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Abst rac t .  This paper presents a coarse-to-fine algorithm to obtain pinel 
trajectories in a long image sequence and to segment it into subsets 
corresponding to distinctly moving objects. Much of the previous related 
work has addressed the computation of optical flow over two frames or 
sparse feature trajectories in sequences. The features used are often small 
in number and restrictive assumptions are made about them such as the 
visibility of features in all the frames. The algorithm described here uses a 
coarse scale point feature detector to form a 3-D dot pattern in the spatio- 
temporal space. The trajectories are extracted as 3-D curves formed by 
the points using perceptual grouping. Increasingly dense correspondences 
are obtained iteratively from the sparse feature trajectories. At the finest 
level, which is the focus of this paper, all pixels are matched and the finest 
boundaries of the moving objects are obtained. 
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1 I n t r o d u c t i o n  

This paper describes a component of our work aimed at interpretation of image 
sequences. Given an image sequence containing an arbitrary number of rigid 
objects in motion, the objectives of the overall work are to identify feature points 
in the scene, obtain spatially dense trajectories of those points, segment moving 
objects, compute image flow at each pixel, and derive a qualitative description 
of the scene structure and dynamics from the image sequence. Such qualitative 
interpretation of the image sequence is useful for a variety of applications such as 
traffic scene analysis, biological image analysis and aerial image understanding. 
The focus of this paper is on the detection of pixel flow trajectories. Next section 
reviews some related previous work. Section 3 summarizes the steps of coarse- 
to-fine detection of sparse feature trajectories. Section 4 then gives the details 
of the algorithm for finding pixel flow trajectories which is the objective of this 
paper. Section 5 presents experimental results and Section 6 presents concluding 
remarks. 
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2 P r e v i o u s  W o r k  

Much previous work has addressed feature correspondences between two frames 
which are used for 3D motion and structure estimation. The work on optical 
flow has been concerned with the detection of pixel correspondences across two 
frames closely separated in time. Both of these areas have seen a significant 
amount of activity and we will not attempt to provide the long list of references 
here. For motion analysis from long image sequences, several researchers have 
addressed the problem of feature correspondence in the past. Sethi and Jain[1] 
formulate this problem as an optimization problem and propose an iterative al- 
gorithm which they call the Greedy Exchange algorithm. Sethi et al.[2] propose a 
relaxation algorithm for feature point matching where the formation of smooth 
trajectories over space and time is favored. This method requires the correct 
initial correspondence and was used on very few feature points. Rangarajan and 
Shah [3] have proposed a noniterative polynomial time approximation algorithm 
by minimizing a proximal uniformity cost function. Cheng and Aggarwal[4] pro- 
pose a two stage hybrid approach to the trajectory finding problem. The first 
stage extends the trajectories and the second one attempts to correct any errors. 
Debrunner and Ahuja[5] uses a two stage method to finding trajectories. The 
first step computes short feature paths of constant velocity. The second step 
deals with joining the feature paths into trajectories. 

This paper exploits known trajectories of features for finding pixel trajecto- 
ries. In the next section, we first briefly present our approach to coarse-to-fine 
feature trajectory detection which is based on perceptual grouping. 

3 Feature point matching and segmentation 

This section summaries the first two steps of the algorithm to analyze a single 
batch of frames. 

3.1 Sparse Correspondences  

The goal of the first step is to find correspondences of sparsely located feature 
points and segment the moving objects. We have no knowledge of number of 
moving objects or their motions in the scene. The only assumptions made here 
are that they are rigid objects and are moving smoothly. A perceptual grouping 
technique is used to achieve this goal. Feature points are detected in each image. 
The images in a batch are stacked to form a 3D dot pattern. The 3D Voronoi 
tessellation defined by the points is constructed. The batch size must be chosen 
carefully. If the number of frames in the batch is small, then the Voronoi tessel- 
lation may not represent the 3D structure well due to lack of data along time 
axis. A large batch size, on the other hand, may contain frames in which a mov- 
ing object enters or exits the visual field which results in trajectories that last 
for only part of the batch. This makes their detection more difficult. Further, it 
significantly adds to the computational load. Since in the algorithm used in this 
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work, the batch analysis is used to estimate final correspondences for a central 
pair of frames, it is sufficient to ensure that  the Voronoi structure associated 
with the dots in several central frames are correct, i.e., are not affected by lack 
of image frames. 

The result of this step is a curve segment joining the feature points in all 
frames. In general, some feature points are missed and some new feature points 
appear from frame to frame. Therefore, the length of a curve segment or tra- 
jectory varies. The feature point locations along a trajectory in the two central 
frames are considered as correspondences. Such correspondences may be used 
by any of a number of motion and structure algorithms [6, 7] that  require point 
feature correspondences. 

