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Abstract 
W e  present a n  algorithm for  extracting and clas- 

sifying two-dimensional motion in a n  image sequence 
based o n  mot ion  trajectories. First, a multiscale seg- 
mentation is  performed to  generate homogeneous re- 
gions in each frame. Regions between consecutive 
frames are then  matched to  obtain 2-view correspon- 
dences. A f i n e  transformations are computed f rom 
each pair of corresponding regions to  define pixel 
matches. Pixels matches over consecutive images pairs 
are concatenated to  obtain pixel-level motion trajecto- 
ries across the image sequence. Motion patterns are 
learned f rom the extracted trajectories using a t ime- 
delay neural network. W e  apply the proposed method 
to  recognize 40 hand gestures of American Sign Lan- 
guage. Experimental results show that motion patterns 
in hand gestures can be extracted and recognized with 
high recognition rate using motion trajectories. 

1 Introduction 
In this paper, we present an algorithm for extract- 

ing two-dimensional motion fields of objects across a 
video sequence and classifying each as one of a set 
of a priori known classes. The algorithm is used to  
recognize dynamic visual processes based on spatial, 
photometric and temporal characteristics. An appli- 
cation of the algorithm is in sign language recogni- 
tion where an utterance is interpreted based on, for 
example, hand location, shape, and motion. The per- 
formance of the algorithm is evaluated on the task 
of recognizing 40 complex hand gestures of American 
Sign Language (ASL). 

The algorithm consists of two major steps. First, 
each image is partitioned into regions using a multi- 
scale segmentation method. Regions between consec- 
utive frames are then matched to  obtain 2-view cor- 
respondences. Affine transformations are computed 
from each pair of corresponding regions to  define pixel 
matches. Pixel matches over consecutive image pairs 
are concatenated to  obtain pixel-level motion trajecto- 

ries across the video sequence. Pixels are also grouped 
based on their 2-view motion similarity to  obtain a 
motion based segmentation of the video sequence. 
Only some of the moving regions correspond to  visual 
phenomena of interest. Both the intrinsic properties of 
the objects represented by image regions and their dy- 
namics represented by the motion trajectories deter- 
mine whether they comprise an event of interest. For 
example, it is sufficient to  recognize most gestures in 
ASL in terms of shape and location changes of palm re- 
gions. Therefore, palm and head regions are extracted 
out in each frame and the palm locations are specified 
with reference to the usually still head regions. 

To recognize motion patterns from trajectories, we 
use a time-delay neural network (TDNN) [ll]. TDNN 
is a multilayer feedforward network that uses time- 
delays between all layers to  represent temporal rela- 
tionships between events in time. An input vector is 
organized as a temporal sequence, where only the por- 
tion of the input sequence within a time window is fed 
to  the network at  one time. The time window is shifted 
and another portion of the input sequence is given to  
the network until the whole sequence has been scanned 
through. The TDNN is trained using standard error 
backpropagation learning algorithm. The output of 
the network is computed by adding all of these scores 
over time, followed by applying a nonlinear function 
such as sigmoid function to  the sum. TDNNs with two 
hidden layers using sliding input windows over time 
lead to a relatively small number of trainable param- 
eters. We adopt TDNN to recognize motion patterns 
because gestures are spatio-temporal sequences of fea- 
ture vectors defined along motion trajectories. Our 
experimental results show that motion patterns can 
be learned by a time-delay neural network with high 
recognition rate. 

