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Summary:  Before North American trains depart a terminal or rail yard, many aspects of the cars and 
locomotives undergo inspection, including their safety appliances.  Safety appliances are handholds, 
ladders and other objects that serve as the interface between humans and railcars during transportation.  
The current inspection process is primarily visual and is labor intensive, redundant, and generally lacks 
"memory" of the inspection results.  The effectiveness and efficiency of safety appliance inspections can 
be improved by use of machine vision technology. This paper describes a research project investigating 
the use of machine vision technology to perform railcar safety appliance inspections.  Thus far, 
algorithms have been developed that can detect deformed ladders, handholds, and brake wheels on open-
top gondolas and hoppers.  Visual learning is being used to teach the algorithm the differences between 
safety appliance defects that require immediate repair, and other types of deformation that do not.  Field 
experiments under natural and artificial lighting have been conducted to determine the optimal 
illumination needed for proper functioning of the algorithms. Future work will consist of developing 
algorithms that can identify deformed safety appliances across the spectrum of North American railcars 
under varied environmental conditions. The final product will be a wayside inspection system capable of 
inspecting safety appliance defects on passing railcars. 
 
Index Terms:  Machine Vision, Railcar Mechanical Inspection, Railroad Safety Appliances, Freight 
Wagons, Automated 
 
 
1. INTRODUCTION 
 
North American railroad rolling stock is required 
to be equipped with various types of equipment 
known as "safety appliances."  These serve as the 
human/ machine interface for operation of railcars 
and consist of handholds, sill steps, brake steps, 
ladders, running boards, uncoupling levers, and 
brake wheels, as well as other car-specific 
appliances.   
 
Safety appliances have been required on U.S. 
railcars since 1893 when the Interstate Commerce 
Commission (ICC) passed the Safety Appliance 
Act.  This Act focused mostly on the need for 
automatic couplers and power brakes but also 

called for what we now consider safety appliances 
by requiring secure grab irons or handholds on 
cars.  The objective was to provide railroad 
transportation employees with a set of safe, 
standardized features to mount and dismount, or 
couple and uncouple, the car.  Safety appliances 
are currently regulated under U.S. Federal 
Railroad Administration (FRA) regulations that 
specify their location, number, material, 
configuration, and means of securement [1]. 

 
Under the regulations, safety appliances must be 
kept in proper working order and in compliance 
with a set of standards regarding their location and 
geometry.  Safety appliances undergo condition 
inspection by railroad personnel in rail yards and 
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at other FRA-required locations. The process is 
labor intensive and a single inspector may see 
hundreds of cars during a shift, therefore 
monotony and fatigue may affect the efficiency of 
inspections [2, 3]. Inspection results for specific 
vehicles are not recorded unless they need repair 
and even in this case, if the repair can be made 
without moving the car to a repair track, neither 
the damage nor repair are typically recorded [4].  
  
Use of machine vision lends itself to a number of 
railcar inspection tasks [5, 6, 7], and can improve 
the effectiveness and efficiency of safety 
appliance inspections as well.  As a train passes a 
machine vision inspection site, digital video of the 
train is recorded.  Machine vision algorithms then 
identify the safety appliances on railcars and 
detect defects.  If implemented, such a system 
would lead to more efficient use of labor, more 
effective inspections, and potentially improve rail 
yard capacity.  The system should be able to 
categorize defects in terms of the appropriate level 
of action required.  It would also facilitate 
development of a database for each car that 
enabled trends to be detected and allow better 
planning and management of railcar maintenance. 
 
2.  METHODOLOGY 
 
2.1 Quantification of Safety Appliance 
Defects 
 
Data for the period 1995-2004 showed that 59% 
of defects occurred on ladder treads, handholds, 
and sill steps [8] and the annual cost of safety 
appliance repairs is over $5,000,000 [9].  However, 
this figure substantially understates the total cost 
of safety appliance repairs because it does not 
include all repair types and only includes 
inspections of cars not owned by the inspecting 
railroad.  Additional costs more difficult to 
quantify are the opportunity cost of a car out of 
service for repairs and the loss of capacity in rail 
yards due to the use of space by cars awaiting 
inspection.  
 

