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Performance Analysis of Stereo, Vergence, and 
Focus as Depth Cues for Active Vision 

Subhodev Das and Narendra Ahuja 

Abstract-This paper compares the performances of the binocular 
cues of stereo and vergence, and the monocular cue of focus for range 
estimation using an active vision system. The performance of each cue is 
characterized in terms of sensitivity to errors in the imaging parameters. 
The effects of random, quantizatiain errors are expressed in terms of the 
standard deviation of the resulting: depth error. The effect of systematic, 
calibration errors on estimation using each cue is also studied. Performance 
characterization of each cue is utilized to evaluate the relative performance 
of the cues. Also discussed, based on such characterization, are ways to 
select a cue taking into account the computational and reliability aspects 
of the corresponding estimation process. 

Index Term-Active vision, range from stereo, range from vergence, 
range from focus, performance evialuation, uncertainty analysis. 

I. INTRODUCTION 
Recent research in 3D vision employing active camera systems has 

demonstrated the integrated use of the binocular cues of stereo and 
vergence and the monocular cue of focus in estimating scene surfaces 
or obtaining range measurements [l], [3], [6]. Judging reliability of 
the overall integrated system would require a careful evaluation of 
the performance of the individual components. The objective of this 
paper is to analyze and compare the uncertainties of stereo, vergence, 
and focus, in estimating scene surfaces. For ease of analysis, this is 
done by considering the estimation of range of a scene point, thus 
excluding the changes in the range values that would result from the 
use of surface smoothness constraint during surface fitting. 

The uncertainty of the range estimated by the individual cues is 
determined from the errors in their respective imaging parameters. 
Individual error analyses of stereo- and focus-based range estimation 
methods have been reported in, the past [21, [ 5 ] ,  [61, [71, [91, [lo]. 
We present simulated performance curves based on our analysis 
which indicate that every active vision system has a performance 
crossover point, determined b y  the system’s parameters, on either 
side of which some of the cum employed by the system are more 
reliable than others. Since the use of a depth cue has an associated 
computational cost, we propose a model for combining the computa- 
tional and reliability aspects of a cue that defines the operational cost 
of the cue in the active vision system. Finally, we discuss how to 
exploit these results to preferentially select or combine the various 
depth cues in practical situations. 

This paper is organized in the following way. The next section re- 
views the range estimation method using each cue and analyzes the 
uncertainties of the estimated range values. A comparison of the 
performance of these different methods is presented in Section 111, 
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following which are discussed the various ways such an analysis can 
be utilized in practice, including the model for expressing the opera- 
tional cost of a cue. Section IV presents the concluding remarks. 

11. INDIVIDUAL PERFORMANCE OF THE CUES 

In this section, we will be discussing stereo and focus as inde- 
pendent sources of depth information with vergence treated as a spe- 
cial case of stereo and the uncertainties of the depth estimates derived 
from them. Let the range estimated using stereo, vergence or 
focus be a non-linear function of the respective imaging parameters: 
Z =j(a,, ..-, an). The first order relative uncertainty of the range 2 is 
then given by 

where A Z = Z - Z, and Z, is the most probable range value; A a, = a, - ao,, 

a, is the observed parameter value, and ao, is the most probable 
parameter value. Here, S, = (aZ/Zo)/(aa,/ao,) is the linear sensitivity 
(dimensionless) of Z to a,, and A ailaoj is the relative uncertainty of 
a,. Since the number of parameters using any cue is small and the 
sensitivities can be evaluated analytically, sensitivity-based uncer- 
tainty analysis of the cues is a reasonable approach in our case. 

