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Abstract— Convolutional Neural Networks (CNNs) have
achieved a state-of-the-art performance in the different com-
puter vision tasks. However, CNN algorithms are computation-
ally and power intensive, which makes them difficult to run
on wearable and embedded systems. One way to address this
constraint is to reduce the number of computational operations
performed. Recently, several approaches addressed the problem
of the computational complexity in the CNNs. Most of these
methods, however, require a dedicated hardware. We propose
a new method for the computation reduction in CNNs that
substitutes Multiply and Accumulate (MAC) operations with a
codebook lookup and can be executed on the generic hardware.
The proposed method called QL-Net combines several concepts:
(i) a codebook construction, (ii) a layer-wise retraining strategy,
and (iii) a substitution of the MAC operations with the lookup
of the convolution responses at inference time. The proposed
QL-Net achieves a 98.6% accuracy on the MNIST dataset with
a 5.8x reduction in runtime, when compared to MAC-based
CNN model that achieved a 99.2% accuracy.

I. INTRODUCTION

While Convolutional Neural Networks (CNNs) have
achieved the state-of-the-art performance in different com-
puter vision tasks, such as classification [1]–[3], detection
[4], [5] and semantic segmentation [6]–[8], they suffer from
the excessive computational cost and the power consumption,
making them challenging to use without a powerful Graphics
Processing Unit (GPU). Additionally, with new intelligent
devices appearing every day, the systems without such
powerful GPUs are very common. Thus, in order to allow
small and embedded devices to use the CNN technology,
their power consumption, and the computational complexity
should be reduced.

To overcome this issue, several optimization methods have
been developed [9]–[13]. The early approaches to optimize
networks involved restricting weights to be a number of the
form 2n, where n is an integer. This allows substitution
of all the multiplications by binary shifts [14]. In [15],
[16] the authors proposed the CNN computation reduction
through reducing the precision of parameters. [9] proposed a
stochastic binarization of the network weights and replacing
the multiply and accumulate (MAC) operation used in convo-
lution by the sign changes. Further acceleration was achieved
by binarizing both the network’s parameters and the feature
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maps [11]. In XNOR-Net [10] the binary parameters were
scaled with a scaling factor to increase the network capacity,
while still being able to exploit faster bitwise operations
(XOR or AND) instead of the conventional MAC.

While reduced-precision networks minimize the number of
computations and increase the inference speed, they require a
dedicated hardware. The current CPU and GPU are not well
suited for the bit-wise operations and resources are wasted
because the full power of these computational devices is not
exploited. For optimal use, the binarized CNNs require a low
power computation hardware with a limited reconfigurabil-
ity. However, the design cost of such specific hardware is
much higher than of a standard high-speed FPGA or CPUs.
Hence, it is challenging to minimize the CNN computational
requirements without introducing hardware restrictions.

To address the problem of reducing the required number
of operations while preserving the task accuracy and not
imposing extra hardware limitations, we propose a novel
framework, called QL-Net. The closest to our work is LCNN
[17], in which the acceleration is achieved by approximating
3 × 3 filters with jointly learned linear combination of
1 × 1 dictionary vectors. Such parameter sharing technique
allows to reduce both a storage capacity and the amount
of operations, however, the MAC operations should still
be performed. In contrast to this approach, we do not
approximate network parameters, but rather the activation
maps using an L1-distance. QL-Net integrates three main
concepts: (i) a dictionary construction to approximate patches
of CNN feature maps, (ii) a layer-wise retraining strategy
to minimize the approximation error, and (iii) performing
dictionary lookup instead of convolutional MAC operations
to reduce the number of operations during the inference.