2 Related Work 
Since Johansson’s seminal work [7] that suggests 

human movements can be recognized solely by mo- 
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tion information, motion profiles and trajectories have 
been investigated to  recognize human motion by sev- 
eral researchers. In [8] Siskind and Morris conjecture 
that human event perception does not presuppose ob- 
ject recognition. In other words, they think visual 
event recognition is performed by a visual pathway 
which is separated from object recognition. To ver- 
ify the conjecture, they analyze motion profiles of 
objects that participate in different simple spatial- 
motion events. Their tracker uses a mixture of color 
based and motion based techniques. Color based tech- 
niques are used to  track objects defined by set of col- 
ored pixels whose saturation and value are above cer- 
tain thresholds in each frame. These pixels are then 
clustered into regions using a histogram based on hue. 
Moving pixels are extracted from frame differences and 
divided into clusters based on proximity. Next, each 
region (generated by color or motion) in each frame 
is abstracted by an ellipse. Finally, feature vector for 
each frame is generated by computing the absolute 
and relative ellipse positions, orientations, velocities 
and accelerations. To classify visual events, they use 
a set of Hidden Markov Models (HMMs) which are 
used as generative models and trained on movies of 
each visual event represented by a set of feature vec- 
tors. After training, a new observation is classified as 
being generated by the model that assigns the highest 
likelihood. Experiments on a set of 6 simple gestures, 
“pick up,” “put down,” “push,” “pull,” “drop,” and 
“throw,” demonstrate that gestures can be classified 
based on motion profiles. 

Bobick and Wilson [3] adopt a state based approach 
to represent and recognize gestures. First, many sam- 
ples of a gesture are used to  compute its principal 
curve [5] which is parameterized by arc length. A 
by-product of calculating the curve is the mapping 
of each sample point of a gesture example to an arc 
length along the curve. Next, they use line segments of 
uniform length to  approximate the discretized curve. 
Each line segment is represented by a vector and all 
the line segments are grouped into a number of clus- 
ters. A state is defined to  indicate the cluster to which 
a line segment belongs. A gesture is then defined by 
an ordered sequence of states. The recognition proce- 
dure is to  evaluate whether input trajectory success- 
fully passes through the states in the prescribed or- 
der. Contrasted to  their work where each example of 
a gesture is a single trajectory in space, each gesture 
in our work is represented by a set of motion trajec- 
tories corresponding to  the motions of different parts 
of, say, the palm, instead of a single representative 
point. Thus, each example of a gesture in our work is 

represented by a set of motion trajectories. Our exper- 
imental results show that an ensemble of trajectories 
yields better generalization 

Recently, Isard and Blake have proposed the CON- 
DENSATION algorithm [6] as a probabilistic method 
to track curves in visual scenes. This method is a fu- 
sion of the statistical factored sampling algorithm with 
a stochastic model to search a multivariate parameter 
space that is changing over time. Objects are mod- 
eled as a set of parameterized curves and the stochas- 
tic model is estimated based on the training sequence. 
Experiments on the proposed algorithm have been car- 
ried to  track objects based on their hand drawn tem- 
plates. Black and Jepson [2] extend this algorithm to 
recognize gestures and facial expressions in which hu- 
man motions are modeled as temporal trajectories of 
some estimated parameters (which describe the states 
of a gesture) over time. The major difference between 
our approach and these methods is that we propose 
a method to extract motion trajectories from an im- 
age sequence without hand drawn templates [6] or dis- 
tinct trackable icons [2]. Motion patterns are then 
learned from the extracted motion trajectories. No 
prior knowledge is assumed or required for the extrac- 
tion of motion trajectories, although domain specific 
knowledge can be applied for efficiency reasons. 

3 Motion Segmentation 
To capture the dynamic characteristics of objects, 

we segment an image frame into regions with uni- 
form motion. Our motion segmentation algorithm 
processes an image sequence two successive frames at 
a time. For a pair of frames, ( I t ,  It+l), the algorithm 
identifies regions in each frame comprising. the multi- 
scale intraframe structure. Regions at  all scales are 
then matched across frames. Affine transforms are 
computed for each matched region pair. The affine 
transform parameters for region at all scales are then 
used to  derive a single motion field which is then seg- 
mented to  identify the differently moving regions be- 
tween the two frames. The following sections describe 
the major steps in the motion segmentation algorithm. 
3.1 Multiscale Image Segmentation 