For analysis purpose, the imaging parameters of stereo and focus 
methods will be classified into two categories: intrinsic, the parame- 
ters that are intemal to the camera and are not required to be changed 
for estimating range values at different scene locations, such as focal 
length and aperture; extrinsic, the parameters that are extemal to the 
camera or the internal parameters that may vary for different scene 
points, such as relative orientation of two cameras for fixating scene 
points or sensor plane position for focusing these points. Uncertainties 
in the depth estimates are caused by two types of error sources: (a) 
systematic errors which have their origin in the calibration of the 
intrinsic parameters and those extrinsic parameters which remain 
unchanged for different scene points, and (b) random errors which 
are associated with the variable extrinsic imaging parameters and 
cause random fluctuations in the computed range values. In general, 
the systematic errors introduce biases in the computed range values 
and thus determine the accuracy of the range estimation method, 
while the random errors limit the precision of the method. 

In the following two subsections, we will consider each of the 
range estimation methods separately. For each, we will first review 
the estimation procedure, and then discuss its effectiveness. To char- 
acterize the effectiveness, first the significant imaging parameters 
(intrinsiclextrinsic or constant/variable) will be listed. Then the im- 
pact on performance of the (systematic) errors in the constant imag- 
ing parameters and that of the (random) errors in the variable imaging 
parameters will be discussed separately. In the former case, the sen- 
sitivities of the range value to the calibrated parameters will be stud- 
ied. The reliability of any estimate in the presence of random errors 
will be described in terms of the standard deviation of the relative 
uncertainty described by (1). In reality, there may be other noise 
sources contributing to the random errors. These are considered to be 
secondary in nature and are the “unimportant” parameters of our 
current uncertainty model. 
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A. Stereo 
Consider a binocular stereo camera configuration in which the 

optic axes of the two cameras intersect at an angle 8. The left and 
right camera centers have a relative displacement (i.e., baseline) of 
The cameras are constrained such that the left and right optic axes, 
which make angles BL and e,, respectively, with the baseline vector, 
are coplanar with the latter, i.e., B= 180” - - 6. Suppose, a 3D 
point projects to (xL, yL) and (XR, y R )  in the lefi and right image 
planes, respectively, and let ( r ~ ,  CL) and (YR, CR) be the corresponding 
pixel locations in the frame memories. The transformation from 
image plane to frame memory coordinates may be expressed as 
Y = - (k,y} + ro and c = (k, x )  + co, where (.) denotes the rounding off 
operation and (r0, co) are the pixel coordinates of image plane center 
in the frame memory. The parameters I., and 4 are the ratios of nunr- 
ber of frame pixels to sensor dimension along row and column, re- 
spectively. The depth of the 3D point with respect to the left camera 
center is 

r V-cRU 

- c A-rRB’ z - R  (2) 
R 

where A =h&(rL - rOL) + roR sin e/VL k)(cL  - eoL) + roR cos B, B = 
CfR k, COS 8+ COR sin 9 ICfL k) (CL - coL) -fR k, sin 6+ c0R COS U =  
To, cos BR, and v= TfR  k, sin + Z C ~ R  cos I!&. Here,fL and fR are the 
focal lengths of the left and the right cameras, respectively. 

In a practical dynamic stereo imaging system, the center af rota- 
tion of a camera does not usually coincide with the origin of the cam- 
era-based 3D coordinate system. As a result, the baseline changes ics 
the cameras converge and diverge. To account for this variation, the 
baseline is expressed as z= z, + S, cos BL + 4 cos 4, where 4 and 
6, are the offsets of the centers of rotation from the origins of the 3D 
coordinate systems along the optic axes in the IeR and right cameras, 
respectively. These offsets are considered to be positive in the viewing 
direction and negative in the opposite direction. The term q repre- 
sents the baseline length when the optic axes are parallel. 

Vergence geometry is a special case of the stereo geometry in 
the sense that it can provide 3D information about one particular 
point in the visual field for a given camera configuration, viz., the 
point offiation at which the optic axes of the two cameras intersect. 
The range of this point is 

sin 8, 
sin B 

ZL =z- (3) 

This can also be obtained from (2) using the following substihtions: 
rL = roL, c L  = COL, rR = roR, and CR = c0R. For analysis purpose, we will 
also be considering another special case of stereo, that of parallel 
stereo, in which BL = BR = 90” and B = O”, and T = G,. The object 
distance, ZL = Z, = Z, in this case evaluates to 

whenh = fR =A r o ~  = roR and coL = C ~ R  are substituted in (2). 
The various parameters of the stereo method of interest for uncer- 

tainty analysis can be grouped in the following way: intrinsic -3 
extrinsic - zi,, &, & (constant), xL, xR, BL. OR (variable). 

