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Abstract —This paper presents a computer algorithm which, given a
dense temporal sequence of intensity images of multiple moving
objects, will separate the images into regions showing distinct objects,
and, for those objects which are rotating, will calculate the three-
dimensional structure and motion.
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1 INTRODUCTION

THIS paper describes an algorithm for three-dimensional structure
and motion estimation for scenes containing multiple independ-
ently moving rigid objects. The two-dimensional motion in an
input image sequence is represented by the image plane motion of
feature points, whose positions in successive images form trajecto-
ries. The algorithm partitions the trajectories into sets, each corre-
sponding to a distinct rigid object, and computes the motion and
structure of each rigid object. The motion is assumed to be de-
scribed by one of several motion models; the algorithm chooses the
simplest motion model which describes the motion accurately.
Currently, the algorithm uses two rigid motion models: a transla-
tional model (arbitrary translation), and a rotational model (locally
constant angular velocity with arbitrary translation).

Our method consists of two steps:

1) finding the trajectories of feature points in the input image
sequence and

2) determining the subset of trajectories, the structure, and the
motion corresponding to each object.

The first step involves the detection of the path of the feature (a fea-
ture path) over several frames using the algorithm described in [1],
and then linking the feature paths to produce the trajectories used
in the second step. The method is robust to missing features or
weak feature detector responses since the detected paths generally
extend over many frames and overlap the paths detected in sev-
eral previous and successive frames. The second step integrates
the task of segmenting the images into distinct moving objects
with the task of estimating the motion and structure for each ob-
ject. Groups of trajectories are tested for uniformity of motion,
against the hierarchy of motion models, and the simplest model
that yields acceptable fit error is treated as the correct model. The
model parameters are used to determine the final segmentation
and estimates of motion and structure. The processing of image
frames is sequential: As new image frames become available, the
image segmentation and motion and structure estimates are up-

dated to accommodate the new data. The rotational model pa-
rameters are computed using the motion factorization method
described in [2], [3], [4]. This method uses a Singular Value De-
composition (SVD) and a few eigendecompositions to efficiently
compute the motion and structure from trajectory data.

2 REVIEW OF PREVIOUS RESEARCH

Using trajectories and assumptions of motion continuity can not
only help reduce errors in the motion and structure estimation, but
it can also simplify the process of finding the feature point corre-
spondences. Methods which consider correspondences between
only two frames such as those described in [5], [6], [7] cannot take
advantage of any continuity of motion over a long sequence of
frames. Sethi et al. have also noted this [8], [9], [10], [11], and pro-
pose a method which uses the Greedy Exchange Algorithm to rear-
range the trajectories to maximize their path coherence. In the re-
sults presented, however, these algorithms where not tested on
data sets such as ours with frame-to-frame feature displacements
similar to the distance between features. It is unclear whether Sethi’s
algorithms would converge to the correct result in these circum-
stances since the initial matchings would be largely incorrect.

Most previous motion estimation methods do not address the
problem of segmenting the image sequence into regions corre-
sponding to rigid objects with different 3D motions. Many that do
([12], [13], [14]) segment the image at 2D motion discontinuities.
Adiv [15] and Bergen et al. [16] improve on this by instead seg-
menting the image based on how well the image flow fits affine
motion models. Unlike our motion model, these motion models
assume planar surfaces, and, hence, often lead to oversegmenta-
tion. In addition, they are based on instantaneous motion esti-
mates rather than trajectories and are, hence, much more suscepti-
ble to noise. In [15], Adiv also introduces the notion of using mul-
tiple models of motion, similar to our use of a hierarchy of motion
models.

In [17], Tomasi and Kanade present a method which general-
izes the motion estimation method described in [2], [3], [4] to allow
arbitrary frame-to-frame rotations. However some assumptions
about the magnitude or smoothness of motion are still necessary to
obtain feature trajectories. Kanade points out [18] that with our
assumption of constant rotation we are absorbing the trajectory
noise primarily in the structure parameters, whereas their algorithm
absorbs them in both the motion and structure parameters. Tomasi
and Kanade’s work was extended in [19] where Boult and Brown
show how the factorization of the measurement matrix can be used
to split the measurement matrix into parts consisting of independ-
ently moving rigid objects. Their method relies on a detailed analysis
of the rank properties of the measurement matrix, and shows prom-
ising results on the 2D motion examples presented in [19].

