Frame 25 Frame 6 Frame 15 Frame 25
Our Method Multimodal 0.0011 0.0051 0.0037 0.157 0.197 0.142
Multiple Frames - [56] Multimodal 0.0008 0.0016 0.0006 0.032 0.100 0.112
Vougioukas et al. [56] Multimodal 0.0169 0.0175 0.0169 0.069 0.120 0.121
Denton and Fergus [10] Unimodal - V 0.0009 0.0021 0.0014 0.090 0.064 0.057
Audio Only Unimodal - A 0.0045 0.0036 0.0034 0.120 0.131 0.102

Experiments on M3SO with 30 seen frames (Block is introduced in the 42nd frame)
Frame 31 Frame 42 Frame 70 Frame 31 Frame 42 Frame 70

Our Method Multimodal 0.0050 0.0064 0.0064 0.178 0.127 0.144
Multiple Frames - [56] Multimodal 0.0011 0.0029 0.0032 0.142 0.038 0.027
Vougioukas et al. [56] Multimodal 0.0008 0.0024 0.0014 0.076 0.002 0.018
Denton and Fergus [10] Unimodal - V 0.0106 0.0226 0.0193 0.417 0.182 0.147
Audio Only Unimodal - A 0.0123 0.0178 0.0179 0.307 0.306 0.307

B Network Architecture and Training Details

We use an LSTM with 2 layers in the prediction module, the input to which is of 138 di-
mensions (128 dimensions of features and 10 dimensional zt). The prior and posterior
LSTMs are both single-layered. All LSTMs have a hidden state size of 256 dimen-
sions. Each transformer module has one layer and four heads for capturing multi-head
self-attention. The discriminator uses an LSTM with a single hidden layer of 256 di-
mensions, and a frame-history R = 2 and a look-ahead window of size k = 1. We train
the generator and discriminator jointly with an initial learning rate of 0.002 for both, us-
ing the ADAM [29] optimizer. During inference, we sample 100 futures per time step,
and use the one that maximally matches the ground-truth for evaluating our method.
We use the same evaluation for all baseline methods that can generate multiple plausi-
ble futures. The weighting term on the KL-loss, β, and the weight on the discriminator
loss, γ, were both set to 0.0001 for all datasets. However, γ was increased by a factor of
10 every 300 training epochs. All hyper-parameters were chosen using cross-validation
on the validation category of every dataset.

C Standard Deviation Measures of Model Performance

Tables 6, 7 present the standard deviation of SSIM and PSNR scores on the test set of
M3SO-NB, M3SO, AudioSet-Drums, and YouTube Painting datasets. The low standard
deviation scores on both SSIM and PSNR, across all datasets, underscore the gains of
our method over competing methods. For the mean test set SSIM and PSNR scores on
these datasets, we refer the interested reader to Tables 1 and 2 of the main paper.
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Table 7: Standard Deviation Scores of SSIM, PSNR on the test set of AudioSet,
YouTube Painting Datasets.

Experiments on the AudioSet Dataset [14], with 15 seen frames
Method Type SSIM PSNR

Frame 16 Frame 30 Frame 45 Frame 16 Frame 30 Frame 45
Our Method Multimodal 0.0092 0.0065 0.0065 0.123 0.519 0.266
Multiple Frames - [56] Multimodal 0.0168 0.0073 0.0148 0.964 0.231 0.320
Vougioukas et al. [56] Multimodal 0.0162 0.0205 0.2650 0.497 0.402 0.182
Denton and Fergus [10] Unimodal - V 0.0168 0.0102 0.0084 1.098 0.319 0.054
Hsieh et al. [22] Unimodal - V 0.0050 0.0016 0.0082 0.042 0.051 0.006
Audio Only Unimodal - A 0.0197 0.0068 0.0072 0.230 0.388 0.177

Experiments on the novel YouTube Painting Dataset, with 15 seen frames
Frame 16 Frame 30 Frame 45 Frame 16 Frame 30 Frame 45

Our Method Multimodal 0.0025 0.0093 0.0146 1.369 0.718 0.250
Multiple Frames - [56] Multimodal 0.0020 0.0040 0.0050 0.181 0.536 0.879
Vougioukas et al. [56] Multimodal 0.0143 0.0028 0.0150 0.212 0.216 0.449
Denton and Fergus [10] Unimodal - V 0.0008 0.0193 0.0390 0.431 0.338 0.459
Hsieh et al. [22] Unimodal - V 0.0028 0.0019 0.0030 0.033 0.133 0.150
Audio Only Unimodal - A 0.0115 0.0069 0.0226 0.353 0.294 0.426

