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ABSTRACT. First, we show an uncertain situation for tile two-view plane motion 
problem in which an infinite number of solutions may result. Then, we present 
necessary and sufficient conditions Ior a unique solution of plane motion and 
structure from any number of views. These algorithm-independent conditions 
enhance our understanding about the problem of estimating plane motion and 
structure from image sequences and may be incorporated in any practical algorithms 
for estimating the motion and slructme of a planar surface. 

1 I n t r o d u c t i o n  

Although many plane motion algorithms have been developed (e.g., [9], [11], 
[6], [3], [7], and [1] ), the conditions obtained for a unique solution of motion and 
structure of a planar surface (1911, 1171, I11], [1], 113]) are restricted to only two and 
three views. Even for two and three views, the existing conditions are not complete 
in the sense that some rare sitttalions have been ignored, as will be discussed here. 

This paper presents necessary attd sufficient conditions for a unique solution 
of the motion and structure of a planar surface from any number of views under 
perspective projection. First, we show an uncertain situation in the two-view problem 
in which an infinite number of solutions result. Though this uncertain situation rarely 
occurs for opaque planes, it has to be considered when some of the images are 
observed through a mirror. The knowledge of this uncertain situation therefore help 
analyze mirror-reflected images. Then, we present necessary and sufficient conditions 
for a unique solution of the motion and structure from multiple images. These 
conditions apply to any number of images and are algorithm-independent. 

2 T h e  U n c e r t a i n  S ih la l ion  in Ihe Two-View P r o b l e m  

A plane can be described by an equation as follows: 

NIX=[nt 112 l l 3 ] X =  1, (2-1) 

where X = [X, Y, Z] r is a poinl on the plane, and N is the plane parameters which are 
used to represent the plane. A degenerate case occurs when a plane has an equation 
of NTX = 0. In this case, the projeclion of the plane in the image plane is a line. 
Degenerate views can be removed from the image sequence, since it is difficult to 
obtain point correspondences when the projection of a plane is a line. Therefore; in 
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the following, we assume that the projection of a plane in any view is not degenerate. 
Using the conventional perspective projection model, the projection of a space point 
(X,Y,Z) in the image plane is determined byx = x ~1 = ~.  Let 19 = [x, y, 1]T; then 
X = OZ.  Similarly, if X' = IX', Y', Z~Jr; then X' = 19'Z ~, where 19+ = Ix +, y+, 1] "r. 

Let X be a point before the motion and X' be the position of the point after 
motion, then X' and X arc related by the following equation 

X ~ = | ~ = R X + T  = R X + T N r X  = K |  , (2-2) 

where R is a rotation matrix and T a translation vector, and 

K = R + T N  '~ . (2-3) 

Matrix K of the form (2-3) is called thc plane motion matrix (PMM), and R, T and 
N are called a plane motion decomposition (PMD) of K. 

From Equation (2-2), we have the following equation: 

O ' x K O  = 0. (2-4) 

Matrix K can be estimated to within a scalar from Equation (2-4) with four corre- 
spondences of points if and only if no three of the points are colinear in the space ([9], 
[11], [3]). The scalar can be determined by the rigidity condition ([9], [11], [3], [11). 
Thus the major problem lell is to solve for R, T and N from K. We can determine 
only the direction of T, N, and thc combined magnitude IINII IITII. Therefore, a PMD 
of K is distinct if and only if R, or lhe dircction of T or N, is distinct. 

Tsai, Huang, and Zhu established the following results (see also [8], [7], [1], and 
[11] for different versions) regarding the uniqueness of solution: 

1. if the singular values of K are all distinct, then K has two PMDs. 
2. if two of the singular values of K are identical, then K has a unique PMD. 
3. if all three singular valucs of K are identical, then K has a unique PMD; in this 

case, R =: K, T = 0, and N is undetermined.t 

We now show that there exists an uncertain situation in which K has an infinite 
number of PMDs and the third conclusion above should be modified as follows: 

3*. if all three singular values of K are identical, then, (a) K has a unique PMD if 
det(K) = 1; in this case, R = K, T = 0, and N is undetermined; (b) K has an 
infinite number of PMDs if det(K) = -1. 

