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ABSTRACT

Multiple Description (MD) coding of predictively coded
sources is of practical interest in several multimedia appli-
cations such as redundant storage of video/audio data, and
real-time video/audio telephony. A key problem associated
with predictive MD coding is the occurrence of predictive
mismatch. In the present paper, we pose the problem of
predictive MD coding as a variant of the Wyner-Ziv de-
coder side-information problem. We propose an appreach
based on the use of coset codes for predictive MD coding,
which avoids predictive mismatch without requiring restric-
tive channel assumptions or high latency. We specifically
consider two-channel predictive MD coding of a first-order
Gauss-Markov process. Results indicate that the proposed
approach significantly out-performs alternative approaches
in terms of rate-distortion performance.

1. INTRODUCTION

Muitiple Description (MD) coding involves coding source
information into multiple descriptions for transmission over
multiple lossy channels, such that the quality of recon-
struction degrades gracefully with the number of descrip-
tions lost, Predictive encoding is a well-known source cod-
ing technique used for low-latency compression of sources
with memory. MD coding of predictively encoded se-
quences (termed predictive MD coding) is of practical inter-
est in multimedia applications that involve communication
of compressed video/audio data using error-prone channels.
Examples of such applications include video-conterencing
and Internet broadcast of video/audio streams, and robust
storage of video/audio data on redundant disks.

The key problem encountered in predictive MD coding is
that of predictive mismatch. Predictive mismatch referstoa
scenario in which there is a mismatch between the predictor
symbols at the encoder and the decoder, leading to an erro-
neous reconstruction of the predicted symbol at the decoder.
In the context of MD coding, this mismatch arises because
the subset of predictor symbol descriptions received at the
decoder is unknown to the encoder (since feedback is as-
sumed absent).

For the two-channel case, previous approaches for pre-
dictive MD coding include techniques based on multiple de-
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scription scalar quantization with independent channel pre-
dictors [1], based on coding residual-of-residuals [2] and
based on combining side residuals efficiently [3]. The main
shortcoming of these approaches is the strong assumptions
required on channel behaviour to eliminate predictive mis-
match. Other techniques, such as [4] and the video coding
technique presented in [1], avoid these assumptions at the
cost of higher delay, thereby sacrificing the real-time nature
of predictive coding.

In the present paper, we propose a technigue for MD cod-
ing of predictively encoded sequences which eliminates pre-
dictive mismatch without requiring the restrictive assump-
tions made by previous approaches, and without requiring
increased delay compared to conventional predictive cod-
ing. The key underlying concept is that predictive MD cod-
ing belongs to the class of predictive coding problems [5]
which can be posed as variants of the well-known Wyner-
Ziv decoder side-information problem [6]. Accordingly the
proposed approach is based on the use of coset code con-
structions, which have been shown to achieve performance
close to the information-theoretic bound for the Wyner-Ziv
problem [7]. Te illustrate the efficacy of the proposed ap-
proach, we consider predictive MD coding of a first-order
Gauss-Markov process for transmission over two binary
erasure channels using multiple scalar quantizers. The pro-
posed approach significantly outperforms conventional ap-
proaches in terms of rate-distortion (R-D) performance, and
can be extended to higher dimensional coset codes, such as
lattice and trellis codes.

2. PROBLEM DESCRIPTION

In this section, we describe in detail the problem of pre-
dictive mismatch in the context of predictive MD coding.
We then show how the problem under consideration can be
formulated as a variant of the Wyner-Ziv side information
problem.