Systematic Errors. Following (4), the relative uncertainty of Z 
due to the uncertainty in the intrinsic parameterfis given by 

where S’ = 1. Thus, the calibration error has an effect on the range 
uncertainty that decreases with increasing focal length$ According to 

(31, the uncertainty of Z, due to the calibration errors in the constant 
extrinsic parameters 6, &, and S, is given by 

cext 

Since z - ZI except for very small baseline lengths, S7,, is the 

dominant sensitivity term. This sensitivity term is nearly constant 
and so also is the relative uncertainty E , ~  for the same relative un- 
certainty of q. Hence, the effect of the calibration error on the range 
uncertainty decreases with increasing baseline G. 

Random Errors. There are two types of possible errors in the 
variabIe extrinsic parameters xL and xR (related to CL and CR) of 
(4huant iza t ion  error and localization error. The precision of the 
estimated range in presence of quantization errors in feature loca- 
tions, using the paraIlel stereo geometry, has been widely investi- 
gated [2], [SI, [9]. The localization error is particularly associated 
with feature-based stereo methods and occurs when the locations of 
the detected features, e.g., zero-crossings of the Laplacian of the 
Gaussian operator, do not coincide with the true intensity discontinui- 
ties. k t  A xL and A xR denote the image plane coordinate error variables 
that are uniformly distributed within the interval [-D/2, +D/2] and are 
independent of each other. The uniformity and the independence 
assumptions are valid except for the cases when bL - xRI is very small 
[2]. Here, D 2 w, w being the width of a square pixel, is determined 
by the combined quantization and localization errors. The detected 
features can be further localized with subpixel accuracy [4]. Conse- 
quently, the feature location error is bounded by [-d/2, +d/2], where 
d = Din and n f> 1) is the subpixel resolution. Thus, the uncertainty 
of range Z is given by 

(7) 

where Sz, = (xL  Z) / (g )  and SxR = - (xRZ) I ( f ) .  Observing that 

the errors in the different parameters are independent, we express the 
reliafiility of the range estimated using parallel stereo as 

with 4 x L )  = 4 x R )  = d / f i  (noise-free) or (dz / 12+cr;)’ 

(additive zero-mean Gaussian noise, N(0, gn)). The quantization of 
the vergence angle due to the quantized steps of the angular position- 
ers of the left and the right cameras can also affect the precision of 
the range estimated using (3). Suppose, the angular error in eL as well 
as is limited to [-d2, +a;/2], and ABL and ABR are the error vari- 
abIes. Then, the uncertainty of the range ZL is described by 

(9) 
ABL ABR -- A-% -Se ___ 

ZL L BL + s e R T ’  

where SOL = 6 (& sin & I T +  cot 9 and So, = 8, (-& sin & I T +  sin 
$/(sin & sin 9). The reliability of the vergence-based range estimate is 

“ r d Z L )  =bL f f?!BL)ts iR ”?[‘R)]%’ (10) 

with a( B L )  = 48,) = a / f i  . 
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B. Focus 
To estimate depth from focus, usually the distance between the lens 

center and the sensor plane of a camera system is varied to register a 
sharp image of an object point. (Alternatively, depth may also be 
obtained from defocusing [SI, but that case will not be addressed 
here.) The distance, v, measured from the second principal plane and 
yielding the sharpest image depends on the distance of the object 
point, U ,  measured from the f int  principal plane. The sensor plane 
distance can be used to estimate the object distance using the relation 

1 1 1  -+-+-, 
u v f  

in which f is the focal length of the lens. The object distance (range) 
measured from the projection center of the lens is Z = U + t, where t is 
the offset of the principal plane from the projection center and is posi- 
tive in the viewing direction. The: sharpness of an image is usually esti- 
mated by a criterion function that measures the high-frequency content 
of the image. 