Table 8: Average discriminator fooling rates for different methods on real-world data.
Datasets Our Method Denton and Fergus [10] Audio-Only Multiframe [56]
AudioSet Data 0.7926 0.3372 0.5622 0.6095
YouTube Painting Data 0.6599 0.4282 0.4687 0.6507

D Auxiliary Evaluation of Generated Video Quality

Besides evaluating our method against the baselines using the SSIM and PSNR (see
Table 1 and 2 in the main paper), we use some auxiliary measures to further evaluate
the quality of synthesis. Table 8 presents the fooling rate of a discriminator trained to
distinguish real video clips of lengthR+(k−1) (which equals 2 in our case) frames (and
their audio) from synthetic ones, on both real world-datasets . We see that our approach
outperforms all baselines, attesting to the quality of the frames that are generated by
our method. Note that, the discriminator is trained to judge the audio-visual alignment
as well as the quality of frames. Thus, a higher discriminator fooling rate implies that
the respective model generates more real looking frames, realistic dynamics, and better
alignment with audio. Additionally in Table 9, we present the human preference score
for samples of our method versus the competitive method of Multiframe [56]. The
results evince that human annotators prefer samples generated by our method
overwhelmingly. For the M3SO dataset, we also measure the intersection over union
of the predicted box location against the ground truth location. Table 10 shows that
our method outperforms competing methods by a very significant margin (nearly 30%).
A high accuracy for this localization task, such as that of our method, demands good
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Table 9: Human preference score on samples generated by our method vs. [56]
Datasets Prefer ours
M3SO- Ours vs. Multiframe [56] 88%
AudioSet- Ours vs. Multiframe [56] 83%
YouTube Painting-Ours vs. Multiframe [56] 92%

Table 10: mIoU on block localization, evaluated for the final frame of the generated
sequences on M3SO with block.

Method Localization IoU
Our Method 0.5801
Denton and Fergus [10] 0.2577
Vougioukas et al. [56] 0.1289
Audio-Only 0.1030

capture of the visual dynamics of the digits, along with synchronization against the
tones corresponding to the bouncing of the digits with the obstacle.

E Additional Experimental Details

E.1 Ablative Analysis

Figures 9(a) and 9(b) show the performance variations of different ablated variants of
our model. Both plots highlight the gains obtained by using: (i) transformer encoder net-
works [53] to encode the input audio and visual modalities in the stochasticity module;
and (ii) the multimodal discrimator network. The transformer encoders help to empha-
size the salient components of the features, while attenuating the others by leveraging
self-attention. Using the multimodal discriminator discriminator, on the other hand, en-
sures that the synthesized video clips are realistic and well-aligned with the audio.

Table 11 contrasts our full model against an ablated variant of our model, which
does not have the posterior network or the multimodal discriminator (Ours - Only L2).
This variant is trained with only the reconstruction loss (L2 loss of Equation 5 of the
main paper) and serves to disentangle its effect from the other ones in the final objec-
tive (Equation 7 in the paper). As is evident from the results, merely training with the
reconstruction loss leads to sub-optimal performance.

E.2 Sensitivity of Hyperparameters

Figures 10(a) and 10(b) show the empirical sensitivity analysis of how performance
varies with various choices of hyper-parameters β and γ, respectively on the M3SO-
NB dataset. As can be seen from these plots, our model attains its peak performance
when both these parameters are set to 0.0001.
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Table 11: SSIM scores for our full model vis-á-vis different variants of our model on
M3SO-NB and YouTube Painting Datasets. Highest scores are in bold.

Method Type M3SO-NB YouTube Painting
Frame 6 Frame 15 Frame 25 Frame 16 Frame 30 Frame 45

Our Method Multimodal 0.9575 0.8943 0.8697 0.9716 0.9291 0.9110
Ours - Only L2 Multimodal 0.9543 0.7624 0.5610 0.9524 0.9166 0.8986
Teacher - Forcing Multimodal 0.9412 0.8819 0.8519 0.9695 0.9293 0.9109
AV Mismatch Multimodal 0.9428 0.8569 0.8234 0.9496 0.8784 0.8520

E.3 Evaluating Diversity of the Prediction Network

Figures 11(a) and 11(b) quantify the diversity in our model’s generations. The plots re-
veal that the more the number of candidate frames (number of futures) that are sampled
at every time step, during inference, the better is the approximation to the ground truth
video. However, sampling more frames comes at the cost of computational complexity.
Our experiments show that sampling 100 candidate frames at every time step was a
good trade-off. We see the pattern of diverse sample generation, carry over to the real
world datasets too, as observed in Figures 12(a) and 12(b). Both figures suggest that as
the number of candidate futures go up, the diversity of the generated samples increase
which is why the average pairwise SSIM between the generated samples tends to go
down.