2.2 Methods of Improving the Efficiency 
and Effectiveness of Safety Appliance 
Inspections 
 
Comparison of Human Vision and 
Machine Vision 

Humans are capable of analyzing complex and 
dynamic situations.  However, they are not as 
good at performing repetitive inspections.  
Additionally, for many tasks, humans are often 
not as objective and consistent as machine vision 
[10]. Compared to humans, machine vision 
systems have a higher first cost associated with 
the initial implementation, but can have a lower 
unit operating cost, depending on the number of 
units to be inspected.  Machine vision does not 
easily adapt to unforeseen events, but for certain 
types of consistent, repetitive tasks – precisely the 
ones humans become ineffective at – machine 
vision may offer more reliable, lower cost 
inspection.  Currently, the majority of car 
inspections are completed manually using human 
vision and the results are not recorded.  Addition 
of memory to the inspection process could 
enhance the effectiveness and value of the 
machine vision system by improving maintenance 
scheduling and efficiency. 

2.3 Machine Vision Detection of Safety 
Appliance Defects 
 
The University of Illinois at Urbana-Champaign is 
developing machine vision technology to detect 
defective safety appliances.  In this section we 
describe a new image acquisition system, 
algorithms, and a portable field setup used to 
record images and test the algorithms. 

Image Acquisition System  

This project is being conducted using a digital 
video camera with a ½” color Charge-Coupled 
Device (CCD) camera.  Initially, a 6-12 mm lens 
with a variable focal length was used.  While this 
lens provided adequate images where the track 
was sufficiently above ground level, it was 
difficult to adapt to situations where it was not.  
Additionally, use of a variable focal length lens 
made precise replication of a given focal length 
difficult.  Subsequent use of a fixed focal length 
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lens and proper setup protocols provided better 
repeatability.  
 
The camera and lens need to provide high enough 
resolution to accomplish all the recognition and 
evaluation tasks required to satisfy inspection 
requirements.  The camera is located below rail 
level angled upward and at a 45-degree angle to 
the track.  This view allows most of the safety 
appliances to be seen and their condition assessed 
with regard to FRA regulations.  In the portable 
setup, the camera is mounted upside down below 
the tripod head, close to the substrate supporting 
the tripod [2], and remains outside the clearance 
plate for rail equipment [11].  The resolution of 
the most distant safety appliance is generally the 
top ladder rung and this was the deciding factor in 
resolution selection.  The noise threshold for this 
recognition task is two pixels and use of a 
resolution of 480x640 met this performance 
requirement. 
 
Frames are generated at a rate of 30 frames per 
second and are converted to an AVI format.  This 
frame rate ensures that at least one image will be 
captured within the tolerance window of ±20 
pixels relative to the center of the image (Fig. 1). 

 

 
 A B C 

Figure 1.  Image sequence for one corner of a railcar 
showing, A) an image taken too early, B) at the optimal 

time, and C) too late 
 

This frame rate is satisfactory for train speeds up 
to 25 miles per hour.  At higher speeds the frame 
rate must be increased to ensure that images of the 
appropriate part of the car at the proper angle are 
obtained. 

Machine Vision Algorithm 
The goal of the machine vision algorithm is to 
detect ladder rungs, handholds and brake-wheels, 
and to classify the detected appliances as FRA 

defects, non-FRA deformation, or no deformation. 
From the input video it is first necessary to select 
an optimal frame that provides the best view of a 
car passing by the camera.  Note that in a video 
sequence the position of the moving car is 
displaced in each consecutive frame by a small but 
not necessarily constant amount. In the optimal 
frame (Fig. 1), the car position is such that the 
car’s two top edges meet at the center of the 
image. 
 