The different parameters of interest for the focus-based method 
are: intrinsic -J; t; extrinsic -v (variable). 

Systematic Errors. The uncertainty of the range, Z, due to the 
calibration errors in the intrinsic parameters f and t i s  given by 

where Sf= (Z  - t )2 / (Zn  and S, == tlZ. Typically, t 4 Z and f + Z, thus 
Sf = Z/f: Hence, the uncertainty of depth due to the systematic errors 
is more critically dependent on the calibration off than that of t. 
Moreover, this uncertainty is more pronounced at larger distances 
and for smaller focal lengths. 

Random Errors. The error iin localizing the peak of the criterion 
function affects determination of the correct sensor plane position v. 
The two sources of error are tlhe discrete sampling of a continuous 
function and the flatness of the peak. The discrete samples of the 
criterion function are obtained at the integer-valued steps of the sen- 
sor plane positioner to which v is linearly related. This uncertainty is 
assumed to be bounded by [-B/2, +B/2], where B denotes a quantized 
step of the mechanical positioner. By interpolating around the de- 
tected peak of the focus criterion function, the localization of the true 
peak can be further improved 10 a subquantization step. As a result, 
the localization error can be bounded by [-,@2, +,@2], where p= B/n 
and n (> 1) is the desired resolution of the subquantization step. The 
flatness of the peak is attributed to a phenomenon commonly known 
as the depth of focus. Suppose, the sensor plane could be positioned 
anywhere within an interval [v2, v l ]  about vo, where v2 < vo < vI,  such 
that projections of all objects within the corresponding interval [u2, 
u l ]  about uo, where u2 > uo > ul ,  appear equally sharp. The interval 
[v,, v l ]  is the depth of focus and is expressed as 
w(vo) = v1-v2 = (2AD0 f 3 ) / ( A 2  f Z - D : ( t + f ) 2 ) .  zo l ( Z o - t -  f ) ,  

for a thick lens. Here, Do is the diameter of the smallest resolvable 
circle which is the image of a point. The sensor noise will not seri- 
ously affect the identification of the in-focus image using the crite- 
rion function if the peak is sharp, i.e., the depth of focus is small. 
This is because the large number of pixels from which the criterion 
function is usually computed (unless the window for evaluating the 
function is small, such as in the vicinity of a depth discontinuity) may 
average out the noise effect and allow following of the peak. How- 
ever, if the depth of focus is lairge, then the criterion function may not 

change much over the entire depth of focus. Assuming a zero-mean, 
white, additive sensor noise, it may be shown that for a criterion 
function based on squared image gradient values, the random noise 
will cause the criterion function peak to be located anywhere within 
the depth of focus with uniform probability. This is the basis of our 
uncertainty analysis for focus when depth of focus is considered. 

The relative uncertainty of the range value due to the localization 
uncertainty of the sensor plane with respect to the true focused position 
is expressed as 

where the linear sensitivity S, = - (Z  - t)(Z - t -j) /(ZJ.  The reliability 
of the focus-based range estimate is then expressed as 

Do [ A 2  f 2 + 30; (t  + f ) 2 ] 5  / f i  [ A2 f 2 - D; (t  + f ) 2 ]  . f z / (z - t - f )  

(otherwise). In a typical imaging system, the aperture A may be in the 
order of several centimeters while the diameter of the confusion circle 
Do is in the order of several microns. According to (14), 
a,, = ( D o Z ) / ( f i A f )  when w(v) > a i.e., for large distances. 

Hence, the reliability of the focus-based depth estimate which de- 
grades with distance can be improved by l )  increasing the focal 
lengthJ1; 2) increasing the aperture A ,  and 3) reducing DO by increas- 
ing the resolution of the sensor plane. 

111. RELATIVE PERFORMANCE OF THE CUES 

In this section, we will compare the performance of stereo disparity, 
vergence, and focus in the presence of systematic and random errors 
in the imaging parameters. We first discuss the relative performance 
with respect to the systematic errors for which we will compare the 
relative uncertainties of the computed range due to these errors. Next, 
we describe the relative performance of the cues in the presence of random 
errors by comparing the statistics of the errors in range estimates. 

