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Abstract. An important application in surveillance is to apply com-
puterized methods to automatically detect anomalous activities and then
notify the security officers. Many methods have been proposed for anom-
aly detection with varying degree of accuracy. They can be characterized
according to the approach adopted, which is supervised or unsupervised,
and the features used. Unfortunately, existing literature has not eluci-
dated the essential ingredients that make the methods work as they do,
despite the fact that tests have been conducted to compare the perfor-
mance of various methods. This paper attempts to fill this knowledge
gap by studying the videos tested by existing methods and identifying
key components required by an effective unsupervised anomaly detection
algorithm. Our comprehensive test results show that an unsupervised
algorithm that captures the key components can be relatively simple
and yet perform equally well or better compared to existing methods.

1 Introduction

In recent decades, surveillance cameras have been widely used in public places
to monitor human activities and provide security measures. A security officer
typically has to monitor a dozen or more surveillance videos at the same time.
Most of the time, there is no significant anomalous activity, which tends to lower
the guard of the officer. After monitoring for long hours, he can get tired and
miss important events that happen suddenly. Therefore, automatic detection
of anomalous activities by computerized methods has attracted much research
effort. These methods can also be used for criminal investigation to sieve through
video archives to detect anomalous activities that have happened in the past.

Many methods have been proposed for anomaly detection with varying degree
of accuracy.They can be characterized according to the approach adopted,which is
supervised [1–16] or unsupervised [17–21], and the features used, which range from
c© Springer International Publishing AG 2017
M. Felsberg et al. (Eds.): CAIP 2017, Part I, LNCS 10424, pp. 160–171, 2017.
DOI: 10.1007/978-3-319-64689-3 13



On the Essence of Unsupervised Detection of Anomalous Motion 161

Fig. 1. Sample frames from test videos. (a) UCSDped1, (b) UCSDped2, (c) Subway
entrance, (d) Subway exit, (e) UMN, (f) PETS2009 scene 1, (g) PETS2009 scene 2.

low-level optical flow to high-level multiple object trajectories. Unfortunately,
existing literature has not elucidated the essential ingredients that make the meth-
ods work as they do, despite the fact that tests have been conducted to compare the
performance of various methods. For example, test results (Sect. 4) seem to sug-
gest that there is no significant advantage in offline training performed by super-
vised methods compared to well-crafted unsupervised methods. It is also uncertain
whether the time taken to process high-level features necessarily leads to better
detection accuracy. This situation makes it difficult to optimize the methods for
real-time online detection and efficient video archive analysis.

This paper attempts to fill this knowledge gap by studying the videos tested
by existing methods and identifying key components required by an effective
unsupervised anomaly detection algorithm. We have chosen to investigate unsu-
pervised method instead of supervised method for the following reasons: (1)
Unsupervised method does not require tedious and time-consuming manual
labeling of training data. (2) It does not require an offline training phase. There-
fore, it can be more easily extended to handle new normal and abnormal motion
patterns that have not happened in the past. (3) Without the need of offline
training, it can be more easily adapted to real-time online applications by imple-
menting incremental algorithms. We focus on surveillance videos of pedestrians
captured by stationary cameras because they are widely tested in the literature.
Our comprehensive test results on these videos show that an unsupervised algo-
rithm that captures the key components can be relatively simple and yet perform
equally well or better compared to existing methods.

2 Existing Methods

Regardless of the approach, all existing methods begin by extracting features
from the input videos and then making detection decisions based on the features.
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The extracted features include optical flow [1,7,8,17,18], histogram of optical
flow (HOF) [2,4,14–16,19,20], histogram of oriented gradient (HOG) [4,14], 3D
SIFT [4,21], histogram of edge orientation [16], descriptors of intensity, gradi-
ent, object persistence, motion direction, optical flow orientation, speed, etc.
[6,9,12], structural descriptors based on HOF [19], particle advection based on
optical flow [3,13], tracked interest points or targets [3,7,19,20], dynamic texture
[5,11], and pedestrian regions [19]. In addition, auto-encoder neural network has
also been used to extract features from video images [1,10,14]. These features
may be extracted for image pixels [3,7,13,17], 2D spatial regions [1,2,5,6,8,10–
12,15,16,18–20] or 3D spatio-temporal regions [4,6,9,14,15,21] of the video.
Simple features, such as optical flow and intensity gradient, take much less time
to extract compared to features extracted by complex algorithms, such as pedes-
trian detection and multiple target tracking [19,20]. Auto-encoders can extract
features efficiently but it takes a large amount of time to train them.