In the next module of the machine vision system, 
the selected frame is analyzed. Due to a 
foreshortening effect caused by the camera 
position and angle from which the railcar is 
viewed, parts of the car that are farthest away 
from the camera appear smaller and distorted. 
Therefore, we conduct a perspective correction 
that yields two views of the car that each appear as 
if they were taken by two cameras perpendicular 
to the car's side and ends (Fig. 2). This procedure 
not only saves the costs of mounting two cameras 
but, more importantly, provides the perpendicular 
view of the end of the car that an additional 
camera, irrespective of position, would be unable 
to obtain. The perspective correction is 
accomplished using homography, where all the 
points belonging to a specified plane are 
transformed so that the foreshortening effect is 
corrected.  The specification of the two planes in 
the image is done automatically by finding the 
intersection of the top edge of the car with the 
image boundaries. Once the planes are specified, 
homography projects them onto the image plane. 
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Figure 2. Perspective correction by specifying two planes A-
B-C-F and A-E-D-F. As the final result, two views of the car 

are obtained, as if two cameras perpendicular to the side 
and end of the car were available 

 
The corrected images are more amenable to 
detection and assessment of safety appliance 
condition. In the next module, each corrected part 
of the selected frame is analyzed to detect safety 
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appliances. To detect ladder rungs, edges are 
detected using a Canny detector.  Then starting 
from the top edge of the car, the algorithm 
searches for periodically spaced, horizontal, 
parallel lines to define the area where the ladder 
and handholds are most likely to be. The straight-
line edges in the specified area are classified as 
compliant (no exception) ladder rungs and 
handholds; the edges that are curves are classified 
as deformed appliances (Fig. 3). 
 

 
Figure 3. Detection of ladder rungs and handholds; yellow 

indicates no exception and red indicates deformed 
appliances 

 
The algorithm correctly identified the deformation 
to the top and second from bottom side-ladder 
rungs, as well as deformation to the ladder rung 
that is second from the top on the end of the car.  
These examples of safety appliance deformation, 
like those seen in Fig. 3, were imaged after being 
inflicted on cars at the Transportation Technology 
Center (TTC) Facility for Accelerated Service 
Testing near Pueblo, CO.  
 
In the future, additional parameters, appliances, 
and car types will be examined, as well as difficult 
lighting conditions.  A particularly challenging 
parameter to identify using machine vision is the 
proper securement of safety appliances.  This 
includes checking that bolts are present and 
securely fastened.  Even though a bolt is lose, the 
appliance may be secure, and the machine vision 
algorithms must be robust enough to differentiate 
between the two scenarios.  This recognition task 
may require additional camera views. 
 
Detection and assessment of a brake-wheel does 
not require the perspective correction. Due to the 
fact that the brake-wheel differs from the 
background in appearance, direct analysis of the 

original image is satisfactory. We perform 
template matching of an ideal brake-wheel model 
from a set of templates developed based on known 
brake wheel designs. 
 
The area in the image for which the correlation 
with the template yields the highest value 
represents the detected brake-wheel. If part of the 
detected area differs from the template it is 
classified as deformed (Fig. 4).  
 

 
Figure 4. Brake-wheel detection; yellow indicates no 

exception and red indicates deformation of the brake-wheel 

2.4 Methods of Obtaining Images of 
Deformed Railcar Safety Appliances 
 
Because of the relatively low rate of safety 
appliance defects and deformation, acquisition of 
a sufficient number of images needed to develop 
the algorithm would take a long time.  To 
accelerate this process we are using other 
methods.  In addition to creating deformations on 
a test car at TTC, we have developed a virtual 
model of a railcar.  This model provides several 
useful capabilities for the overall machine vision 
development project.  Besides allowing us to 
"create" safety appliance deformation it also 
allows testing under varying lighting conditions, 
on multiple car types, and from differing camera 
views and angles. 