We observe that the relative uncertainty of the range estimated 
from vergence, &v, due to the calibration error in the baseline is ex- 
pressed in (6). With the relative uncertainty of range from focus 
given by (12), the ratio of these two uncertainties for the same rela- 
tive uncertainties of the input parameters is 

s +s +s 
-- ‘XV - ‘0 ‘L  ‘ R  = f  

s +st  Z 
‘iF f 

for Z % t .  Since, for a typical imaging system Z * J;  we find that ~y 

4 E,F. In other words, calibration of focal length is relatively more 
important for focus than baseline is for vergence. 

To compare stereo disparity and focus, we will consider the simple 
case of parallel stereo. Let the relative uncertainty of range from parallel 
stereo due to the calibration errors in f and q be denoted by ES. According 
to (5)  and (6), the linear sensitivities of range to these parameters are S’= 1 
and Sz, = zo / z = 1, respectively. Thus, the ratio of the relative uncer- 

tainties of stereo and focus-based estimates due to the systematic errors is 
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when the relative uncertainties of the corresponding input paramem of 
both cues are assumed to be equal, and Z 9 t. Once aga& for 2' %-A the 
systematic errors have more pronounced effect on focus than on stereo. 

To compare the relative p e r f o m c e  of vergence and tbcw in plesence of 
random errors, we utilize (10) and (14). The ratio of the reliabii of 
vergence and focus or the sensitivity of focus with respect t0 vergence, 
SF/, is obtained as 

when we assume that 0, = BR, 4, S, < G, A S- Db and Z * t +f: Now, 
a value of SFIV considerably larger than unity would indicate that focus 
is more sensitive (better) than vergence. A value of SF,, considerably 
smaller than unity indicates that vergence is more sensitive. Thus, the 
condition for the higher sensitivity of vergence-based measurements is 

Jcot2B+csc28 < 4, or ~~ <3 (18) 
Z af Z aAf' 

For very small range values, 0L = 0, -+ 0' or e-+ 180', rhus both 
inequalities are unlikely to be satisfied. In other words, focus-baed 
estimates are likely to be more reliable at very close range. However, 
with increasing range, particularly when Z S z, the term CO? 8+ csc2B 
can be approximated in the following way: 

2 8Z4-4Z2z2+z4 - 2Z2 -~ 2 cot 0+csc e =  
z2(4Z2-z2) i! ' 

where the expression following the equality sign is obtained by let- 
ting 0, = 6, = Bo and noting that Z = z/(2cos $) from (3). Conse- 
quently, the inequalities of (1 8) can be approximated as 

The parameters on the left-hand side (LHS) of the inequality sign are 
associated with vergence, while those on the right-hand side @HS) are 
associated with focus. With proper selection of the vergence parameter 
values, it is possible to satisij, either of the inequalities for practical active 
vision systems. (At least, there is no restriction, technological or other- 
wise, on how large the baseline zcan be.) In other words, the sensitivity of 
focus with respect to vergence, SFl, is likely to exhibit a crossover point 
with respect to S,,, = 1 as the range increases. This is illustrated in Fig. 1. 
The location of the crossover point is completely determined by the im- 
aging parameters and therefore varies from system to system. 

To compare the reliabilities of stereo disparity and focus methods, 
we utilize the results of (8) and (14). The sensitivity of focus with 
respect to parallel stereo is given by 

where we assume that A + Do and Z %- t +J: The corresponding con- 
dition for the higher sensitivity of stereo is 