Existing methods for detecting anomalous motion in surveillance videos can
be grouped into two categories: supervised and unsupervised. Supervised meth-
ods [1–16] typically work in two phases: training and testing. In the training
phase, these methods use labeled training data to train a classifier or a proba-
bilistic model. Various algorithms have been used for training, including SVM
[1,7], conjugate Bayesian analysis [2], EM [3,5,11–13], Gaussian process regres-
sion [4], Bayesian network propagation [6], recurrent neural network [10], and
sparse reconstruction [15]. Methods that use k-nn [9,16] do not need the train-
ing phase. Methods that model simple probability distributions such as Gaussian
distributions [8,14] have a simple training phase that estimates the distribution
parameters. In the testing phase, trained classifier or probabilistic model is used
to classify features as normal or abnormal. Well-trained supervised methods can
be accurate. Moreover, their testing phases are typically efficient enough for real-
time applications, provided the features can be extracted efficiently. However,
manual labeling of training data is tedious and time-consuming. Therefore, it is
difficult to extend supervised methods to include new scenario.

Unsupervised methods [17–21] typically group extracted features into clusters
without relying on labeled data. The clustering algorithms that have been used
include hierarchical cluster merging [18], k-means [20], online weighted clustering
[20], and fuzzy probabilistic clustering [21]. After clustering, these methods label
dominant clusters (i.e., clusters with the most members) as normal and the other
clusters as abnormal. The threshold for deciding which clusters are dominant is
empirically set. The methods of [17,19], on the other hand, do not perform clus-
tering. Instead, the method of [17] performs line intersection to detect the center
of crowd dispersion, and the method of [19] measures dissimilarity between fea-
tures to detect anomalies. Unsupervised methods do not require manually labeled
training data and do not perform offline training. Therefore, they can be easily
extended to handle new normal and abnormal motion. Moreover, unsupervised
methods that use incremental algorithms are very suitable for real-time online
applications.



On the Essence of Unsupervised Detection of Anomalous Motion 163

The above methods have been tested on one or more of the following surveil-
lance videos on pedestrians (Fig. 1):

• UCSDped1 [22]: 36 videos, tested in [1,4–6,8–13,15,16,19–21].
• UCSDped2 [22]: 12 videos, tested in [5,8,11–16,19–21].
• Subway [8]: 2 videos in 2 scenes, tested in [4–6,8,9,12,15,21].
• UMN [23]: 3 videos in 3 scenes, tested in [2,3,5,7,9,13–15,17–19].
• PETS2009 [24]: 8 videos in 2 scenes, tested in [2,3,13,18].

For UCSDped1, UCSDped2, UMN, and PETS2009, the walking pedestrians con-
stitute the dominant motion and they are regarded as normal. Abnormal motion
is elicited by carts, cyclists, skaters, escaping humans, etc., which move at faster
speeds. That is, normal and abnormal motion in these videos differ primarily
in motion speed. On the other hand, for Subway, the passengers entering and
existing the subway gates in an orderly manner constitute the dominant motion
and are regarded as normal. Passengers who move along directions other than
entering or exiting the gates are regarded as abnormal. That is, normal and
abnormal motion in these videos differ primarily in motion direction.

3 Unsupervised Anomaly Detection

Our research goal is to identify the essential ingredients for effective unsupervised
detection of anomalies in pedestrian surveillance videos. To achieve this goal, we
apply the principle of Occam’s razor: given several equally effective alternatives,
we choose the simplest alternative. Therefore, we call our method OCCAM.
Similar to unsupervised methods based on clustering, OCCAM consists of three
stages: (1) feature extraction, (2) features clustering, and (3) cluster labeling.