3 FINDING TRAJECTORIES

The algorithm described in this section produces a set of trajecto-
ries, where each trajectory is a list of the positions of one visible
feature over some subset of the frames in the image sequence.
Unlike previous methods [8], we do not first detect features in
each image and then track them over many frames. Instead, we
detect feature paths, which represent the presence of a feature in
motion over several consecutive images, which prevents the frag-
mentation of trajectories due to occlusions and weak feature de-
tector responses. These feature paths are then linked together to
form the long trajectories needed for input to the structure and
motion estimation algorithm. The first step in this process is to
produce a feature map for each feature type and each frame. A fea-
ture map has small values in areas where the input image has little
evidence of the feature of interest and large values in areas where
the input image has strong evidence of the feature of interest. The
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features maps used in this method are intensity minima and
maxima, and the amount of evidence for these features is meas-
ured by fitting a quadratic surface to the image intensity surface.
These feature maps are used as input to the feature path detection
step which uses the method described by Blostein in [1]. This
method efficiently checks all possible feature paths and uses se-
quential hypothesis testing to determine when enough evidence is
present to declare a detection. The final step is to group the feature
paths with other feature paths produced by the same image fea-
ture to produce trajectories. This is accomplished by partitioning
the feature paths into disjoint sets, such that all feature paths
within a set have high spatiotemporal overlap, whereas feature
paths from different sets have low overlap. The trajectories are
then computed by fitting trajectories to these feature path sets to
minimize the least-square error. Fig. 1 shows an example of these
steps for a small image region. Details of the algorithm are given
in [3].

4 STRUCTURE AND MOTION ESTIMATION

This section gives an overview of our motion models, with em-
phasis on the rotational motion model used for estimating the
three-dimensional structure and motion of an object from the im-
age plane trajectories. These algorithms are used in the motion
segmentation and motion and structure estimation step described
in Section 5. More detailed descriptions are presented in [2], [3],
[4]. The two motion models used in our motion segmentation ap-
proach are the translational model and the rotational model, both
of which assume orthographic projection. The translational model
allows for arbitrary translational motion, and its parameters are
computed using a linear least-squares fit to the trajectories. The
rotational motion model allows a constant speed rotation around a
fixed-direction axis and an arbitrary translation. The rotation pa-
rameters are extracted first, and then a linear least squares fit is
used to compute the translation parameters. Aside from a small
number of eigendecompositions and SVDs, the algorithm is closed
form and requires no iterative optimization.

4.1 The Motion and Structure Models
We define the world coordinate system such that its x-y axes are
the image plane x-y axes. The object on which the feature points
are located rotates with a constant angular velocity of
*
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where n n nxy x y= +2 2  and the ± is chosen such that 
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in the image plane which is parallel to the image plane projection
of the rotation axis, and whose length is 1 - nz  and, hence, is
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plane coordinates of point p in frame f under the rotational motion
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             (a)       (b)             (c)       (d)

Fig. 1. This figure shows an example of the feature mapping algorithm on a sequence of 16, 64 ¥ 64 pixel images. (a) shows the first frame of the
sequence, and (b) shows the maxima feature map of (a). The feature map is shown inverted for clearer printing, i.e., high-intensity points are
shown in black, and low-intensity points are shown in white.(c) shows feature paths detected by Blostein’s algorithm from a maxima feature path
sequence, and (d) shows the trajectories produced by the feature path linking algorithm from the feature paths shown in (c).
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Equation (3) is the starting point for the next section, which
briefly describes our algorithm for estimating the motion and
structure parameters for the rotational model.

4.2 The Rotational Motion Estimation Algorithm
Our algorithm uses algorithms used in state-space singular value
decomposition based sinusoidal retrieval methods, such as the
Direct-Data Approximation method [20]. These methods extract
multidimensional sinusoidal signals from noisy data streams. In
our problem, the multidimensional sinusoidal signal is the rota-
tional component of the motion, and the frequency of the recov-
ered sinusoid is ω, while the amplitudes and phases determine the
structure and orientation of the object. Since the translational
component of the motion *c0 f2 7  in (3) is not a sinusoid, we start by

taking the differences in point positions *
* *

y P Ppq q pf f f2 7 2 7 2 7= -  to

eliminate this term. The resulting purely rotational motion can be
expressed as a system of state equations
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Now, given n points over m frames at positions 
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follows:
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and k is chosen to make the matrix D as nearly square as possible.
We also define C as follows:
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the relationship between D, O, and C can be expressed as