QL-Net takes an image as an input and extracts the feature
maps, similar to the conventional CNN. Unlike the con-
ventional CNN, QL-Net extracts feature maps by look-up
operations rather than by convolution. In conventional CNN,
when a convolutional filter is applied to the layer patch,
MAC operations between the filter and the input patch are
performed to calculate the filter response. When multiple
filters are applied, responses of all filters are concatenated
together. In contrast, QL-Net approximates the convolution
between a layer input patch and a set of filters by a dictionary
look-up using the patch as the key in the Look-Up-Table
(LUT). By implementing a hierarchical tree as a LUT, we
are able to find the nearest neighbor in a smaller amount of
computations than it would take to perform the convolutional
MAC operations on a set of filters. In addition, unlike in
the previous methods, QL-Net can be used on a general-
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purpose CPU because all the operations are performed using
the same precision as in normal CNN. The QL-Net was
evaluated on the MNIST dataset, and the implementation
resulted in a 5.8x reduction in computational time complexity
while the accuracy drop was only 0.8% when compared with
the performance of the current MAC-based CNN.

The rest of the paper is organized as follows. Section II
provides the background. Section III describes the key
components and the main steps of the proposed model.
Section IV describes and discusses the experimentation and
results. Finally, the paper is concluded by the Section V.

II. BACKGROUND

Definition 1: Tensor Object: a D1 ×D2 ×D3 dimensional
object is called a tensor object, where D2 and D3 are spatial
dimentions and D1 is the depth of the tensor.

Figure 1 illustrates the main components of a convolutional
layer in a conventional CNN model. The main objective of
the layer is to transform tensor objects (See Definition 1).
Let’s look at the layer l in CNN with the total number of
layers L. The input to the layer l is a D×X×Y dimensional
tensor object A. Each X × Y plane in A along the depth
dimension D is called a feature map. A can be either an
image (for l = 1) or a tensor object obtained from a previous
layer l− 1. The layer l transfers A (Figure 1(a)) into a new
tensor object O (Figure 1(f)), of size C ×X ′ × Y ′.

Let’s denote a 3D region in A as a Feature Patch P (Figure
1 (b)) with dimensions D ×M ×M , where M < X and
M < Y . Additionally, let’s refer to a set of tensor objects
W = {W1, . . . ,WC} as a set of filters (Figure 1(c)), with
each Wi having dimensions D ×M ×M .

The mapping of A to O is done as follows. At layer l,
A is convolved with W . Each convolution involves one P ,
extracted iteratively from A along the spatial dimensions X
and Y , and all filters from W . The output of convolution
between one P and a filter Wi is a single pixel value gi
(Figure 1 (d)). The convolutional output between P and W is
a tensor object G of size C×1×1 (Figure 1 (e)). Combining
all Gs for each P along the spatial coordinates results in the
output tensor object O.

III. PROPOSED QL-NET

The proposed QL-Net replaces the convolution between the
feature patch P and the set of filters W by performing a look-
up operation in the codebook, constructed from the training
data. The codebook is constructed for each layer l.

A. Codebook Construction

In order for the lookup to effectively approximate the con-
volution responses, the codebook needs to satisfy two major
requirements: a low approximation error and an efficient
codeword search.

Fig. 1. Conventional CNN layer. (a) Input feature maps. (b) Feature Patch.
(c) Set of Filters. (d) Convolutional output. (e) Convolution response tensor.
(f) Output feature maps.

The codebook generation process consists of the following
steps:

1) generating codewords by clustering,

2) calculating lookup responses by convolving the code-
book codewords.

1) Codewords Generation: We start the codewords genera-
tion process by sampling a subset of images from the training
set and applying a pre-trained CNN model on it to extract
the feature maps A. Afterward, several Feature Patches P are
selected from A to obtain the data samples for the codebook
construction.

1.1) Data samples Partitioning: To improve the represen-
tational power of the constructed codebook we propose to
use small dimensional codewords. Hence, sampled P are
partitioned along the spatial dimensions into N =M2 lower
dimensional tensors (Figure 2 (a)) referred to as the Feature
Patch Column P (j) ∈ RD×1×1 for j = 1 . . . N . This type of
partitioning will be referred to as a spatial partitioning.