3.1 Feature Extraction

Analysis of common test videos used in existing work (Sect. 2) shows that normal
and abnormal motion may be differentiated by either motion speed or motion
direction alone, depending on the test videos. Therefore, OCCAM uses motion
speed or motion direction as the feature. It applies the method of [25] to extract
trajectories of distinctive image feature points. This method samples feature
points at multiple spatial scales and tracks feature points using median filtering
to obtain optical flow. Stationary feature points and those with large displace-
ments between two consecutive frames are removed to reduce tracking error.
Tracked feature trajectories have a fixed length l, and long trajectories are split
into short trajectories of length l. Trajectories with length shorter than l are
removed because they are insignificant.

Let {xi(t), . . . ,xi(t+l)} denote the trajectory of feature point pi, i = 1, . . . , n,
from frame t to t + l, where xi(t) is the position of pi in frame t. Then, the
direction θi and speed si of feature point pi are computed as the direction and
magnitude divided by trajectory length of the vector xi(t + l) − xi(t).
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In UCSDped1 videos, humans and other objects move toward or away from
the camera resulting in noticeable perspective distortion. As a result, objects
nearer to the camera appears to move faster than those further from the cam-
era even though they may move at the same actual speed. To overcome this
distortion, the feature points are projected onto the ground plane using an esti-
mated homography. Then, the speeds of the feature points are computed after
projection.

3.2 Feature Clustering

Feature clustering is performed on either motion speed or motion direction. Let
us denote the extracted feature values as fi, i = 1, . . . , n. Since the features are
1-D, the simplest way to cluster fi is to divide the feature value range (minimum
to maximum) into m equal intervals, and regard each interval as a cluster Cj ,
j = 1, . . . ,m. Then, features fi can be clustered efficiently into their respective
clusters in a fixed O(n) time. Each cluster Cj is characterized by the cluster size
|Cj | and the cluster center, which is the average feature value f̄j of the features
in Cj . This simple and efficient clustering method ensures that the intra-cluster
differences are much smaller than the inter-cluster differences.

After clustering, normalized cluster size Sj and normalized cluster center Fj

are computed for each cluster Cj . Let us denote the dominant cluster, the cluster
with the largest size, as C+ and the largest feature value as f∗. Then, Sj and
Fj are computed as follows:

Sj = |Cj |/|C+|, Fj = f̄j/f∗. (1)

Therefore, these normalized values range between 0 and 1. Each cluster Cj is now
characterized by a characteristic vector of two components, namely normalized
cluster size Sj and normalized cluster center Fj .

3.3 Cluster Labeling

Unlike existing methods, OCCAM labels the clusters into three types: normal,
abnormal, and ambiguous. The ambiguous clusters allow the normal and abnor-
mal clusters to be separated as widely as possible. Since the characteristic vectors
of the clusters are 2-D, 2-D k-means clustering is used to group the clusters Cj

into three groups Gh, h = 1, 2, 3.
First, k-means clustering is initialized as follows: The center of group G1

is initialized as the characteristic vector of the dominant cluster C+. Similarly,
the abnormal group G2 is initialized with the cluster C− whose cluster center
is the furthest from that of C+ because C− is most likely to be abnormal.
The ambiguous group G3 is initialized with the cluster that is approximately
equidistant to C+ and C−.

Next, k-means clustering is executed to group the remaining clusters Cj into
the three groups Gh. The distance between a cluster and a group is measured in
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terms of the Euclidean distance between their characteristic vectors. After clus-
tering, all the clusters in group G1 are labeled as normal, those in G2 abnormal,
and those in G3 ambiguous. In addition, the abnormal cluster that is nearest to
G1 is re-labeled as ambiguous so as to widen the separation between normal and
abnormal clusters.

After cluster labeling, the features fi in abnormal clusters are labeled as
abnormal features. The corresponding trajectory positions xi(t) of fi are labeled
as abnormal feature points. Finally, the video frames that contain abnormal
feature points are labeled as abnormal frames.