--<A, or -<<. (21) 
r f i f  z A 

The LHS and RHS parameters of the inequality sign are associated 
with stereo and focus, respectively. Comparing (18) and (21), we find 
that the inequalities of (21) are independent of the range and are 
completely determined by the stereo and focus parameter values. In 
other words, the sensitivity measure SFl4, does not exhibit any cross- 
over point as the range changes, provided that the range is not too 
small to invalidate the assumption Z + t + J: Consequently, the 
sensitivity is either greater or less than unity, which is illustrated in 
Fig. 1. Additionally, we note that Do is in the order of the size of a CCD 
element while d can be considerably smaller than Do under subpixel 
localization. Thus, if zis selected to be significantly larger than A (say, 
T%- U), then parallel stereo can be made more sensitive than focus. 
Fhally, it is intuitive &om the behavior of SF/ ,  and SFXU that the sensi- 
tivity of fwus with respect to verging stereo, SFfS, should also exhibit a 
crossover point with increasing range value. This observation is con- 
firmed by the simulation results of Fig. 1. Once again, the actual loca- 
tion of the crossover point is system dependent. 

S 
F/ 

1.5 ir 

Fig 1 Simulation results showing the relative performance of focus and 
stem as a function of the range sensitivity of focus with respect to vergence, 
SFIV, has a crossover point, sensitivity of focus with respect to parallel stereo, 
Sms, is less than unity, sensitivity of focus with respect to verging stereo, 
S'F~S, too has a crossover point The same imaging parameter values, typical of 
an active vision system, are used for the three different situat:ons The range, 
Z, i s  in meters. 

To demonstrate the utility of the relative performance analysis of 
the cues in practical situations, we consider the task of controlling an 
active vision system for surface reconstruction of scenes that are wide 
and deep, such as the one shown in Fig. 2a. At any given time during 
imaging of such a scene, sharp features are acquired for a limited 
depth range and only a small part o f  the scene is visible. Thus, it is 
required that the cameras be aimed in different directions and fixate 
upon objects at different distances. In our first example, a verging 
stereo camera system is directed at various objects in the scene 
sequentially and the decision to utilize focus or vergence-based estimate 
in the fixation of each object is sought. The baseline length of the 
camera system is q, = 28 cm, the circle of confusion has a calibrated 
diameter of Do = 24 pm or about 2 pixels, and the angular resolution of 
the vergence stepper motors is a= 1.7 x 10" radiandstep. Fixation is 
attempted using a focal length off= 105 mm and an aperture diameter 
of A = 50 mm. Substituting these parameter xalues in (19), we 
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observe that a I z < &Do I Af for object distances greater than the 
baseline length. Consequently, for these object distances, the estimate 
of vergence is more reliable than that of focus and hence it is used in 
the fixation process shown in Fig. 2b, and 2c. 

Here, the problem is selecting focus or coarse stereo-based range 
information as the initial estimate for stereo-based surface recon- 
struction for the in-focus part during any given fixation of the scene 
shown in Fig. 3a. The coarse stereo information is derived during an 
earlier fixation when the current in-focus part happened to be part of 
the peripheral visual field and, therefore, was subjected to lens defo- 
cusing [3]. Inorder to have overlapping visual fields, the baseline 
length of the parallel stereo camera system is considerably smaller 
than that of the verging camera system and is = 5 cm With an ap- 
erture diameter of A = 34 mm, the feature localization uncertainty of 
stereo d has to be less than 2D0 or 4 pixels according to (21) for 
greater reliability of coarse stereo over focus. However, lens defo- 
cusing (assumed to be Gaussian in nature) of peripheral features to- 
gether with a Gaussian-based feature detector would cause the local- 
ization uncertainty to be greater than the above limit (typically, the 
uncertainty is in the range of 6-12 pixels). As a result, focus-based 
depth is the preferred initial estimate for stereo analysis and the cor- 
responding result is shown in Fig. 3b. 

( C )  

Fig. 2 . Experimental results utilizing relative performance analysis of focus 
and vergence: (a) An overview of a scene requiring fixation and stereo analy- 
sis of individual objects (rectangles enclose fixation points); fixation of the 
horizontal box using vergence-based depth estimate, (b) left, and (c) right 
images showing image centers and the best match to the left center (upper 
rectangle in right). 