Multiscale segmentation is performed using a trans- 
form descried in [l] which extracts a hierarchy of re- 
gions in each image. The general form of the trans- 
form, which maps an image to  a family of attraction 
force fields, is defined by 

F(Z7Y; og(Z,Y),os(Z,Y)) = .f .fRdS(W ag(Z,Y)). 
ds(r‘,o&,y))&dwdv 

where R = domain(l(u,v))\{(z,y)} and r‘ = (v - ,)a+ (w - 9);. The parameter og denotes a homo- 
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geneity scale which reflects the homogeneity of a re- 
gion to which a pixel belongs and us is spatial scale 
that controls the neighborhood from which the force 
on the pixel is computed. The homogeneity of two 
pixels is given by the Euclidean distance between the 
associated rn-dimensional vectors of pixel values (e.g., 
rn = 3 for a color image): 

The spatial scale parameter, us, controls the spatial 
distance function, d,(.), and the homogeneity scale pa- 
rameter, ug , controls the homogeneity distance func- 
tion, dg( . ) .  One possible form for these functions sat- 
isfying criteria discussed in [l] is unnormalized Gaus- 
sian: 

The force field encodes the region structure in a man- 
ner which allows easy extraction. Region boundaries 
correspond to diverging force vectors in F and region 
skeletons correspond to  converging force vectors in F. 
An increase in ug causes less homogeneous structures 
to  be encoded and an increase in us causes large struc- 
tures to be encoded. 
3.2 Region Matching 

The matching of motion regions across frames is for- 
mulated as a graph matching problem at four different 
scales where scale refers to the level of detail captured 
by the image segmentation process. Three partitions 
of each image are created by slicing through the mul- 
tiscale pyramid at  three preselected values of ug. Re- 
gion partitions from adjacent frames are matched from 
coarse to  fine scales, with coarser scale matches guid- 
ing the finer scale matching. Each partition is rep- 
resented as a region adjacency graph, within which 
each region is represented as a node and region adja- 
cencies are represented as edges. Region matching at 
each scale consists of finding the set of graph trans- 
formation operations (edge deletion, edge and node 
matching, and node merging) of least cost that create 
an isomorphism between the current graph pair. The 
cost of matching a pair of regions takes into account 
their similarity with regard to area, average intensity, 
expected position as estimated from each region’s mo- 
tion in previous frames, and the spatial relationship of 
each region with its neighboring regions. 

Once the image partitions at  the three different ho- 
mogeneity scales have been matched, matchings are 
then obtained for the regions in the first frame of the 

frame pair that were identified by the motion segmen- 
tation module using the previous frame pair. The 
match in the second frame for each of these motion 
regions is given as the union of the set of finest scale 
regions that comprise the motion region. This gives a 
fourth matched pair of image partitions, and is con- 
sidered to  be the coarsest scale set of matches that is 
utilized in affine estimation. The details of the algo- 
rithm can be found in [9]. 
3.3 Affine Transformation Estimation 

For each pair of matched regions, the best affine 
transformation between them is estimated iteratively. 
Let Rf be the ith region in frame t and its matched 
region be Rf+l. Also let the coordinates of the pixels 
within Ri be ( ~ i ~ , y : ~ ) ,  with j = 1 . .  . lRfl where lRfl 
is the cardinality of Rj, and the pixel nearest the cen- 
troid of Rf be (Zf,$). Each (zfj, y&) is mapped by an 
affine transformation to  the point (2ij, $ f j )  according 
to 

where the subscript Ic denotes the iteration number, 
and R[.] denotes a vector operator that rounds each 
vector component to the nearest integer. The affine 
transformation comprises a 2 x 2-deformation matrix, 
Ak, and a translation vector, T k .  By defining the 
indicator function, 

the amount of mismatch is measured as 

W,”) = cz,y IIt(z, Y) - It+l(% $11. 
[ Xi(z,y) + A;+l(i,$) - Xf(.,y). Af+l(i,$) ] 