D = OC.                                             (13)

Note that (13) is a factorization of the trajectory data D into a matrix
O containing the motion information and a matrix C containing

the structure information. Taking the singular value decomposi-
tion of D and retaining only the first three left singular vectors and
the first three right singular vectors produces a factorization of D

into a 2k ¥ 3 matrix O and a 3 ¥ (n - 1)(m - k) matrix C. Given the

two matrices O and C, we can extract G and H from O and χ0

from C. We can then find the unknown motion parameters Fx and

Fy from H and ω from G, and the structure parameters 
*
Op f2 7  from

χ0. But the matrices (G, χ0, H) corresponding to this factorization
will not in general be of the form given in (1), (11), (7), and (4).
Thus, to find the motion and structure parameters, the algorithm
finds a linear transformation of the factorization OC into a factori-
zation of the proper form. Our method of finding this transfor-
mation is detailed in [2], [3], [4]. Having computed the rotational
parameters 

*
F  and ω, the final step of the algorithm is to compute

the translational component c0 f2 7  using a linear least squares fit to

the trajectory data.
There are, however, some combinations of structure and mo-

tion parameters which will cause this algorithm to fail because of
rank deficiencies in the intermediate matrices. We refer to algo-
rithm for the general case as the full rank algorithm, but we also
use a variation called the rank two algorithm (described in [3]) to
handle the special cases. Assuming that enough input trajectory
information is available (for general structure: at least three frames
and at least four points, at least four frames and at least three
points, or at least five frames and at least two points; for points
lying in a plane, at least four frames are always required), the de-
generacies can occur for four reasons:

1) there is no rotation (w = 0),
2) all the feature points producing the trajectories lie on a line

parallel to the rotation axis,
3) the rotation axis lies along the world z axis (

*
F = 0 ),

4) all the feature points producing the trajectories lie in a plane
perpendicular to the rotation axis.

In the first two cases, there is no recoverable rotational motion,
and, therefore, the relative depth components of the structure can-
not be recovered and the translational motion algorithm extracts
all the recoverable information. In the third case, the relative depth
component of the structure is also not recoverable, but the rank
two algorithm can recover all the remaining structure, rotation,
and translation parameters, and, in case (4), it can recover all the
parameters. See [3] for a detailed analysis of the rank degeneracies
and for descriptions of the modified algorithms. Also see [3] for
descriptions of how the algorithm is modified to allow for noisy
inputs and for trajectories of varying starting and ending frames.

This section has introduced our structure and motion models
and briefly described the structure and motion estimation algo-
rithm used for the rotational motion model. The latter algorithm
provides an efficient way to incorporate information from many
frames and points into the calculation of the motion parameters,
allowing accurate estimates of motion and structure parameters.
When there is no rotational motion, we use a linear least squares
fit to a translational motion model to determine the motion. The
following section describes how this translational motion estima-
tion algorithm and the rotational motion estimation algorithm are
used to segment the input trajectories into groups corresponding
to the different rigid objects in the scene and to determine the
structure and motion parameters for each of these objects.

5 IMAGE SEQUENCE SEGMENTATION

This section describes how our algorithm partitions the feature
points detected in an image sequence into groups corresponding
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to the multiple rigid objects visible in the sequence. The feature
points are initially grouped according to spatial adjacency and
motion compatibility between neighbors, but the groups of feature
points, called regions, are also required to fit one of the motion mod-
els: the translational model and the rotational model. Although
there are rigid three-dimensional motions which cannot be mod-
eled by the translational or rotational models (e.g., a rotation with
precession), for convenience all motions which do not fit our two
rigid motion models and do not contain any local motion disconti-
nuities are classified as unmodeled motions. The algorithm always
tries to use the simplest region motion model: It uses the transla-
tional motion model as long as it accurately accounts for a region’s
feature point trajectories, and then it tries the rotational model. If
the rotational model also does not accurately account for a region’s
trajectories, and there is no motion discontinuity, it classifies the
motion as unmodeled. The input data are processed frame by
frame, and initially, all feature points in the first frame are
grouped into a single region with a region motion model of trans-
lational motion. Once the point positions from the second frame
are obtained, some preliminary motion information is available,
and the algorithm can try to split the single initial region into
smaller ones.