1.2) Codewords Generation by Clustering: The codebook is
generated by clustering the collected feature patch columns.
In particular, the hierarchical k-means clustering (H-K-
means) was used since it provides an efficient codewords’
search. H-K-means algorithm subdivides the sampled feature
patch columns into k subsets using the conventional k-
means algorithm. Subsequently, each subset is divided into
other k subsets. The process is repeated recursively until
the termination criteria are attained. In our implementation,
the first termination criterion is the depth of the tree H . The
second termination condition is the density threshold ρ. ρ was
introduced to avoid the creation of clusters containing only a
single data sample. The last criterion will guarantee that the
clustering is applied to the subset if its density exceeds ρ.
The clustering will result in a codebook B with the maximum
Q = kH codewords Kv ∈ RD×1×1 (for v = 1, . . . , Q).

2) Lookup Response Generation: After codewords were
constructed, the look-up responses for each codeword should
be calculated.
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2.1) Filters splitting: The look-up response calculation for
every codeword consists of the following steps:

a) partition the filter Wi into N sub-filters,

b) compute a look-up response.

On account of introducing the spatial partitioning, the filter
vectors Wi should be subdivided into N sub-filters W (j)

i

(for i = 1 . . . C and j = 1 . . . N ) in a similar to the feature
patch partitioning manner (Figure 2 (a)). Afterwards, the
look-up responses are calculated for each sub-filter position
separately.

2.2) Lookup Response Calculation: Each sub-filter is applied
to each codeword (Kv for v = 1 . . . Q) in the codebook. The
respective convolutional output is obtained by eq. 1.

r
(j)
i,v = Kv ∗W (j)

i (1)

where r(j)i,v is the scalar convolutional output between the v−
th codeword in the codebook and the j− th sub-filter of the
Wi filter. The convolutional outputs between a codeword and
the sub-filters at the same position j for all C filters in the
set W are concatenated together into one look-up response
R

(j)
v ∈ RC×1×1 (Eq. 2).

R(j)
v = r

(j)
1,v‖ . . . ‖r

(j)
C,v, (2)

where ‖ denotes the concatenation operation. Consequently,
each codeword will have N look-up responses R(j)

v , one for
each j-th sub-filters position.

Fig. 2. QL-Net Lookup Function. (a) Partition Feature Patch into the
Feature Patch Columns. (b) Lookup Feature Patch Column for Lookup
Response. (c) Sum Lookup Responses.

B. QL-Net Training

So far, we have presented an algorithm for a codebook
construction. This codebook is used to quantize the CNN
feature maps. However, after quantizing the layer feature
maps, the QL-Net model must be retrained.

The reason and challenges for retraining a quantized network
are:

1) A quantization error is introduced each time A is
approximated by the codewords. This quantization error
causes the classification accuracy to drop. Therefore,
CNN filters need to be retrained to minimize this error.

2) The quantization of a current layer dependents on the
quantization of earlier layers.

To address these challenges we propose the following QL-
Net training procedure:

We start with a pre-trained baseline model and perform the
quantization process for one layer at a time. Let’s denote
the layer for quantization as a layer l and the total number
of layers in the network by L. We start quantization and
retraining with the Layer 2 and finish at the Layer lq = L−1.
Every time a layer l is quantized, all layers from 1 to l − 1
are treated as a fixed feature extractor, due to the following
reasons:

1) retraining filters of layers 1 to l − 1 will change the
input feature maps for the layer l Al. Therefore, the
codebook constructed for the layer l Bl must be build
again, which will become computationally expensive if
performed each time any earlier layers are modified.

2) look-up operation is not a differentiable function, thus,
an exact factor to update filters into the layers before
the layer l is hard to calculate.

A similar procedure for the quantization and re-training is
repeated for every 1 < l < L layer :

1) approximate Al with codewords from the codebook Bl,

2) retrain parameters for layers l to L.

We start the QL-Net training procedure by approximating
Al with the codewords from the layer l codebook Bl.
Let’s denote this quantized input as Âl. The Âl is used
instead of Al to calculate the layer output feature maps.
The substitution of Al with Âl increases the classification
error. To minimize this error, the retraining of the set of
filters, for the layer l till L, should be performed. Therefore,
precomputed look-up responses for the layer l cannot be
used, and are computed only after the layer retraining.