2.5 Three Dimensional Modeling of Railcar 
Safety Appliances 
 
Autodesk’s® 3DS MAX 8 computer modeling 
software was used to create a three-dimensional 
model of an open-top hopper car.  3DS MAX 
allows the user flexibility in depicting different 
camera views and angles, as well as in depicting 
realistic lighting conditions.  Additionally, the 
program provides a means of generating both still 
images and AVI files of the railcar model.  A 
comparison of an actual camera and an image 
from the 3D model is shown in Figure 5. 
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Figure 5. Views of a railcar with deformed safety appliances 

(left) and the corresponding 3D model showing 
the deformation (right) 

 
Lighting and Camera Specifics 
Within 3DS MAX, cameras can be located at any 
user-defined location within the model space.  
Resolution of the scene, the camera’s field of 
view, and other camera parameters can be defined 
within the program.  The model allowed us to 
refine our understanding of the preferred camera 
angle once the view was selected.  The camera 
view refers to the portion of the railcar that is 
being imaged whereas the camera angle is the 
specific angle between the lens and the target.  
The process of determining the camera angle was 
accomplished by running the algorithm on 
numerous images taken from angles that were 
below the top-of-rail.  All of the images tested 
were at a 45-degree angle with respect to the 
track.  Locating the camera below the top of rail 
allowed imaging of ladder rung and handhold 
clearances – key elements of the Railroad Safety 
Appliance Standards. 
 
Model Uses  

Visual learning is being used to categorize 
deformation to a railcar’s safety appliances.  
Using this approach, it is necessary to gather 
hundreds of images representing defective safety 
appliances to teach the algorithm the difference 
among the various defect classes.  Gathering these 
images in the field is tedious and labor intensive.  
Each time a train is recorded in the field we obtain 
a large number of images of which only a small 
percentage, one percent or less, contain safety 
appliance deformations.  Using the model, it is not 
only possible to simulate the railroad environment 
lighting, but also to generate all possible types of 

deformation.  These would be difficult to gather 
by imaging real trains. Information regarding 
typical types of safety appliance deformation is 
being gathered from railroad mechanical 
personnel ensuring that the algorithms will be 
tailored to the recognition tasks that it will be 
facing. 
 
The use of a virtual model increases the 
robustness of the machine vision algorithm by 
allowing generation of images under varying 
lighting conditions.  Of the many lighting types 
provided within 3DS, two types are of interest to 
this project.  The first is omni light, and consists 
of light having an intensity that is inversely 
proportional to the distance between the light and 
target.  Omni light is the best representation of 
what an artificial spotlight would provide for this 
application.  Secondly, skylight is analogous to 
sunlight in that the intensity does not decrease as 
the distance from the light source to the target 
increases. We have also used the Illuminating 
Engineering Society sunlight system that allows 
us to simulate the correct sun altitude and azimuth 
for any day and location we specify.  If the model 
is verified on one car type it can be extrapolated to 
other car types, saving time and expense 
compared to fieldwork. 
 
Figure 6 shows the algorithmic result from the 
model car.  The second ladder rung from the 
bottom is not an FRA defect, but does have 
deformation.  The sensitivity of the algorithm can 
be adjusted to either recognize or filter out these 
types of minor deformation.  
 

 
Figure 6. Validation of algorithm performance on the model 

image that replicates the deformation in the 
actual image in Figure 5. 
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An algorithm was developed that dynamically 
modifies the car model to represent typical safety 
appliance defect types.  The algorithm is fed the 
two extremes of a given type of safety appliance 
deformation and incrementally generates images 
of deformation that fall between the two extremes 
(Fig. 7).  This is being used to generate a large 
number of systematically varied images that are 
being used to train the learning algorithms. 
 

 
Figure 7. Virtual car model image indicating how 
deformation will be used to systematically create a 

library of deformations of a ladder rung 

2.6 Field Testing of Under Artificial 
Lighting 
 
Detection of safety appliances under artificial 
lighting in nighttime requires additional 
consideration of light intensity and direction. 
These parameters are less of a concern for video 
recorded in daylight, because light intensity is 
usually sufficient to properly adjust the aperture 
opening, and reflected light from the surroundings 
provides diffused light thereby reducing most of 
the negative effects of sun position.  The 
exception to this is the strong shadowing from 
direct sunlight at certain angles.  
 
By contrast, artificial light has much lower 
intensity and is more directional because there are 
no auxiliary reflections and therefore may 
introduce undesirable shadowing effects. For 
example, each ladder rung lit by an artificial light 
will cast a shadow. This may confuse the 
detection algorithm causing it to identify the 
shadows as rungs, since they may appear similar 
in the video frames. We needed to find the light 
intensity and direction that will allow similar 
performance of the safety appliance detection 
algorithms under both artificial and sun-lit 
conditions.  This will be affected by various 

aspects of the artificial lighting configuration 
including: the number of light sources used, their 
height, and the angle of incident light on the car. 
 