First, we have the lollowing lemlna. 

Lemma 2.1. (See also II].) I l K  is a plane motion matrix, the three eigenvalues 
-~t, )~2, and A~+ of  tile nmltix KrK, wilh A3 -< Am -< A1, satisfy 

(2-5) 

Proof: Since the eigenvalues of KrK must be nonnegative, we need only show 
that A2 = 1. First we show that I is an eigcnvalue of KrK. Assume R, T and N 
constitute one PMD of K. For any nonzero vector X that satisfies 

N I x = I ) ,  arid T ' I R X  = 0, (2-6) 

using Equations (2-6) and Ihe orthon(}rmalily of R, we have 
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K T K X = ( R ) - + N T I ) ( I I , + T N I ) x =  ( I I , q ' + N T T ) R , X = X = I . X ,  (2-7) 

proving that A = 1 is an eigenvalue. Let it be ,~z. Then we show that one of  the two 
remaining eigenvalues, e.g., A3 , must be < 1, and the other, A~, must be > 1. Let 
W be an orthonormal matrix such that 

W ' r K T K W  = diag(Al }~2 ha), (2-8) 

and let X be any nonzero vector orlhogonal to N, i . e . ,NqX = 0, then K X  = R X .  
The orthonormality of W and R gives 

W ~ W  = RZIi ,  = I .  (2-9) 

Now let U = [7 ul tl2 tX3 IT = w T x ,  and hence X = WU. Then, 

X I K t K X  = X q I @ R X = X ~ t X ,  or (2-10) 

U l w  l K  'IKWU = U q w q ' w U .  

From Equations (2-8), (2-9), and (2-11) we have 

+ + -- d + ,4 + or 

(2-11) 

(2-12) 

(1 - A:~) ,d = (A~ - l ) ~ , ~  ( 2 - 1 3 )  

Because At -> &3 > 0, to make (2-13) hold, we must have At > 1 and A3 < 1. Q.E.D. 

We immediately have the following corollary, due to the fact that the singular 
values of K are tile n(mnegative square roots of the eigenvalues of KTK. 

Corol lary 2.1. One of the singular values of K must be l. "~ 

The uncertain situalion occurs when all three singular values of K are identical 
and det(K) = -1. In this case, the motion is a mirror reflection. To show that in this 
case K has an infinite number of PMDs, we need only note that the singular value 
decomposition of K is nol unique. If all three singular values of K are identical, then, 
according to Corollary 2.1, they musl all be 1. Assume that K has a singular value 
decomposition (SVD) as follows: 

K = U I V  l = U V  'l, (2-14) 

in which U and V are two orthonormal matrices and ! is a 3 x 3 identity matrix. Then 
for any orthonormal malrix P, we have 

K = U P P  q V ~ = ( U P ) I ( V P )  'J, (2-15) 

in which UP and VP are also orthonormal matrices. Therefore, according to the 
algorithm of Tsai el al. (19]), which depends on a unique SVD of K, K has an infinite 
number  of  PMDs. A numerical exanlple is K = diag (-1,  1, 1). 

A mirror rellection can occur in only two situations: either the camera catches 
one of  the images through a mirror, or the plane has turned around such that the 
camera catches its back rather than its face in the second image (implying that the 
object must be transparent). So in practice, unless a mirror is involved, the uncertain 
situation rarely occurs Ior opaque object. However,  mirror images are frequently 
seen in daily life. The understanding of this situalion therefore help analyze images 
observed through a mirror. 
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When K is not orthonormal, K always has two sets of PMDs. To remove the 
ambiguity, we have to resort to other ways such as using positive depth constraint 
([8]), small rotation constraint (113 I), multiple planes, or multiple views. The multiview 
method in the next section will involve decomposing many two-view PMMs. Though 
there exist other algorithms (191, I11 i, I! l, 181) for decomposing a PMM, we shall 
use the following simpler method (131). 