2.1. Predictive Mismatch in Predictive MD Coding

Consider the communication of a M -dimensional source
with memory,. § = {V;}®,,V; € R, across a lossy
channel using one-step predictive coding. Given the de-
coder reconstruction of source symbol Vi._q (denoted Vi_))
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the encoder communicates Vi by generating the innova-
tion Ty = V — E[Lkitk 1] which is input to the chan-
nel, where E[-] represents the expectation operator. Denot-
ing the channel output as Ty the decoder reconstructs Vi
as Vi, = Ty + E[Lk[h 1] such that for a given distor-
tion metric d(-,-}, d(h,h) = d(TL,Tk) Now, consider
the case where the encoder does not have precise knowl-
edge of Vi_,, and predictively encodes V), using an incor-
rect predictor 17';‘_1 ;é f',, 1. Then the encoder transimits
Vi — E[If;,|¥ T 1] and the decoder reconstructs V7,
as Vi = 7 + E[Vi|Vi_y]. This leads to predictive mis-
match, which is manifested in increased decoder reconstruc-
tion distortion since d{Vi, V) > d(m, 7).

For the case of V-channel MD coding, the decoder recon-
struction Vi, can take one of multiple values depfnding
on the subset of descriptions of Vi received ie. Vi €
Rj_; where R; = {ﬂj},j = 1...|R;| denotes the re-
construction set for the it* symbol. Thus, assuming that
the first source symbol V| is transmitted without predictive
coding, R, = {¥¥; s € {0,1}¥}, where s denotes the set
of received descriptions (s; = 1 if the ** description is re-
ceived) and [R;| = 2V. In the absence of feedback (as is
the case in real-time data transmission), the encoder does
not know the set of descriptions s 4., € {0, I}N receivid by
the decoder, and hence does not know the predictor ¥,'#=
to use for encoding V3. The use of an incorrect predictor
L "“ € R, leads to predictive mismatch.

A naive solution, which eliminates predictive mismatch
and ensures fidelity upto channel loss, is to encode V' sepa-
rately with respect to each possible predictor V¥ € R, and
transmit muttiple descriptions of all resulting |R:| innova-
tions. However, the number of possible predictors grows
exporentially with time and, in general, [R| = 2*V. Thus,
the naive solution requires a large increase in rate of trans-
mission over time, and is inefficient in a rate-distortion
sense. Previous approaches [1, 2, 3] make the assump-
tion that the subset of channels received over time stays the
same. This assumption eliminates the exponential growth
of |Ry|, facilitating easier solutions to the problem of pre-
dictive mismatch. Such an assumption, however, is rarely
satistied in applications involving videofaudio transrmission
over lossy networks. Other approaches (the video coding
approach in [1], [4]) require a substantial increase in cod-
ing delay to circumvent this. These sacrifice low-latency,
which is one of the key advantages of predictive coding,
and are unsuitable for real-time applications such as video-
conferencing and Internet telephony.

Tk

2.2. Predictive MD coding as the Wyner-Ziv problem

Consider two continuous-vafued correlated Gaussian ran-
dom variables X&' € R Consider the problem of com-
pressing X with the correlated side information ¥ present
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only at the decoder. In [6], Wyner and Ziv showed that, if
the encoder has knowledge of the statistics of ¥, the R-D
function for this problem is the same as in the case where
the encoder has precise knowledge of ¥ i.e.
Treal - .
Rwz{D) Log 5 0< D <ok
0 D 2 U:‘;qy

=Ryy(D) =

The problem of predictive MD coding can be formu-
lated as a variant of the Wyner-Ziv decoder side-information
problemn. Specifically, the decoder reconstruction of the pre-
dictor V- takes values in the reconstruction set R_,
{f/\g_l,j € {1,...,|Rg—1}}} with a probability mass
funglion, determined by the channel failure probabilities,
P(Vios = Vi) = q()d € {1, Ru_ (13, 0(6) =
1. The problem at hand is to predictively encode V., when
the encoder only knows the set Ry_, and the p.m.f. g(-).
Equivalently, the encoder is required to compress ¥ in the
presence of the correlated decoder side-information Vj_,,
when the only information the encoder has about f;'k_l are
it's statistics, i.e. Ry—1 and ¢(-).

In the sequel, we show how this formulation can be lever-
aged to design a practical solution to the predictive MD cod-
ing problem, which attains the desirable attributes outlined
in Section 1.

3. PROPOSED APPROACH

In this section, we describe an approach based on coset
codes, which solves the problem defined in Section 2. We
then consider, in detail, MD coding of a real-valued first
order Gauss-Markov process over two binary erasure chan-
nels.