4 Experiments and Discussions

4.1 Data Preparation and Procedure

Five sets of common test videos discussed in Sect. 2 were used in the experiments,
namely UCSDped1, UCSDped2, Subway, UMN, and PETS2009. For OCCAM,
motion directions were extracted from Subway video whereas motion speeds were
extracted from the other videos. Next, feature clustering and cluster labeling
were performed to detect abnormal feature points and abnormal frames. Then,
true positive rate (TPR), false positive rate (FPR), and accuracy of detected
abnormal frames were computed.

To determine a suitable value for the number of clusters m in the feature
clustering stage, a test was performed on one video each from UCSDped1, UCS-
Dped2, PETS2009 scene 1 and PETS2009 scene 2 test sets with varying values
of m. The test shows that OCCAM achieves the overall highest accuracy with
m = 10. Therefore, m is set to 10 for all the tests.

4.2 Benefit of Ambiguous Clusters

This test illustrates the benefit of having ambiguous clusters. A variant of
OCCAM, denoted as OCCAM−, was tested such that its cluster labeling stage
ran k-means clustering with k = 2 for normal and abnormal groups, without
ambiguous group. Existing methods also label their clusters as either normal
or abnormal, without ambiguous clusters. Both OCCAM and OCCAM− were
tested on the common test videos discussed in Sect. 2. True positive rate (TPR)
and false positive rate (FPR) were measured for the detected abnormal frames.

Table 1 compares the results of OCCAM and OCCAM−. For all test videos,
OCCAM’s TPR is slightly smaller than that of OCCAM−, but OCCAM’s FPR
is significantly smaller than that of OCCAM−. That is, by regarding some clus-
ters as ambiguous, OCCAM makes significantly fewer false detections than does
OCCAM− without significantly sacrificing its true detection rate.

4.3 Performance Comparison

OCCAM’s results are compared with all of the existing methods discussed in
Sect. 2. These methods belong to the following categories:
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Fig. 2. Performance comparison. 14 methods are available for comparison on (a) UCS-
Dped1 videos and 10 methods on (b) UCSDped2 videos. Supervised methods (dashed
lines), unsupervised methods (solid lines).

• Supervised: AMDN [1], BM [2], CI [3], GPR [4], H-MDT-CRF [5], IBC [6],
IEP [7], LMH [8], Local-KNN [9], LSTM [10], MDT [11], MPPCA [12], OF
[13], SF [13], Sabokrou [14], SRC [15], and STMC [16]. [13] tested both OF
and SF methods.

• Unsupervised: DC [17], FF [18], OADC-SA [19], OWC-MTT [20], and STC [21].
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Fig. 3. Performance comparison. 6 methods are available for comparison on (a) Subway
entrance video and 2 methods on (b) Subway exit video. Supervised methods (dashed
lines), unsupervised methods (solid lines).

Most of these methods were tested only on some of the test videos. The test
results on UCSDped1, UCSDped2, and Subway were reported as ROC curves.
For the test results on UMN, some papers reported ROC curves whereas others
reported only accuracy. For PETS2009, only accuracy was reported. ROC curves
are not reported for H-MDT-CRF [5] on UCSDped1 and UCSDped2, LMH [8]
and MPPCA [12] on Subway, and Sabokrou [14] on UMN. Therefore, they are
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Table 1. Benefit of ambiguous clusters. OCCAM (O) has slightly smaller TPR, but
significantly smaller FPR compared to OCCAM− (O−).

Test videos TPR FPR

O O− O O−
UCSDped1 0.887 0.982 0.214 0.741

UCSDped2 0.957 0.994 0.154 0.677

Subway Entrance 0.835 0.942 0.152 0.773

Subway Exit 0.850 0.967 0.136 0.634

UMN 0.910 0.999 0.002 0.818

PETS2009 Scene 1 0.892 0.973 0.079 0.482

PETS2009 Scene 2 0.987 0.999 0.125 0.395

Fig. 4. Performance comparison on UMN video. 7 methods are available for compari-
son. Supervised methods (dashed lines), unsupervised methods (solid lines).

not included in our ROC graphs. The ROC curves reported in this paper are
plotted using either the test results provided by the authors or a software that
traces the curves’ points presented in existing papers.