Once the feature point correspondences are known, the feature points in 
each frame are segmented into different moving objects based on similarity of 
motion. Local adjacency among points is made explicit through the Delaunay 
triangulation when a Delaunay edge connects a point with its Voronoi neighbors. 
Segmentation is then achieved by identifying Delaunay edges connecting points 
belonging to different objects as well as those inside a single object. In general 
two independently moving objects differ in the magnitude and direction of their 
3D motion. However 2D direction alone is a strong basis to discern if two points 
belong to the same or different objects, and in fact is the stronger cue for motion 
boundary perception in human vision. Edge identification is done by comparing 
the motion vectors at its two vertices. 

3.2 D e n s e  C o r r e s p o n d e n c e s  

The second step performs matching of finer level features with the help of coars- 
est level matches already identified through perceptual grouping as described 
above. The finer level features are more densely distributed and therefore they 
improve the accuracy of detected moving object shapes relative to those seg- 
mented at the coarsest level (Fig. 1). A sequence of coarse-to-fine matching steps 
described in the following paragraph is iterated to the finest level of detected 
features, yielding the highest density of feature matches. The motions of denser 
features are predicted based on the known motions of nearby, coarser level fea- 
tures. 

The coarser level features near a detected fine level feature may belong to one 
or more differently moving objects (Fig. 2). Therefore the detected feature may 
have any of these motions. Accordingly all candidate motions are considered. 
For a new fine level feature, each of the available motion estimates predicts a 
different matching location in the next frame. Only one of these is correct and 
to be selected. Around each such predicted match, feature points are tested to 
identify those whose neighbors gray levels are well correlated with those of the 
fine feature point being examined. Since the estimates derived from coarse level 
are more approximate due to lower feature density, the newly identified candidate 
matches serve as more accurate alternative motion estimates. Selection among 
these candidates is now performed by enforcing the spatial continuity of motion. 
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The unique matched pairs selected for fine level feature points comprise 
denser correspondences than the coarse level correspondences inherited from 
the coarser level. These finer level correspondences can again be segmented into 
distinctly moving objects in the same way as done at the coarser level. The re- 
sulting segmentation follows the object boundaries more accurately. These fine 
level features along with the segmentation are the final result of the iteration. 
The coarse to fine motion estimation and segmentation is continued at increas- 
ingly fine spatial scales until the feature detector no longer gives useful new 
features. 

4 P i x e l  C o r r e s p o n d e n c e s  

The method for computation of pixel matches is similar to the method for 
dense point-features correspondences. Once the finest-level features are found 
and matched, the remaining pixels are matched using raw intensity information. 
This is done using intensity correlation, which results in the pixel correspondence 
for the whole image, as discussed in Sections 4.1 and 4.2, or pairwise image flow, 
as also computed by the algorithms in [8, 9, 10, 11, 12]. After this step, the 
motion field is segmented to obtain the boundaries of the moving objects, as dis- 
cussed in Section 4.3. An at tempt is made to integrate the information present 
in the motion edges and intensity edges to obtain better estimates of the scene 
structure. 

4.1 Finding Candidate Matches for Pixels 

Consider a pair of frames (frame 1 and frame 2) in which the finest-level features 
have been matched. The Delaunay triangulation is computed for the matched 
points in frame 1 as shown in Fig. 1. The 2D motion of every pixel in this triangle 
is interpolated from the three vertex motions. The three vertices of a triangle 
may belong to one, two, or three different moving objects in the scene as shown 
in Fig. 2. Therefore, all of the pixels in a triangle will have one, two, or three 
motions for computing the candidates for matching. 

As shown in Fig. 3, for each pixel P with coordinates (x, y) and an estimated 
2D motion (emz, emy), an r x r window is selected, centered at the location 
(x + emx, y q- emy) in the next frame. Gray-level correlation is computed at the 
location (x + emx, y 4- emy) and at its eight neighboring pixels. The pixels for 
which this correlation is above some threshold are also considered as candidate 
matches of P.  This is repeated for each possible motion of P to generate all pos- 
sible candidates for matching. From these candidates, the five with the highest 
correlations are retained to select the best match in the next step. 

4.2 Obtaining the Best Pixel  Match 

The candidate matches are used by a relaxation algorithm to find the best match 
for each pixel. The support for a certain candidate match for a pixel is computed 
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Fig. 1. Vertices of the triangles are the matched, coarse level feature points, and the 
other dots are new, finer level feature points. 

Fig. 2. Triangle abe has all vertices from same object, triangle bed has its vertices from 
two objects and triangle Cdf has its vertices from three objects. 

from the four adjacent pixels, analogous to the Voronoi neighbors in case of 
feature points. Eventually, two or more pixels may be matched to the same pixel 
in the next frame. To avoid such situations, the algorithm is used for finding 
matches from frame 2 to frame 1 also. If a pixel i in frame 1 matches a pixel j in 
frame 2 while initiating matching from frame 1, then pixel j in frame 2 should 
match pixel i in frame 1 when matching is initiated in frame 2. Pixel matches not 
satisfying this two-way constraint are discarded. Near the boundary of moving 
objects, matches will not be obtained for those pixels corresponding to the scene 
points that  are visible in one frame but not in the other frame. This yields thick 
bands of unmatched pixels comprising self-occlusion regions of a moving object. 