The processing then continues in a uniform fashion: The new
point positions in each new frame are added to the trajectories of
the existing regions, and then the regions are processed to make
them compatible with the new data. The processing of the regions
is broken into four steps:

1) If the old region motion model gives too large a fit error,
either split the region into smaller ones, find a new region
motion model which works better, or apply the previous
motion model over a subsequence of the image sequence,

2) Add any newly visible points or ungrouped feature points
to a region with which they are compatible,

3) Merge adjacent regions with compatible motions,
4) Remove outliers from the regions.

Compatibility among feature points is checked by fitting one of
the motion models described in Section 4, and a region’s feature
points are considered incompatible if the fit error returned by the
appropriate motion estimation algorithm is above a threshold. We
assume that the trajectory detection algorithm described in Section 3
can produce trajectories accurate to the nearest pixel, and, there-
fore, we use a threshold (which we call the error threshold) of one-
half of a pixel per visible trajectory point per frame.

When a region is split in the first step, all the feature points
contained in the original region should be assigned to one of the
new regions, but, generally, some of the feature point trajectories
do not fit the motion parameters of any of the new regions well. In
this step and when removing outliers in the fourth step, feature
points result which cannot be associated with any region. These
are referred to as the leftover feature points, and they are stored on
a list called the leftovers list.

5.1 Updating Regions
When processing a new frame, the new point positions are added
to any previously existing trajectories, or if a new trajectory starts
in this frame, it is added to the leftovers list. Then, each existing
region is examined in turn. In processing the previous frame, the
algorithm found a motion model and a set of parameters for that
model which accounted for the motion described by the region’s
trajectories (unless the motion is unmodeled). As a region is proc-
essed in successive frames, it will not always have the same mo-
tion model. For example, if the region contains trajectories from an
object rotating slowly about the world y axis, with only a few
frames available the trajectories might fit the translational motion
model very closely. Then as more frames become available, the

trajectories will no longer fit the translational motion model, but
they should fit the rotational motion model. In processing a region
in a new frame, if the region’s previous motion model is the
translational or rotational model, the motion model and parame-
ters used in the previous frame are applied to the new trajectory
point positions. If the resulting error is then below the threshold,
the next region is processed. Otherwise, the region must be split, a
better fitting motion model must be found, the model must be
applied over a subsequence of the frames, or the region’s motion
must be classified as unmodeled.

Regions are split along local translational motion discontinui-
ties. If no such boundary is found, the algorithm tries to fit the
trajectories to the other motion models. If the previous model was
the rotational model, we assume the fit error was too large because
the rotational motion is not constant, and apply the rotational
model to a slightly shorter subsequence of the frames. If the sub-
sequence produces an accurate fit, the rotational model is used,
and, otherwise, the motion is classified as unmodeled. This proc-
ess of testing the old model and possibly splitting the region or
changing the motion model is repeated for every region, and then
the algorithm proceeds to the next step, grouping the leftover
feature points.

5.2 Grouping Leftover Feature Points
After updating the region motion models and the model parame-
ters of all the regions, all feature points in the leftovers list are
repeatedly considered for addition to any neighboring regions in
the current frame until no more can be added to any of the re-
gions. The leftovers list may contain feature points which have just
become visible, feature points which were left over after region
splitting, or feature points which were removed in the outlier re-
moval step.

5.3 Region Merging
After adding leftover feature points to regions wherever possible,
any adjacent regions with compatible motion parameters are
merged. For every region, the algorithm checks whether it can be
merged with any of its neighbors. Given a pair of regions, the
higher-order of the two regions’ motion models is used to test if
the regions can be merged.

5.4 Outlier Removal
The final step in the image sequence segmentation loop is to ex-
amine each region and to remove any feature points which fit the
region’s motion parameters very poorly. Outliers arise due to in-
correct trajectories produced by the trajectory detection step de-
scribed in Section 3. Incorrect trajectories can arise from false fea-
ture points (such as specular reflection or the intersection of two
independently moving occluding boundaries) which do not corre-
spond to fixed points on a rigid object, or simply from incorrectly
tracked feature points. Over a short trajectory these feature points
might fit the motion parameters of a nearby region, but, as more
frames become available, the trajectory will eventually diverge
from the predicted motion. These outlier feature points are left in
the leftovers list.

Thus, we have now described the complete process, starting
with a sequence of gray level images, calculating the trajectories of
feature points in the sequence, grouping these trajectories into
different regions corresponding to different rigid objects, and cal-
culating the structure and motion parameters of each region.