After the parameters of layers l till L were modified, the
retrained model is used to quantize the consecutive layers,
from l + 1 to lq . For instance, to extract Al+1 for the layer
l + 1, the retrained QL-Net model is used, with the layers
2 to l already quantized and properly restrained, and with
look-up responses for these layers calculated.

C. Inference

During the inference (Figure 2) we will have lq number of
Codebooks, each for each quantized layer. With the spatial
partitioning strategy introduced, the convolution, between the
D×M×M dimensional feature patches and an equally sized
filter Wi, is substituted by a sum of N separate convolutions
between the lower dimensional sub-filters W

(j)
i and the

feature patch columns P (j) (Figure 2(a)). P (j) and W
(j)
i

are j-th components of the Feature Patch and the filter Wi,
respectively. Accordingly, to replace the convolution by a
lookup operation, we extract the look-up responses for each
P (j) (j = 1 . . . n) independently (Figure 2(b)) and sum them
together (Figure 2(c)), to get the final look-up response for
the whole feature patch P . Since P is extracted from the A
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in a spatially-overlapping manner, the same codewords can
be re-used to estimate the look-up responses for the multiple
positions.

IV. EXPERIMENTS

The proposed model was evaluated on the MNIST [18]
image classification benchmark dataset. The experimental
evaluation is provided in the Figure 4.

MNIST Dataset is a benchmark image classification dataset
[18]. It consists of 60000 training and 10000 test 28x28 gray-
scale images representing digits ranging from 0 to 9. Sample
images are provided in the Figure 3.

Fig. 3. MNIST dataset sample images

A. Experimental Settings

For all the experiments conducted, the utilized architecture is
described in the Table I. The first column in the Table I shows

TABLE I
CNN ARCHITECTURE USED IN THE EXPERIMENTS

Layer Size Filters Sub-Codewords size
CONV 1× 5× 5 20 -

MP 2× 2 - -
CONV 20× 5× 5 40 20× 1× 1

MP 2× 2 - -
CONV 40× 4× 4 50 40× 1× 1

FC 50 10 -

the type of the layer, with either CONV for a convolutional
layer, MP for max pooling or FC being a fully connected
layer. The second column indicates a size of the filters for
the CONV layers, a size of the connectivity matrix for the
FC layers and a downsampling ratio for MP layer. The third
column indicates the number of filters for each layer. The last
column demonstrates the codewords size. During training,
the cross-entropy loss is minimized with ADAM [19]. Batch
Normalization [20] with a minibatch size 100 were exploited.
To construct the H-K tree we randomly selected 80000
datapoints extracted from 20000 images from the training
set. The number of clusters each subset is divided into is k
= 2. The following settings were used to calculate the total
codebook size: (2,62), (30,62), (62,62), (62,126), (62,254),
where the first number indicates the number of codewords for
the second CONV layer, and the second number for the third
CONV layer, according to the Table I). The centroids for K-
means clustering were initialized randomly, and we haven’t
observed any significant influence of the initial centroids’
values on the performance of the proposed algorithm.

The storage required for the dictionary can be calculated as
storage = Q× (D × 1× 1 +C ×M ×M)× 32bit, where
Q - number of codewords. Hence, to store the dictionaries

for fastest performing configuration we would require around
0.21Mb, which is equivalent to the storage size of the original
network parameters. However, to store the dictionaries for
the best performing model would require 1.1Mb, making the
storage requirement one of the limitations for the model.

B. Experimental results

Experiments on the MNIST dataset show that the proposed
model achieved 98.6% accuracy, compared to the MAC-
based CNN model with 99.2% accuracy. We run a separate
set of experiments to evaluate the possible reduction in
computational time by comparing the time required for the
MAC operations with the time taken by the look-up method.
The experimental settings were similar to the one used for
the MNIST experiments. The acceleration obtained using the
same settings as for the model with the highest accuracy was
5.8 times. The reason for this separate experiments is that the
look-up operation implemented is much less optimal than the
highly optimized convolution implementation. Thus to obtain
a fair comparison on the level of arithmetic operators we
implemented the separate experiments designed to evaluate
the relative acceleration.