Lemma 2.2. If a PM M K is no[ orthonormal and W is an orthonormal matrix 
that transforms KTK into the diagona I form in Equation (2-8), then the plane normal 
vector can be determined to two solutions, each up to a scalar, as follows: 

N ) . ~ = [ v / ~ -  I 0 + ~ ] W  T. (2-16) 

Proof: Consider any point X that satislies NTX = 0, where N is the plane normal 
to be determined. Let X = WU will~ U = [ u~ u2 u3 ]T; then from the intermediate 
results of Lemma 2.1, we know that I1 must satisfy Equation (2-13), or equivalently, 

[ v / ~ i - I  (I : 5 ~ ] U  = (I. (2-17) 

from which we have 

[ v ~ K - I  (J :L-x/I-A:, ] W ' l X  = 0. (2-18) 

Comparing NTX = {), and the above equation, wc know that the plane normal can 
be determinexl to two solutions, each tip to a scalar, from Equation (2-16). Q.E.D. 

After a s:oluliou of the plane nonual N is obtained, the rotation matrix and the 
translation vector associated with N can be determined in closed form ([ l l ] ,  [3], [2]). 
For example, a simple, closed-form s()lution can be obtained as follows ([3], [2]): 

R , = [ Y ~  Y2 Y I x Y e ] [ X I  Xe X t x X e ] - ' ,  T=(K-R)N/IINI] '?, (2-19) 

where Yi = KXi , i = 1.2,, and Xi, i = 1,2 are any two vectors satisfying 

XI_LXe ~tlt,l X I x X e = N .  (2-20) 

3 The  Mui t iv iew Problenl  

The multiview problem is important, not only because a spurious solution fre- 
quently results in the two-view algorilhms, but because the accuracy of the estimation 
can be improved when a long sequence of images are used. Tsai and Huang ([10]) 
established a uniqueness theorem for the three-view problem. Their proof and con- 
clusion appear to apply to a special case, as indicated by numerical results and strict 
proofs ([2]). In the lollowing, we shall obtain necessary and sufficient conditions for 
a unique solution of n]otion and struclure from any number of images, assuming that 
no additional constraints are used. 

First, we have the following lemmata about the plane motion matrix. 

Lemma 3.1. A PMM K is rank reduced if and only if the projection of the plane 
alter motion is a line in the image plane. 

Proof: If K is rank reduced, then, there exists a nonzero vector N T' such that 
NCrK = 0. Assume that X is an arbitrary point on the plane defined by Equation 
(2-1) and X' is the correspondence of X. Then, X' = KX. We therefore have 
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N ' T x  ' = N ' ' I K X =  0, o r N ' T O  ' =N ' : l : [ x '  y' 1 ] T =  0. (3-1) 

The above equation gives a line equation in the new image plane. 

The sufficient part can be proven by contradiction. Assume that the projection 
of the plane of Equation (2-1) in the new image plane is a line and K has a full rank. 
Then from Equation (2-2) we have 

X = K - I x  ' . (3-2) 

Thus from (2-1) we have the new plane equation after motion as 

N q I ( -  l X '  = 1 , (3-3) 

whose projection is not a line in the image plane, contradicting the assumption. 
Therefore K must be rank reduced. Q.E.D. 

We immediately have Ihe lollowing corollary: 

Corollary 3.1. When a plane motion matrix K has a full rank, the plane normal 
N after the motion will be (K '1 ) - i N .  t 

To ensure that all plane mellon matrices have full rank, we need only to remove 
degenerate views in which the projection of the plane is a line. The situation in which 
some plane motion matrices are rank reduced is complicated. In practice, degenerate 
views do not help much in determining the motion and structure of the plane since it 
is difficult to obtain correspondences Ior degenerate views. Therefore, we will assume 
in this section that all plane motion matrices have full rank. 