For UCSD (Fig. 2) and UMN videos (Fig. 4), OCCAM is among the best
performers compared to existing methods. For the Subway videos (Fig. 3),
OCCAM’s performance is comparable to those of existing methods that are far
more complex than OCCAM. For the same FPR, OCCAM achieves the high-
est TPR compared to existing methods for UCSDped2 (Fig. 2b), Subway exit
(Fig. 3b), and UMN (Fig. 4), the 3rd highest TPR for UCSDped1 (Fig. 2a), and
the 4th highest TPR for Subway entrance (Fig. 3a). In applications where high
FPR is tolerable, OCCAM can run as OCCAM− without ambiguous clusters.
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Table 2. Performance comparison on UMN and PETS2009 videos. OCCAM has the
highest overall accuracy. (S) Supervised method, (U) unsupervised method.

Method Type UMN PETS2009 PETS2009

scene 1 scene 2

OCCAM U 0.98 0.91 0.99

BM [2] S 0.96 0.89 0.94

CI [3] S 0.88 0.60 0.93

SF [13] S 0.85 0.59 0.85

SRC [15] S 0.85 – –

DC [17] U 0.96 – –

FF [18] U 0.81 0.38 0.88

Then, OCCAM− achieves TPR of close to 1.0 for all test cases. Figures 2, 3
and 4 also show that existing unsupervised methods can perform as well as or
better than supervised methods.

Some existing papers reported only accuracy on UMN and PETS2009 videos.
Table 2 shows that OCCAM is more accurate than these methods for both UMN
and PETS2009.

For UCSDped1 and UCSDped2 videos, Li and Mahadevan [5,11] also pro-
posed a pixel-level criterion to measure the spatial accuracy of detected abnormal
frames. This error measure depends on the number of detected abnormal pixels in
an abnormal region. Since OCCAM detects only selected pixels in these regions
instead of the whole regions, pixel-level criterion is not appropriate for OCCAM.
Instead, this paper measures spatial accuracy in terms of precision, which is
the percentage of detected abnormal pixels that are true positives. OCCAM
achieves abnormal pixel detection precision of 0.72 for UCSDped1 and 0.78 for
UCSDped2. Moreover, most of the false positive pixels are located around the
abnormal regions. On the other hand, the spatial precision of OCCAM− on
UCSDped1 and UCSDped2 is, respectively, 0.37 and 0.40, which is much lower
than that of OCCAM. Therefore, ambiguous clusters are important for OCCAM
to achieve high spatial accuracy in detecting abnormal pixels.

5 Conclusions

This paper investigated the essential components required for effective unsuper-
vised detection of anomalies in surveillance videos of pedestrians. It shows that
relatively simple but well-designed unsupervised algorithm like OCCAM can per-
form as well as or better than existing supervised and unsupervised methods. In
particular, simple but informative features such as motion direction and motion
speed are sufficient for achieving high TPR with low FPR. Moreover, inclusion
of ambiguous clusters in the cluster labeling process reduces FPR significantly
without sacrificing TPR much. At the same FPR, OCCAM achieves among the
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highest TPR compared to existing methods. It also has the highest accuracy
for UMN and PETS2009 videos compared to existing methods that reported
only accuracy. In applications where high FPR is tolerable, OCCAM can run as
OCCAM− without ambiguous clusters. Then, OCCAM− achieves TPR of close
to 1.0 for all test cases. With ambiguous clusters, OCCAM’s spatial precision
of detecting abnormal pixels is also very high. In general, OCCAM and existing
unsupervised methods can perform as well as or better than supervised methods.
Therefore, our research results can serve as a useful benchmark for testing new
algorithms and for developing more advanced algorithms that require features
other than motion speed and direction.
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