The affine transformation parameters that minimize 
M,“ are estimated iteratively using a local descent cri- 
terion. 
3.4 Motion Field Integration 

The computed affine parameters give a motion field 
at each of the four scales. These motion fields are 
then combined into a single motion field by taking the 
coarsest motion field and then performing the follow- 
ing computation recursively at  four scales. At each 
matched region, the image prediction error generated 
by the current motion field and the motion field at  the 
next finer scale are compared. At any region where the 
prediction error using the finer scale motion improves 
by a significant amount, the current motion is replaced 
by the finer scale motion. The result is a set of “best 
matched” regions at  the coarsest acceptable scales. 

468 



3.5 Motion Field Segmentation 
The resulting motion field Gt,t+1 is segmented into 

areas of uniform motion. We use a heuristic that con- 
siders each pair of best matched regions, Rf and Ri, 
which share a common border, and merges them if 
the following relation is satisfied for all (xf, , yf,) and 
( x i l ,  yil) that are spatially adjacent to  one another: 

IlGt,t+l(4, 7 Yf,) - d t , t + l  b ; l ,  Y,”l)ll 

m a 4  Idt , t+l  c.:, 7 ?&>I I, I I$t,t+l (.;l, Y i l )  I I) mug 

where mOg is a constant less than 1 that determines 
the degree of motion similarity necessary for the re- 
gions to  merge. 

The segmented motion regions are each represented 
in MSt,t+l by a different value. Because each of the 
best matched regions have matches, the matches in 
frame t + 1 of the regions in MSt,t+l are known and 
comprise the coarsest scale regions that are used in 
the affine estimation module for the next frame pair. 

It should be noted that the motion segmentation 
does not necessarily correspond to the moving objects 
in the scene because the motion segmentation is done 
over a single motion field. Nonrigid objects, such as 
humans, are segmented into multiple, piecewise rigid 
regions. In addition, fast objects moving at  rates less 
than one pixel per frame cannot be identified. Han- 
dling both these situations requires examining the mo- 
tion field over multiple frames. 

Figure 1 shows frames from an image sequence of 
a complex ASL sign called “cheerleader” and Figure 
2 shows the results of motion segmentation. Different 
motion regions are displayed with different gray levels. 
Notice that there are several motion regions within the 
head and palm regions because these piecewise rigid 
regions have uniform motion. 

4 Color and Geometric Analysis 
Motion segmentation generates regions that have 

uniform motion. However, only some of these motion 
regions carry important information for motion pat- 
tern recognition. To recognize hand gestures consid- 
ered here, it is sufficient to extract the motion regions 
of head and palm regions. Towards this end, we use 
color and geometric information of palm and head re- 
gions. 

Human skin color has been used and proved to  be 
an effective feature in many applications. We use a 
Gaussian mixture to  model the distribution of skin 
color pixels from a Michigan database of 2,447 images 
which consists of human faces from different ethnic 
groups. We use CIE LUV color space and discard 
the luminescence value of each pixel to  minimize the 

effects of lighting condition. The parameters in the 
Gaussian mixture are estimated using an EM algo- 
rithm. A motion region is classified to  have skin color 
if most of the pixels have probabilities of being skin 
color above a threshold. Coupled with motion segmen- 
tation, motion regions of skin color can be efficiently 
extracted from image sequences. 

Since the shape of human head and palm can be ap- 
proximated by ellipses, and the human hand is a thin 
rectangular region, motion regions that have skin color 
are merged until the shape of the merged region is ap- 
proximately elliptic or rectangular. The parameters of 
a rectangular shape can be obtained from the bound- 
ing box of each region easily. The orientation of an 
ellipse is calculated from the axes of the least moment 
of inertia. The extents of the major and minor axes 
of the ellipse are approximated by the extents of the 
region along the axis directions, and thus generate the 
parameters for the ellipse. The largest elliptic region 
extracted from an image is identified as human head 
and the next two smaller elliptic regions are palm re- 
gions. Figure 1 shows the image sequence of a complex 
ASL sign called “cheerleader” and Figure 3 shows the 
results of color and geometric analysis on the motion 
regions. 