E.4 Performance on a Single Generated Video Sample

Figures 13(a) and 13(b) show the performance of a prototypical sample from the M3SO
dataset, vis-á-vis competing state-of-the-art methods. Both these plots show that our
approach, outperforms other methods by a significant margin. A closer look into these
plots reveal more interesting details. For instance, we notice a sudden dip in perfor-
mance of all methods at the 12-th frame (frame index number 11). This is due to the
sudden appearance of the block at this frame, whose location is not known in advance.
However, our model’s ability to perceive both audio and visual modalities, allows it to
improve its performance as the digit interacts with the updated environment more and
more. For instance, a collision with the block is indicated by a sound of a certain tone,
which helps to localize the block with respect to the position of the digit. Such use-
ful localization cues are absent in unimodal (vision only) approaches, resulting in poor
performance. On the other hand, the approach of Multiframe - Vougioukas et al. [56],
though multimodal, does not synchronize the audio and visual modalities, and thus fails.

E.5 Training with Teacher Forcing

We considered the impact of using Teacher-Forcing for training our model, since such a
strategy has shown promise for deterministic sequence-to-sequence models [63]. Here
the model is trained with ground-truth frames for the first 100 epochs, but subsequently
for every batch, a Bernoulli random variable is sampled to determine if the model is
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(a) SSIM (b) PSNR

Fig. 9: SSIM (left) and PSNR (right) on the M3SO-NB dataset with ablated variants of
our Sound2Sight model.

(a) γ plot (b) β plot

Fig. 10: Hyperparameter Study: Variations in performance on the M3SO-NB dataset
against different choices of weighting on the discriminator loss, γ, as measured by
SSIM (left) and different choices of weighting on the KL-Divergence loss, β, as mea-
sured by SSIM (right)

going to be trained with the ground-truth frames (Xt) or by feeding back the synthesized
frames (X̂t) as input (as is the case during inference). We observe from the results in
Table 11 that for both M3SO-NB and for YouTube Painting, the Teacher-Forcing variant
performs similarly to our original training strategy. We surmise that this is due to the
stochastic nature of our model, which permits it to adapt to variations in input data
distribution.

E.6 Audio-Video Synchronization

We further validate the ability of our technique to synchronize the audio and visual
inputs. A time-evolving SSIM measure of a randomly chosen sample from the test set
of M3SO, reveals how our method’s predictions can adapt to the stochasticity of the
input data (see Figure 14). We refer the interested reader to the attached video to have
a better understanding.

Additionally the importance of synchronized audio-visual context is evaluated. In
order to do so, we train our model in the standard setup but at inference time we ini-
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(a) SSIM (b) PSNR

Fig. 11: Variation in performance against ground truth video, on the Vanilla MovingM-
NIST without obstacle with increasing number of candidates (number of futures gener-
ated) at every time step, measured by SSIM (left) and PSNR (right).

(a) AudioSet-Drums (b) YouTube-Painting

Fig. 12: Diversity, measured by average SSIM across every pair of future candidate,
in the generated frames on AudioSet-Drums (left) and YouTube Paintings (right) with
increasing number of candidate futures.

tialize the model with mismatched audio-visual inputs, i.e. the past visual context is not
from the same sample from which the audio is drawn. The SSIM scores of the gener-
ated frames under this setting is shown in Table 11 (‘AV Mismatch’). As is evident from
the sub-par performance of this setting, the alignment of the audio and visual inputs is
critical for good generation.

F Qualitative Results

In the following, we present qualitative results of video generation by our method
vis-á-vis other state-of-the-art baselines on the Multimodal Moving MNIST dataset
(both with and without obstacle) and the real-world YouTube Painting dataset and the
AudioSet-Drums [14] datasets. Figures 15, 16, show visualizations of the frames gen-
erated by our method and those by competing baselines on the M3SO-NB dataset. The
figures make the case for the superiority of our method in capturing both a digit’s ap-
pearance and location accurately. We did not observe much of a qualitative difference
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between the methods of Vougioukas et al. [56] and its Multiframe version, across any
of the datasets. Hence for brevity, we show only the latter.