3.1. Coset Code Construction

Consider a M -dimensional lattice A, for which the lattice
quantization distortion is the desired MD central distortion
Dy. Consider a sub-lattice A’ C A which induces a partition
of Ainto |A\|A’| cosets of A\’ {8].

For the N -channe! case, the proposed encoder consists of
the nearest-netghbour lattice quantization function Q(-) :
RM — A, the coset index function C(-) : A — AJA’
which finds the index of the coset to which a lattice point
belongs, and the MD coding functions a;{-) : A|A" — .J,
i € {1,...,N} where i indexes the channels and J is
the set of description labels. To communicate source sym-
bol ¥} the encoder transmits the innovation description
T} = a;(C(Q(V;))) on the ith channel. Thus, the encoder
quantizes Vy onto the lattice A and generates N multiple
descriptions of the coset index ¢y (=C{Q(V})})) of the re-
sultant lattice point.

UF¥,  ure not Gaussian. Ry z (D) # Ry (D). However, knowl-
edge of the statistics of Y can still be used to compress X more efficiently.



The proposed decoder consists of the MD decoding func-
tionsg;(-) : J — AJA', j € {0, 1} and the coset decoding
function C(-,-) : AJA’ x A — A. For a given set of re-
ceived descriptions denoted by jgee € {0, 1}, the decoder
invokes the appropriate MD decoding function g ;.. to re-
construct the transmitted coset index E‘,i““. In general, if
some descriptions are not received, the reconstructed coset
index will not be identical to the transmitted coset index.
This is the MD coding distortion due to channel loss. The
coset decoding function decodes ¢}™° to the coset lattice
point closest to the MMSE estimator of V; based on the de-
coder predictor 17};4 {which acts as side-information), i.e.

‘?k e(a‘;“?‘?—k_l)

min
XEA, C{A)=E e

arg

A - EWlb-dd|

It can be shown that the proposed decoder can correctly
decode Vy, with fidelity upto the channel loss in the trans-
mission of {T}{}, if the following condition (similar to [7] is
satisfied.

€jare (Vi1) = "Q{Vk.) - E[Vklf}k—l}” +

min _ {A-QWI <% @

AEA,C(A)=Eldee

where ds is the minimum distance of the sublattice A'.
The event in which eqn. (2) is violated is termed a decod-
ing failure event, and can be considered equivalent to the
occurrence of predictive mismatch. Thus, predictive mis-
match can be avoided if the sublattice A’ is chosen with
large enough d 4 such that the probability of decoding fail-
ure is negligibly small, i.e.

El Y aiPei:Bles 00
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where E;{-] represents an expectation taken over the sub-
script index.

The benefits of the proposed approach are three-fold.
Firstly, no assumptions on the set R (and thus on chan-
nel behaviour) are required—as long as d \ satisfies eqn. (3},
the probability of predictive mismatch is negligibly small.
Secondly, irrespective of the number of possible predictors
|Rg—1], the proposed approach requires the generation of
muitiple descriptions of only one innovation, leading to ef-
ficient coding. Thirdly, the proposed approach does not lead
to any increase in the coding delay with respect to baseline
predictive coding, and can thus be used for real-time coding
applications. .

3.2, First-order Gauss-Markov Process

Consider a source whose output comprises a real-valued
first-order Gauss-Markov process :
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Fig. 1. A and A’ lattices for the one-dimensional case. A’
partitions the fine lattice into three cosets. dy = £ & 3
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Fig. 2. MDSQ index assignment with & = 1, s = 4. a4(-)
is the Channel 1 index and a-{-) is the Channel 2 index.

Tp = PEn—t + W, j,w; € Rz ~N(0,1)

where w; is a sample of an i.i.d Gaussian noise process with
mean = 0 and variance = 1—p® and is independent of z;. We
consider predictive MD coding of this source process over
two binary erasure channels, each of which has a failure
probability of p. We will not make the assumption that at
least one channel is always received-we consider the failure
events of the two channels to be completely independent.