5 Motion Trajectories 
Although motion segmentation generates affine 

transformations that capture motion details by match- 
ing regions at  fine scales, it is sufficient to use coarser 
motion trajectories of identified palm regions for ges- 
ture recognition considered in this paper. 

Affine transformation of palm region in each frame 
pair is computed based on equations in Section 3.3. 
The affine transformations of successive pairs are then 
concatenated to  construct the motion trajectories of 
the palm region. Figure 4 shows such trajectories for a 
number of frames in the image sequence “cheerleader.” 
Since all pixel trajectories are shown together, they 
form a thick blob. Figure 5 shows a 10 to 1 subsam- 
pling of the motion trajectories. 

6 Motion Pattern Classification 
We employ TDNN to classify gestural motion 

patterns of palm regions since TDNNs have been 
demonstrated to be very successful in learning spatio- 
temporal patterns. TDNN is a dynamic classification 
approach in that the network sees only a small window 
of the motion pattern and this window slides over the 
input data while the network makes a series of local 
decisions. These local decisions have to be integrated 
into a global decision at a later time. In their seminal 
work, Waibel et al. [ll] demonstrated excellent results 
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( i )  frame 35 (j) frame 37 (k) frame 40 (1)  frame 44 (m) frame 46 (n) frame 49 ( 0 )  frame 52 (p) frame 55 

Figure 1: Image sequence of ASL sign ‘‘cheerleader!’ 

( i )  frame 35 (j) frame 37 (k) frame 40 (1) frame 44 (m) frame 46 (n) frame 49 (0) frame 52 (p) frame 55 

Figure 2: Motion segmentation of the image sequence “cheerleader” (pixels of the same motion region are displayed 
with same gray level and different regions are displayed with different gray levels) 

(a) frame 14 (b) frame 16 (c) frame 19 (d) frame 22 (e) frame 25 (f) frame 29 (g) frame 31 (h) frame 34 

(i)  frame 35 (j) frame 37 (k) frame 40 (1) frame 44 (m) frame 46 (n) frame 49 (0) frame 52 (p) frame 55 

Figure 3: Extracted head and palm regions from image sequence “cheerleader” 

(a) #_1_42#16 (b) #16-#19 (c) #19-#22 (d) #22-#25 (e) #25-#29 __ - (f) #29-#31 -_ - (g) #31-#34 
i.i 

-- - _ _  -_ . _-- 
I -I 

z& 
__  - 

1 .! i- 

(h) #35-#37 (i)  #37-#40 (j) #40-#44 (k) #44-#46 (1)  #46-#49 (m) #49-#52 (n) #52-#55 

Figure 4: Extracted gestural motion trajectories from segments of ASL sign “cheerleader” (since all pixel trajec- 
tories are shown, they form a thick blob) 
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(a) Motion trajectories of a 
sample set of palm points for 
the ASL sign “cheerleader” 
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(c) Motion trajectories of a 
sample set of palm points for 
the ASL sign “cheerleader” 

I . . .  . . . .  I 
0 n .. m m ,m I S  I* ,I .- 

(b) Motion trajectory of one 
palm point for the ASL sign 
“cheerleader” 

(d) Motion trajectory of one 
palm point for the ASL sign 
“cheerleader” 

Figure 5: Extracted gestural motion trajectories (sub- 
sampled by a factor of 10) of ASL sign “cheerleader” 

for phoneme classification using TDNN and showed 
that it achieves lower error rates than those achieved 
by a simple HMM recognizer. 