4.3 S e g m e n t a t i o n  of  M o v i n g  Ob jec t s  

The boundaries of the moving objects are obtained based on the similarity of the 
motion field. However, the detected object boundaries will have errors whenever 
the motion estimates of pixels are erroneous. This will happen whenever, for 
example, the number of features in an image part is sparse, leading to rather 
large triangles. Therefore, the estimates of candidate matches of points within 
the triangle (for finer-level features or pixels) will contain large errors because 
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P(x+emx, y+emy) 

Fig. 3. Pixel P located at (x,y) in frame 1 and its estimated location at 
(x + emx, y 'F emy) in frame 2. 

the estimates are based on linear interpolation of the vertex motions. This will 
propagate errors down to both feature matching at the finest scale and pixel 
matching. It is discussed later as how intensity structure can be used to help 
overcome some of these shortcomings. 

The pixel motion estimates yield a motion field whose discontinuities would 
ideally correspond to the boundaries of objects moving differently. However, the 
discontinuities in the estimated motion field are noisy and are jagged versions 
of object boundaries. The jaggedness is caused by the remaining errors in pixel 
motion estimates, which are particularly hard to eliminate in the vicinity of the 
object silhouettes where the object surfaces gradually turn away from the viewer. 
This is because the image intensity variations of a scene point with motion and 
the perspective compression of a surface patch are particularly severe under such 
conditions, resulting in severe correlation-based matching errors. 

To address these problems, it is assumed that the object (motion) boundaries 
coincide with intensity edges. This assumption is valid for a large fraction of real 
scenes. Consequently, any motion boundary almost coinciding with an intensity 
edge is interpreted as a noisy version of the intensity edge that is assumed to 
be the motion and object boundary. Accordingly, the algorithm searches for all 
intensity edges and tests for similarity of motion estimates on its two sides. If the 
motion estimates on the two sides are similar, then the intensity edge is merely 
a marking on the object. If not, the edge is tested as a motion edge. 

To this end, intensity edge contours are also obtained which yield regions of 
similar gray levels. Every pixel is given a label that corresponds to its region. 
To detect the boundary pixels of the moving objects, a small window centered 
around an edge pixel is considered. Average motion vectors are computed on the 
two sides separated by the intensity edge and a measure of similarity between 
them is computed. If they are not similar then the edge pixel is interpreted as 
on a motion boundary. By repeating this procedure for all of the intensity edge 
pixels, the pixels on the motion boundaries of the moving objects are detected. 

Another approach to obtain motion boundaries is to merge similar motion 
regions. For a pair of neighboring regions, average motion vectors are computed 
for these two regions by considering all the pixels within a small neighborhood 
of the intensity edge they share. 
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Fig.4. (a) One frame in an image sequence. (b) Point features detected in the frame. 
(c) Feature matching at a coarse level. (d) Motion segmentation at the coarse level. 

5 E x p e r i m e n t a l  R e s u l t s  

Experimental results obtained by the algorithm presented are shown in this 
section for two different image sequences. One of these was obtained in our 
laboratory and the other one shows an outdoor scene. 

For the first example a sequence was taken by moving objects with known 
motion between successive frames as shown in Fig. 4. Two objects are moving. 
Fig. 4a is the 3rd frame in the sequence and Fig. 4b shows point features detected 
in this frame. Point correspondences at a coarser level from perceptual grouping 
between frame-3 and frame-4 are shown in Fig. 4c. The segmentation of moving 
objects in frame-3 is shown in Fig. 4d. Point correspondences at a denser level 
are shown in Fig. 5a and segmentation of moving objects is shown in Fig. 5b. 
Finally, pixel matches are obtained for every pixel in the image and Fig. 5c shows 
the motion field (for every 5th row and 5th column pixel) between frame 3 and 
frame 4. Fig. 5d shows the segmentation of motion field. 

For the second example the camera is moving while acquiring the image 
sequence. Fig. 6a is frame 3 in the sequence and Fig. 6b shows the motion field 
at pixel level. 
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Fig. 5. (a) Feature matching at a dense level. (b) Motion segmentation at the dense 
level. (c) Motion field (every 5th row and 5th column). (d) segmentation of motion 
field at pixel level. 

6 C o n c l u s i o n s  

In this paper, an algorithm is proposed to obtain flow of image points across a 
sequence. Features as well as pixels are segmented into different moving objects. 
Experiments were conducted with both laboratory image sequences as well as 
natural sequences. Intensity maxima and minima were used as features. Other 
feature point detector may be used to obtain the feature points required for this 
algorithm. 

Perceptual grouping yields reliable correspondences. Although they are sparse, 
most correspondences found are correct. Inside homogeneous regions, sometimes 
the pixels are not matched uniquely. When an object also has a motion bound- 
ary with little change in texture/gray level across it, the boundary may not be 
found accurately. We have tried to integrate the intensity edge information with 
the motion field to more accurately locate the boundaries of the moving objects. 
Some of the pixels near the boundary of a moving object that  are within the 
stationary background are not matched correctly. 
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Fig. 6. (a) Frame 3 in the sequence. (b) Motion field (every 5th row and 5th column). 
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