We conducted a series of nighttime tests in which 
we systematically varied the artificial light 
configuration, took detailed measurements of the 
light intensity at each safety appliance location on 
the car side and end, and tested the machine vision 
algorithm to verify that it was able to properly 
recognize and interpret the pertinent features in 
the images.  Two portable lighting systems were 
used that allowed flexibility in the light 
configuration.  Each system had four 
independently controlled 1,000-watt lights.  They 
could be raised and lowered and had a pan and tilt 
bracket for angle control.  Three pairs of lights 
were positioned above one another in horizontal 
groups of two.  The light sets were placed parallel 
to the track with one light of each set directed 
straight toward the car side, and the other angled 
approximately 20 degrees from normal to the 
track, facing toward the car end. The uniformity of 
the illumination was adjusted by moving each 
light individually with the pan and tilt brackets 
while measuring different locations on the railcar 
using a light meter. 
 
The combined effect was relatively consistent 
illumination of the car side and end from top to 
bottom. The variation across the surfaces of 
interest ranged from approximately 1,500 to 2,000 
foot-candles.  This degree of homogeneity in light 
intensity eliminated hotspots while providing 
sufficient illumination of all the safety appliances. 
 
The camera system was set up and videos 
recorded under various lighting configurations.  
The shutter speed was fixed at 500 (calculated to 
accommodate a moving train without blurring) 
and the opening of the aperture maximized.  The 
lighting was adjusted until the edge images 
showed the proper detection of all of the safety 
appliances of interest (Fig 8). 
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Figure 8. Images showing the edges detected on the corner 

of a freight car illuminated at night. 

 
Figs. 9 shows the artificially illuminated railcar 
and the algorithm results.  The tests were repeated 
with railcars of differing color.  The final 
configuration had the fewest shadows and gave 
satisfactory image recording and detection results.   
The results of the nighttime illumination tests will 
be used as the basis for design of a semi-
permanent machine-vision installation currently 
being planned. 
 

 
 A B 

Figure 9.  A) Nighttime image of BL corner of railcar 
illuminated by six 1,000-Watt lights B) foreshortened view 

with algorithm identification of ladder rungs 
 
3. CONCLUSION 
 
Machine-vision-enhanced inspection systems have 
the potential to substantially improve both 
performance and speed of inspections while also 
reducing cost. Although the capital cost of a 
machine vision system will be higher than the 
incremental addition to the labor force; the cost 

per unit will often be lower, depending on the 
number of cars to be inspected at a particular 
location. 
 
Implementation of these types of systems will 
enable reallocation of personnel to tasks for which 
their capabilities are better suited, such as railcar 
repair.  System memory could also be 
incorporated to enable better railcar maintenance 
planning.  The combined effect will be more 
effective detection of defects and more efficient 
repair resulting in a railcar fleet with fewer 
defects. 
 
A machine vision safety appliance inspection 
technology could be integrated into the Integrated 
Railway Remote Information Service (InteRRIS) 
developed by the Transportation Technology 
Center Inc.  This system stores health information 
on a multitude of railcar parameters.  InteRRIS 
provides rail vehicle condition and performance 
monitoring that is transferable to car owners and 
railroads via the internet [12, 13].  Another 
wayside machine vision inspection system is 
already being linked to InteRRIS.  Known as 
FactIS, it inspects railcar mechanical components 
including wheels, brake shoes, and other 
components.  A system for safety appliance 
inspection would link Automatic Equipment 
Identification (AEI) data that are digitally encoded 
on tags located on all North American railcars to 
the information from the machine vision system in 
a similar manner, and provide input to the 
InteRRIS database as well as to railroad personnel 
at nearby repair facilities.  This will provide 
advance notice of cars in need of repair as they 
approach a terminal thereby allowing them to be 
more rapidly and effectively repaired. 
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