6 EXPERIMENTS

In this section, we present the results of experiments which show
the capabilities of the approach, and also demonstrate some of the
inherent limitations of such approaches. The trajectory finding,
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structure and motion estimation, and image sequence segmenta-
tion algorithms were tested on a real image sequence of 50 frames.
This sequence, called the cylinder sequence, consists of images of a
cylinder rotating at a rate of about one degree per frame around a
nearly vertical axis and translating at about 0.14 pixel per frame to
the right, a box moving right at 0.31 pixel per frame, and a back-
ground moving right at 0.14 pixel per frame. All the objects were
covered in newspaper and splattered with paint to provide a large
number of features to track. Fig. 2a shows the first image of the
sequence.

The trajectory finding algorithm found 2,598 trajectories for
the cylinder sequence. These trajectories then served as input to

the image sequence segmentation algorithm described in Section
5, which partitioned the trajectories into groups corresponding
to different rigid objects and estimated the motion and structure
parameters using the algorithm described in Section 4.

The image sequence segmentation for the cylinder sequence is
shown in Fig. 2b. For this image sequence, the algorithm separated
out the three image regions: the cylinder, the box, and the back-
ground. Since the latter two are only moving with translational
motion, their three-dimensional structure cannot be recovered by
the motion and structure estimation algorithm. Instead, they are
identified as translating regions, and their collective velocity is
estimated. The cylinder, however, is rotating, and, consequently,

     
        (a)              (b)

Fig. 2. (a) The first image of the cylinder sequence. (b) The image sequence segmentation found for the cylinder sequence (the segmentation is
superimposed on the last frame of the sequence).

                  
(a)  (b)

Fig. 3. (a) The view of the three-dimensional point positions calculated by our structure and motion estimation algorithm from point trajectories
derived from cylinder image sequence. (b) A top view of (a) showing the shape of the surface formed by the points.
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its structure can be recovered from the image sequence. To illus-
trate the structure recovered by the algorithm, Fig. 3 shows two
projections of the three-dimensional point positions calculated for
the 1,456 trajectories grouped together to form the cylinder. Fig. 3b
shows an end-on view of the points, showing that the points lie
very nearly on a cylindrical surface. In addition, Table 1 shows
the estimated and the actual motion parameters. To understand
the error in the w estimate in Table 1, consider the motion of the
cylinder in this experiment. The cylinder is rotating around an
axis nearly parallel to the image plane and as pointed out in [21], a
rotation about an axis parallel to the image plane is inherently
difficult to distinguish from translation parallel to the image plane
and perpendicular to the rotation axis (this would also explain the
error in 

*v  in Table 1). Note that, in spite of the error in the esti-
mated motion parameters for the cylinder, the predicted trajectory
point positions differ from the actual positions by an average of
less than the error threshold of 0.5 pixel. Thus, we have chosen a
particularly difficult and ambiguous motion in this example.

These experiments have shown that our algorithm can segment
feature trajectories in real image sequences into groups corre-
sponding to different rigid objects, and that it can accurately esti-
mate the structure and motion of the objects.

7 CONCLUSIONS

This paper has presented a method for finding the structure and
motion of multiple moving objects from a long sequence of in-
tensity images by dynamically invoking a motion and structure
estimation algorithm on different subsets of feature points under
different motion models. The main features of our method are:

1) Motion and structure estimation and segmentation proc-
esses are integrated,

2) The motion and structure estimation algorithm factors the
trajectory data into separate motion and structure matrices,
and

3) The feature tracking algorithm accommodates briefly oc-
cluded points and weak or missing feature detector responses.

In the experiments, our method segmented the image se-
quence into separate rigid objects with few errors. The motions
of the objects in the sequence represented very difficult to esti-
mate motions (the cylinder). The difficulty is reflected in the
accuracy of the parameter estimates, but, in all cases, the esti-
mated parameters predicted the trajectories to within an average
error of less than 0.5 pixels.
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TABLE 1
COMPARISON OF THE PARAMETERS ESTIMATED BY THE

ALGORITHM AND THE TRUE PARAMETERS FOR THE
CYLINDER IMAGE SEQUENCE EXPERIMENT

Parameters Estimated Actual

w -0.022 -0.017
*

F (0, 0.94) (0, 0.90)

*

v (0.29, -0.19) (0.14, 0)