The design of TDNN is attractive because its com- 
pact structure economizes on weights and makes it 
possible for the network to develop general feature de- 
tectors. Most importantly, its temporal integration 
at  the output layer makes the network shift invariant 
(i.e. insensitive to the exact positioning of the ges- 
ture). Figure 6 shows our TDNN architecture for the 
experiments, where positive values are shown as gray 
squares and negative values as black squares. The in- 
puts to our TDNN are vectors of (z, y, o, 13) for motion 
trajectories extracted from a gesture image sequence, 
where x, y are positions with respect to the center of 
the head, and U, I3 are magnitudes and angle of veloc- 
ity respectively; the outputs are the gesture classes; 
and the learning mechanism is error backpropagation. 

7 Experiments 
We use a video database of 40 ASL signs‘for experi- 

ments. Each video consists of an ASL sign which lasts 
about 3 to 5 seconds at  30 frames per second with 
image size of 160 x 120 in Quicktime format. Figure 
1 shows one complex ASL gesture from the sequence 
“cheerleader.” Note that the hand movement consists 
of rotation and repetitions. Each image sequence of 
the 40 gestures in the experiment has 80 to 120 frames. 

Hidden Layer 2 

Hidden Layer 1 

Input Layer 

5 0  slots 

Figure 6: Architecture of TDNN 

Discarding the frames in which palms do not appear in 
the images (i.e. frames in starting and ending phase), 
each image sequence has about 50 frames. Motion 
regions with skin color are identified by their chro- 
matic characteristics. These regions are then merged 
into palm and head regions shown in Figure 3 based 
on geometric analysis discussed in Section 4. Affine 
parameters of matched palm regions are computed, 
which give pixel motion trajectories for each image 
pair. By concatenating the trajectories for consecu- 
tive image pairs, continuous motion trajectories are 
generated. Figures 4 shows the extracted motion tra- 
jectories from a number of frames and Figure 5 shows 
the trajectories from the whole image sequence. Note 
that the motion trajectories of palm region match the 
movement in the real scene well. 

Training of TDNN is performed on the corpus of 
80% of the extracted dense (38 on the average) tra- 
jectories from each gesture, using an error backprop- 
agation algorithm. The rest 20% of the trajectories 
are then used for testing. Based on the experiments 
with 40 ASL gestures, the average recognition rate 
on the training trajectories is 98.14% and the aver- 
age recognition rate on the unseen test trajectories is 
93.42%. Since dense motion trajectories are extracted 
from each image sequence, the recognition rate for 
each gesture can be improved by a “voting” scheme 
(i.e. the majority rules) on the classification result 
of each individual trajectory. The resulting average 
recognition rate on the training and testing sets for 
gesture recognition are 99.02% and 96.21%, respec- 
tively. 

8 Discussion and Conclusion 
We have described an algorithm to extract and rec- 

ognize motion patterns using trajectories. For con- 
creteness, the experiments have been carried out to 
recognize hand gestures in ASL. Motion segmentation 
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is performed to generate regions with uniform mo- 
tion. Moving regions with salient features are then 
extracted using color and geometric information. The 
affine transformations associated with these regions 
are then concatenated to  generate continuous trajec- 
tories. These motion trajectories encode the dynamic 
characteristics of hand gestures and are classified by a 
time-delay neural network. Our experiments demon- 
strate that hand gestures can be recognized, with high 
accuracy, using motion trajectories. 

The contributions of this work can be summarized 
as follows. First, a general method that extracts mo- 
tion trajectories is developed. This is in contrast to  
much work on gesture recognition that uses color his- 
togram tracker [8] [4] [2], magnetic sensors [3], hand 
drawn template [6], and stereo [lo] to  obtain a rep- 
resentation of the gesture. Second, we use a TDNN 
to recognize gestures based on the extracted trajecto- 
ries. Using an ensemble of trajectories helps achieve 
high recognition rates. It would be interesting to com- 
pare these recognition rates with those obtained using 
other recognition methods such as HMM, CONDEN- 
SATION algorithm [6] [2] and principal curve [3]. 
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