Fig. 4. Accuracy vs Total Codebook size

Figure 4 shows the relation between the dictionary size
and the accuracy. In the figure, “QL-Net” is the proposed
model with the spatial partitioning and retraining strategies
applied. “QL-Net no splitting” is a model where only the
retraining was applied, and the codebooks were constructed
without the spatial partitioning. “QL-Net no Retraining” is
the model where the codebooks were constructed using the
spatial partitioning, but no retraining was applied. As shown
in the Figure 4, the increase in the codebook size improves
the model performance. However, after the total codebook
size exceeds 100 codewords, the accuracy graph flattens. In
fact there is improvements with increase in the codebook size
but the accuracy improvement compared to the size increase
is negligible. The possible explanation for this behaviour is
that the dictionary representational capacity is not improving
anymore and more advanced method should be used for the
codebook construction.
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The effect of the retraining can be observed in the Figure
4, without the layer-wise retraining the accuracy is around
20-22% lower than the accuracy of the retrained QL-Net.
Experiments in Figure 4 demonstrate as well that the QL-Net
performance is higher when the approximation of the Feature
Patches is done using the multiple codewords. Additionally,
the retrained QL-Net with smaller codewords is only slightly
affected by the different size of codebook and thus can
achieve the highest relative speed up. Others versions of the
QL-Net are, however, much more sensitive to the codebook
size variations.

Figure 5 shows the acceleration obtained when evaluating
the MAC operation w.r.t. the look-up operation. As can
be seen from the Figure 5, a smaller codebook provides a
higher acceleration, as a smaller number of operations are
required to find a respective codeword. This is as expected
because the number of MAC operations required for the one
convolutional layer is constant. While a codebook with a
smaller dictionary requires a smaller number of comparisons
between the codewords in the codebook and the feature
patch. Acceleration is achieved when the number of look-
up comparisons is smaller than the number of operations
required for the convolution.

For instance, for a feature patch of size 3×3×3 and for 512
filters of size 3× 3× 3 the resulting tensor object will be of
the size 512× 1× 1. In such case, the number of operations
to perform the convolution is 512×3×3×3 multiplications
and 512× (3× 3× 3− 2) addition operations.

As we used H-K-means tree, the codebook is a hierarchical
structure. Thus, a dictionary with 62 codewords has 5 levels
in the tree. Each level contains 2 codewords. Therefore, at
maximum, we need to perform 10 comparisons to find the
codeword that approximates the feature patch. The compar-
ison was performed using the l1-norm. Thus to transform a
feature patch of size 3×3×3 into a tensor object of size 512×
1×1 we perform at maximum 90 comparisons of codewords
of size 3 × 1 × 1. Each comparison requires 3 differences
and 2 summations. Thus in theory, the acceleration can be
estimated as 3×3×3×512

1×1×3×90 ≈ 51. This shows that in the best
hypothetical case there is a fifty times acceleration using
our method. Naturally this is only an approximate count
because the different arithmetic operations have different
implementation costs. It is a valid estimator of the cost
ratio as it overestimates the maximum acceleration and thus
provides an upper bound.

Looking closer at both Figure 4 and Figure 5 it can be
observed that the effective acceleration obtained by the
proposed model is around 4 to 6 times. This corresponds
to the best accuracy of the QL-Net in Figure 4. Note that
this acceleration and dictionary size corresponds to one
benchmark and different accelerations can be obtained on
various datasets.

Conducted experiments demonstrate that quantization causes
the model accuracy decrease, however, the proper retraining

and the efficient codebook design can minimize its effect.

Fig. 5. Acceleration vs Total Codebook Size

V. CONCLUSION

We have introduced a novel quantization approach to reduce
the number of operations during the inference, called QL-
Net. We have evaluated the proposed algorithm on the
MNIST dataset and got auspicious results. We demonstrated
that the quantization by look-up is a promising solution for
the network acceleration if the codebook can capture the
data diversity and the network is able to compensate the
information loss. Future works should extend those results
to other deeper models and bigger datasets. In addition,
techniques to improve the codebook quality and alternative
approaches for lookup, such as fast hash-functions, will be
investigated.
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