The fine encoder lattice is the one-dimensional uniform
scalar quantizer A = AZ. The sublattice is A" = £Z,
£ = KA K € N The sublattice thus induces a partition
AlA' consisting of —g— cosets of A’. Fig. (1) shows the AjA’
partition for the case where £ = 3A, For the encoder lat-
tices described, Q(z,) = [zn]a and C(Q(x,)) = [En]a
mod ;g‘, where [] o represents quantization using a uniform
scalar quantizer with step-size A. The minimum distance
dy- of the encoder sublattice is equal to £.

Two descriptions of the coset index ¢, = C(Q{xz,)) are
generated by using the multiple description scalar guantizer
(MDSQ) proposed in [9]. Fig. (2} shows a MDSQ index
assignment matrix with 2k + 1 = 3 diagonals. The ma-
trix entries represent the quantized source index to be com-
municated. while the row and column labels represent the
transmitted Channel 1 and Channel 2 indices respectively.
When both channels are received, the decoder can uniquely
decode the quantized source index. When only @ (-} or only
ax(-) is received, the decoder can decode the source index
upto an uncertainty specified by the spread of the index as-
signment, s = 2k% + 2k + 1. In the proposed approach,



the matrix entry represents the coset index ¢, which is to be
communicated to the decoder (note that ¢,, € N). Thus, the
row and column labels corresponding to ¢,, are transmitted
over Channel 1 and Channel 2 respectively.

The decoder uses conventional MDSQ decoding to re-
construct the coset index—in the event of a channel loss, the
coset index is reconstructed with corresponding distortion.?
After reconstructing the coset index ¢, the decoder recon-
structs &, as

min

Fp = E(En, T,_1) arE AP

- H'E - pin—l“

The value of £ for encoding should be selected in accor-
dance with egn. (3), so as to make the probability of decod-
ing fatlure negligibly smail. While encoding  », the recon-
struction set of decoder predictors R,,—; will, in general,
consist of 25"~ 1) predictors comesponding to all possible
channel behaviours at time instants 1,... n — 1. For the
case of one-step predictive encoding |R ,,— | can be reduced
to 2(n — 1) as follows. Let R; ; denote the event that ex-
actly 7 channels (j = 1,2) are received at time r — i and no
channels are received at times n — 4+ 1, ... n— L. Then, it
suffices to consider,

R.- = {EH,I(R,-J) 11 E {1, n— 1},] € {1,2}}

and |R,—1| = 2(n - 1). To estimate the value of £, we
need to evaluate the probability of decoding failure in eqn.
(3). For this, we need to consider the 4(n — 1) events given
by {Rij:i€{l,...n=1},7 € {1,}}R 0. 7€
{1,2}}. Denoting a decoding failure event as £ 47, the prob-
ability of decoding failure is

n—1

Py =y PEgl{Ri; 1 =i}y P({Ru;: 1

=l

i}) &

P({Ry; : | = i}) represents the probability of the event
that n — & was the last time instant at which a non-zero
number of channels were received (not including the cur-
rent time instant). This is easily computed in terms of the

channel failure probabilities
P({Ryj:1=ih) = (p")~H (1 -p) (5)

Also,

PEgHRy 1 =i} = LS P(Eg[Ri s N Ro2)+

E‘%gif’(fdfms,z NRo1)+
?p{i‘;z]s P(Edflni,l M ’R[J,j)"'
@%%,%}-P(&NRM N Ro,1 }(6)

In the event that both channels are lost. the decoder reconstruction is
sisnply the MMSE estimate En = pEp—1.
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The individual terms on the right hand side in eqn. (6)
can be bounded in terms of the complementary c.d.f. of & ,.
Thus, for example, it can be shown that

( £ _(l' pi)A
n/1- T

where Q{-) is the Marcum Q-function. The cther terms in
eqn. (6} can be similarly bounded. The parameter £ can
be selected using egqn. (4), (5) and (&) to ensure thart the
probability of decoding failure is negligibly small. £ repre-
sents a trade-off between the transmission rate and the prob-
ability of decoding failure, with an increase in £ resulting
in an increase in both quantities. We shall see in Section
5 that relatively small values of £ are adequate to ensure
Py ~ O(1079), thereby allowing efficient compression.