Further in the case when the challenges are heightened by introducing an obstacle,
we see that our approach demonstrates reasonable performance of localizing both the
block and the digit, albeit its appearance is slightly morphed. This stretches beyond
the performance of the baseline methods, significantly. In particular, we notice the total
disappearance of the digits in each of the baselines. (see Figures 17, 18. The distinc-
tion is more sharply observed, when we see the associated video (attachment in the
supplementary materials).

In Figures 19, 20, 21, we see how our method fares against the state-of-the-art
in generating frames from the real world datasets of YouTube Painting and AudioSet-
Drums [14], respectively. In all the cases, we see that our method is the closest to the
ground-truth and further doesn’t introduce artifacts, such as discoloration which some
of the baseline methods suffer from. A comparison of the optical flow outputs cor-
roborates this observation. Additionally, the relative crispness of the hand region is
suggestive of the fact that our approach is also better at modeling the dynamics of the
video. We recommend the interested reader to the accompanying videos to gain a better
understanding of the generation performance.

F.1 Diverse Sample Generations

In Figures 22, 25, 26, we present qualitative visualizations of a set of diverse gener-
ations for every sample across all datasets. The green box highlights frames which are
noticeably distinct across samples, underscoring the variety of the generated samples
for both synthetic and real-world datasets.

F.2 Failure Cases

Figure 27 shows some scenarios where our model fails to generate visually compelling
frames. This is mainly seen when the region of motion in the seen frames is localized
to a small region. Our model, in such cases, essentially displays a static frame. This is
typified by the slender ‘1’ in Multimodal MovingMNIST or the limited hand motion
(Figure 27) in the case of the YouTube Painting dataset. We intend to resolve this issue
in our future work by replacing the Mean-Squared loss term in our objective, which uni-
formly penalizes all pixels, with a weighted version that would attend more to ‘regions
of interest’ - where more motion is observed.
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(a) SSIM

(b) PSNR

Fig. 13: Performance on a random sample from the MovingMNIST with obstacle
dataset vis-á-vis the most competitive baselines, measured by SSIM (top) and PSNR
(bottom).
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Fig. 14: A screenshot from the video illustrating how the frames predicted correlate
with the ground-truth (as measured by SSIM) and the input audio signal. Please see the
attached video clip.
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Fig. 15: Sample generations on the M3SO-NB dataset by our method vis-á-vis other
baselines.



Sound2Sight: Generating Visual Dynamics from Sound and Context 31

G
T

Seen Frames Predicted Frames

Denton and Fergus

Ours

Audio	Only

t=1 t=3 t=6 t=13 t=15t=5 t=7 t=8 t=14 t=28 t=29 t=30

Multiframe	-	
Vougioukas	et	al.

Fig. 16: Sample generations on the M3SO-NB dataset by our method vis-á-vis other
baselines.
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Fig. 17: Sample generations on the MovingMNIST with Surprise Obstacle dataset by
our method vis-á-vis other baselines.
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Fig. 18: Sample generations on the MovingMNIST with Surprise Obstacle dataset by
our method vis-á-vis other baselines.
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Fig. 19: Sample generations from the YouTube-Painting dataset by our method vis-á-vis
other baselines and optical flows across frames. The red squares denotes regions of high
motion.
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Fig. 20: Sample generations from the YouTube-Painting dataset by our method vis-á-vis
other baselines and optical flows across frames. The red squares denotes regions of high
motion.
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Fig. 21: Sample generations on the AudioSet-Drums dataset by our method vis-á-vis
other baselines and optical flows across frames. The red square denotes regions of high
motion.
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Fig. 22: Diverse sample generations on the M3SO-NB dataset by our method. The green
square highlights frames where noticeable differences are observed across samples.
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Fig. 23: Diverse sample generations on the Multimodal MovingMNIST with Surprise
Obstacle dataset by our method. The green square highlights frames where noticeable
differences are observed across samples.
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Fig. 24: Diverse sample generations on the Multimodal MovingMNIST with Surprise
Obstacle dataset by our method. The green square highlights frames where noticeable
differences are observed across samples.
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Fig. 25: Diverse sample generations on the YouTube Painting dataset by our method
along with the optical flows between frames. The red square denotes regions of high
motion, while the green square highlights frames where noticeable differences are ob-
served across samples.
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Fig. 26: Diverse sample generations on the AudioSet Drums dataset by our method
along with the optical flows between frames. The red square denotes regions of high
motion, while the green square highlights frames where noticeable differences are ob-
served across samples.
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Fig. 27: An assortment of some of the failure cases of our method on the 3 datasets.
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