1217 

(b). 
Fig. 3. Experimental results utilizing relative performance analysis of focus 
and parallel stereo: (a) An overview of a scene requiring piecewise stereo 
analysis of different parts; (b) The composite range map corresponding to the 
left viewpoint obtained by merging the individual stereo analysis results in 
which depth from focus has been the initial estimate. 

The second example employs a parallel stereo camera system. 
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The knowledge of relative performance of the different depth cues is 
also helpful to determine the operational criteria of the cues as each range 
estimation method has an associated computational cost Active vision 
offers the opportunity to obtain multiple measurements of a scene p i n t  
such as liom different viewpoints. Now, it is well hown thal if admotes the 
standard deviation of a population given by the probability €unction of a 
random variable, then the standard deviation of the mean of n independent 
samples drawn f?om the population is o / A. Suppose, n meamemerits by 
a range estimation method B is equivalent, in terms of precision, to a single 
measurement by another method A, i.e., C F ~  / & = cA. Applying the de& 
nihon of sensitivity (of A with respect to B), it is ofstained that 
n = I = Sj jg.  Also, let a single measurement by A cod 3 ut& and 
that by B cost % units. Then, in order to achieve the same precision, the ratio 
of the total coniputational costs of B to A or the pre,ferabili& of A w& re- 
spect to B i s  

(22) 

The term, c g / A  = is the expendability of 3 with respect to A.  A 
value of PAIB greater than unity signifies that A is preferable to B. 

A common measure of computational cost is the time required 
to obtain a measurement. Thus, (22) can be used to select a range 
estimation method that gives the best tradeoff between precision 
and time. To illustrate this point, we plot the preferability of 
focus to vergence in Fig. 4a and that of focus to parallel as well 
as general stereo in Fig. 4b using the sensitivity simulation re- 
sults of Fig. 1 .  To the left of the point of intersection of any 
curve with PF, = 1 ,  focus is the preferred depth cue. It is ob- 
served that although the precision of the general stereo method is 
marginally (- 7%) better than that of focus (see Fig. I), the cost 
of the former method is significantly (- 70%) more than that of 
the latter when 2 = 1 m. In this manner, the computational merit 
of an estimation method, measured by its cost, can be combined 
with its technical merit, measured by its sensitivity, to define an 
operational criterion for an estimation method. 

IV. CONCLUSIONS 
In this paper, we have presented performance analyses of three vis- 

ual cues used in a typical active vision system for surface reconstruc- 
tion: stereo, vergence, and focus, as sources of depth. The performance 
of each cue has been characterized by the derived expressions for the 
standard deviation of the relative uncertainty in the presence of random 
errors in imaging parameters. These statistics have been subsequently 
used to evaluate the relative performance of the cues. We have demon- 
strated the utility of the relative performance analysis by considering 
practical examples of 3D reconstruction As an extension of the appli- 
cability of our analysis, we have proposed a model for combining the 
computational and reliability aspects of a cue that is useful for cue se- 
lection. Performance characterization of the visual cues in the manner 
described in this paper is likely to be useful in controlling an active 
vision system under time-constrained, reliability-demanding situations. 

An integrated system provides the opportunity to reduce the un- 
certainties in range due to random errors. The use of sharp and 
well-localized features improves the reliability of stereo-based 
range estimates; focusing can ensure sharpness of image features 
for objects within the depth of field of the lens. Without any initial 
guess, the search for the optimal sensor plane position to register 
the sharpest image of an object point is slow because of the large 
range of sensor plane positions that needs to be examined. Also, 
the possibility of improper localization of the peak of the focus 

criterion is higher if this range is large. An estimate of the range 
from stereo or vergence can help in predicting the range of image 
plane positions by approximating the depth of focus, thereby im- 
proving the preferability of focus with respect to other cues. Fi- 
nally, fusion of depth measurements obtained from different cues 
can lead to an estimate whose error is lower than those of the indi- 
vidual estimates. The fusion process is appropriate when the sensi- 
tivity of focus with respect to any other cue is not too different 
from unity. These are some of the many different ways the tools for 
performance evaluation of the depth cues developed in this paper 
will be beneficial for designing and operating systems that use 
these cues. 