PEyRi2 NRy2) <20 =
0P

3.3. Codebook training

Better compression pertormance, in a R-D sense, can be
achieved by allowing more general scalar quantizers than
AZ. We use a training algorithm similar to the algorithm in
[9] to generate locally optimal MD scalar quantizers for the
proposed approach.

The sublattice minimum distance £ can be calculated
from eqn. (4). The probability distribution p¢(:} of the
resuitant coset indices is given by [10]

oo

pele) = Z plz + 58).X{0<r<e)

s=—00

M

where p(x) ~ A(0,1) and x is the indicator function,
Since we are MD coding the coset indices, the distribu-
tion of data to be coded is given by p¢(r) rather than p(x).
The reconstruction levels and quantizer partitions of the side
and central decoders can then be estimated by iteratively
minimizing the appropriate Lagrangian functional for the
level-constrained case or the entropy-constrained case.

4. ASYMPTOTIC ANALYSIS

In this section we compute the asymptotic R-D character-
istics of the proposed coding technique for the example
Gauss-Markov process. In Section 5, we shall compare the
asymptotic R-D performance of the proposed approach to
that of alternative approaches.

In the following derivation, we make use of the asymp-
totic analysis for optimum entropy-constrained MDSQ pre-
sented in [11]. Assume that a uniform scalar quantizer with
step-size A is used to encode a scalar source symbol prior
to MDSQ, and variable-length codes are used to code the
MDSQ Channel 1 and Channel 2 indices. Then, for the
case of mean-square distortion, as channel transmission rate
R — co, [11] shows that the asymptotic central distortion
dy. and side distortion d| are given as



- AT 2op(kW17
do__lz' LT TR RT A (8)
and the transmission rate on each channel is given by
1
o) +1 9
R®l ol )+ hio) ®

where 2& + 1 is the number of diagonais in the MDSQ in-
dex assignment, vy, = Zizl u® and h{p) is the differential
entropy of the source symbol distribution.
For the proposed predictive MD coding approach, the
channel rate is, therefore
1
Rdvg (o) + R 10
& <(gyar) * Hre) (19)
where h{p¢) is the differential entropy of the coset index
distribution (eqn. (7}). The expected mean-square distortion
is

D=1 —p¥do+2p(1 -p)dy +p°d> (11}

where dy and d; are given by eqn. (8) and d; is the ex-
pected distortion when both channels fail at the current time
instant. Now,

n—1
a‘l = Zd—Z/{RL;:[=i}P({R1J = "}) (12}
i=l

d, /{R.;1=i} 18 the expected distortion in the event that time
n — i was the last time instant when a non-zero number of
channels was received. Then,

az/{n;,,:::t} = E[(z, ~ En)zl
= E[(xn - Pisn—i)gi
= El(zn — plea-i)*} + pP E[(Z0ni — 0-)"]
—2°E[(Tn = p'Tni)(Bnei — Tnei)]
= E[(l’n - Pixn—i)g] + PNE[(En—i - I"_.-)Q]

i-1
o : ol — P
=i - Mot =
(=) ¥ +p e
Jj=0
2 2P =
+ 2% d 13
P T+p2 (13}

where the third step follows since {x,, — pfz,,—;) is mean
zero noise which is independent of (Z,—; — x,_;), and the
fourth step assumes 12 —» o0. Substituting eqn. (13) in egn.
(12) and taking n. — oo gives

g =1+

L) R
p- l—p° (1-—p- 2p -
_____ﬂ p_, 5 .,p pd{) + i dp —1
l—ppr p» l+p 1+p

(14
which, when substituted in eqn. (11) gives the expected
asymptotic distortion of the proposed approach.

Dvs.R, {(p=0.1, k=1, CSNR = 17 dB}
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Fig. 3. Comparison of D — R characteristics of the three
approaches for channel failure probability p = 0.1. £ =
150, for proposed approach.

D vs p (B=3 bits, k=1, GSNR = 17 dB)
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Fig. 4. Comparison of D — p characteristics of the three
approaches for channel rate B = 3 bits. £ = 150, for
proposed approach.

5. RESULTS

Simulations were performed on a first-order Gauss-Markov
process with CSNR = 17dB, with two-channel MDSQ used
for MD coding. We compared the results of the pro-
posed approach with those obtained using two aliernative
approaches.

The first alternative approach compared, was the low-
latency MR-DPCM approach proposed in {1]. The MR-
DPCM approach requires two predictors (one correspond-
ing to each channel) to be maintained at the decoder. The
encoder uses two independent DPCM loops to generate two
predictively encoded sequences. As presented in [1]. the
low-latency MR-DPCM approach requires the same subset
of channels to be received at all time instants.” To take into
account the independent channel failure probabilities, this
approach was madified as follows. At each time instant
the decoder reconstruction, used in computing distortion,
corresponded to the received channels. When Channel j
(7 =1, 2) was not received, the corresponding decoder pre-

A high-latency alternative which avoids this assumption is also pre-
sented in {1].

736



vs. Proposed

Mean gisiortion D {dB}

Fig. 5. Comparison of asymptotic D-R characteristics for
the proposed scheme and for independent coding, Pg =~
1073, The performance of the proposed scheme is strictly
better, and approaches that of independent coding at very
high rates.

dictor was estimated as fi = p;'E“,’;_l. The second alternative
approach considered was the independent coding approach,
in which each source symbol was coded independently of
all other symbols. This approach completely avoids predic-
tive mismatch, at the cost of lower compression efficiency.

Fig. 3 compares the operational D-R characteristics of the
three approaches with channel failure probability p = 0.1
and the MDSQ index assignment parameter £ = 1. Fig. 4
compares the performance of the three approaches for fixed
channel rate R = 3 bits and varying channel failure prob-
ability. The value of £ used for Fig. 34 was 150, for
which Py ~ O{10~3). For both the proposed approach and
the MR-DPCM approach, one independently coded symbol
was inserted after every 100 predictively coded symbols.

As can be seen, the low-latency MR-DPCM approach,
which does not take predictive mismatch into account, per-
forms the worst of the three approaches. This is illustrative
of the performance loss caused by predictive mismatch, and
mativates the need for avoiding mismatch. The proposed
approach out-performs the independent coding approach by
about 5 dB over a wide range of channel rates and channet
failure probabilities. This demonstrates the efficacy of the
proposed approach in exploiting the source correlation for
efficient compression, while avoiding mismatch.*

The performance of the proposed technique can be Fur-
ther improved by making use of lattice and trellis codes [7].
The use of such codes also allows operation at much lower
CSNR values, by reducing the probability of decoding fail-
ure, thereby making the proposed approach practical for a
wider range of coding scenarios.

Fig. 5 compares the asymptotic D-R characteristics of the
proposed approach with those of independent coding, for
Py = 10772, Itis interesting to note that the performance of
the proposed approach, while strictly better, approaches that

*The mean distortion plotted. inclides the effect of decoder faiture,
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of independent coding at very high rates. This is because, at
very high rates, the distortion due to loss of both channels
{d2) dominates the MD coding distortion (dg, d, ), and is the
same for both coding schemes. Note that the performance
of the two schemes can also be expected to be similar at
very low rates—in the limiting case when B = 0, Dprop =
Dipg = U-i-

6. CONCLUSIONS

We have proposed a real-time predictive MD coding tech-
nique that avoids predictive mismatch without requiring re-
strictive channel assumptions or high latency. Through the
example of a first-order Gauss-Markov process, we have
shown the potential performance gains that can be achieved
by using the proposed approach. We are currently re-
searching extensions of the proposed approach to higher-
dimensional lattice and trellis codes which are expected to
significantly improve the performance of the proposed ap-
proach.
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