Fig. 4. Plots of cast ratio as a function of the range’ (a) vergence 
CW F = 1, (b) parallel and general stereo (A‘) to focus assumi 
latter expendability i s  &mal of most active vision systems 
in meters 
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On the Estimation of Rigid Body Rotation 
from Noisy Data 

Daniel Goryn and Ssren Hein, Member ,  IEEE 

Abstract-We derive an exact !solution to the problem of estimating 
the rotation of a rigid body from noisy 3D image data. Our approach is 
based on total least squares (TLS), but unlike previous work involving 
TLS, we include the constraint that the transformation matrix should be 
orthonormal. It turns out that the :solution to the estimation problem has 
the same form as if the data are not noisy, and thus the solution to the 
standard Procrustes problem can be applied. 

Index Term-Computer visiaon, rotation estimation, total least 
squares. 

I. INTRODUCTION 
In computer scene analysis and computer vision applications, the 

problem of estimating motion parameters of objects often occurs. In 
the case of noise-free observations of object points, the problem is 
easily solved with zero error. However, in practice the observations 
are noisy. Arun, Huang, and Blostein [l] have proposed an algorithm 
which estimates the translation vector and unitary matrix that best 
map one point set into another. The algorithm is based on singular 
value decomposition (SVD), a n d  assumes that noise is only present 
on one of the two point sets. The algorithm is not guaranteed to re- 
turn a rotation matrix, and may instead retum a reflection matrix. 
Subsequently, Umeyama [2] has improved upon the algorithm so that 
it always returns a rotation matrix. Faugeras and Hebert [3] have 
proposed an algorithm which directly returns a rotation matrix; these 
authors also assume that only one of the point sets is noisy. 

In this note we modify the assumptions in [l], [2], and [3] by as- 
suming that both point sets are moisy, and we show that the result of 
[ 11 remains valid under this more general assumption. 

11. CONSTRAINED TOTAL LEAST SQUARES SOLUTION 

We have available two sets of noisy observations of n points of a 
rigid body, that is, we have two n x 3 matrices A and B. We assume 
that the correspondence problem has been solved, so that corre- 
sponding points are in the same order in A and B. The translation of 
the object can easily be taken into account as in [4], so we also as- 
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sume that any translation has already been compensated for. The 
problem is to find a 3 x 3 matrix X and two perturbations AA and AB 
which satisfy 

(A + AA)X= B +AB, 

such that the perturbation size E = JIAAJI’ + JJABJJ’ is minimized and 
the matrix X is unitary, that is, X‘X = I. We will use the Frobenius 
matrix norm. 

To solve the problem, we first introduce the following variables 
for notational convenience: 

(1) 

D = (BX‘- A)/2 
AA’=AA-D 

A B  = AB + DX. (2) 
Using the unitarity of X, (1) can then be written 

AAX =AB’. (3) 
Using (2), (3), and the unitarity of X, the perturbation size becomes 

+ 2tr(AA”D)-2tr(AAfTD) 

= 2())AA - (BXT - A)/21f + IlBX’ - All ’/4) 

(4) 

An obvious lower bound Eo on E is obtained if the first term in the 
last line of (4) is zero, and X is chosen to be the value & which 
minimizes the second term. Furthermore, the value Eo is attainable by 
setting X = X, andAA = (BX; - A)/2, which in turn implies AB = 

(A& - B)/2 due to (3). We have thus reduced the original problem to 
the problem of choosing a unitary matrix X to minimize JIBXT- AI?, 
which is recognized as the standard Procrustes problem [5]. The so- 
lution is [5] 

xo = uv’, 
where the orthogonal 3 x 3 matrices U and V are given in terms of 
the SVD of ATB: 

A‘B = usv‘. 
This SVD method for determining Xo has the same form as the one 
presented in [l]. To always obtain a rotation matrix (and not a reflec- 
tion matrix), the modification proposed in [2] should be used. 
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