Lemma 3.2. If a ftdl-rank plane molion matrix K has a PMD of the form 

I(  =- I I  + T N  "~ , (3-4) 

then 
K - I  = II, - I  - ( R - I T ) ( N ' ~ K - I ) .  (3-5) 

Proof: Using K 1 to postmultiply Equation (3-4) and then using R -1 to premul- 
tiply the resulting equation, we obtain 

I{, - I  = I ( - I +  f{ , - ITNt  I ( - I  (3-6) 

from which we obtain Equalion (3-5). Q.E.D. 

The multiview problem generally involves decomposing motion and structure 
parameters from multiple plane moliou matrices. Assume that n (n_>3) views are 
available. Let Ki be the plane motion matrix between the ith and the first views, i 
= 2 . . . . .  n. It is clear that if K~ is an orthonormal matrix, then K~ is either a mirror 
reflection matrix or a rotation matri• in either case, Ki provides no information 
about the plane structure and can thus be discarded, without affecting the uniqueness 
conditions (see [2] lot more details). Therefore, in the following, we assume that Ki 
is not orthonormal for all i, i = 2 ..... n. (An orthonormal Ki must be removed.) 

From the last section we know that each nouorthonormal K~ gives up to two 
solutions of the plane normal in the lirst view, one of which is the true solution. 
Clearly, if one of Ki admiks a unique PMD, the multiview problem is uniquely 
determined. A more general situation occurs when every Ki admits exactly two 
PMDs. We now discuss this general situation. 
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Let N~ '2 be the two plane normql solutions in the first view from Ki, i = 2 . . . . .  
n, respectively. Let the plane normal solutions be indexed as follows. First, label 
N~ '2 arbitrarily. That is, let one of the plane normal solutions from K2 be L.~ and the 
other solution be L~. Now consider the plane normal solutions N~ '2 from K3. If 

mi,,(llNl, x L~l[", lIN]x L~[I e) < ,,,in(llNi~• L~]] ~, I[N:~ x L~][2), (3-7) 
then let L~ = N~, k = 1,2; otherwise, let L:~ = N~, L~ = N:I. This process 
continues recursively lor other views. That is, for i = 4 . . . . .  n, if 

) ) ' " ' : "  I llN  • • < ,,,i,, IIN • L5 ]l IIN] • , 
\ j ='2 i ='-' \ j ='2 j =2 

(3-8) 
then let L}: = N~ ~, k = 1,2; otherwise, let L] = N~, LI-' = N~. Finally, form two 
matrices using the phme normal reelers as follows: 

Mz , - - [L~ '  I~ . . .  L~;]. k =  1,2. (3-9) 

The next lemma establish a uniqueness condilion lot the three-view problem. 

Lem ma  3.3. In the three-view problem, if both K2 and K3 are nonorthonormal 
and K2 has rill-rank, then a unique solution results if and only if the equations in 

L,~x L! :=I I  and L ~ x L ~ = { }  (3-10) 

do not hold simultaneously. 

Proof: Since the uue phme normal must be a plane normal solution from both 
K2 and K3, one of the equations in (3-10) must hold. Without loss of generality, 
assume that L.~. and L;{ correspond to the flue solution, antl L~ and L ~a are spurious 
solutions. We need prove only that when both equations in (3-10) are satisfied, a 
motion solution consistent wilh all three views can be oblained. 

Three views give three PMMs K2, K3, and K32, which are the PMMs between 
the first and second views, belwcen the lirst and third views, and between the second 
and third views, respectively. Obviously, 

K:i - l(:l._,K~, or K:3~ -- I(:~K~ -l. (3-11) 

Now assume L (L = L~ = , L~ for st)nie constant <.~ according to Equation (3-10)) 
is a common sohition of the plane hernial obtained frona both K2 and K3. Then, 

according to Corollary 3.1, (K.,  l ) - i  L should be a phmc normal solution from K32. 

Therefore, we: need and need only lo prove that there exist some rotation matrix R2 
N / 

and some vector "1"2 such [hal 

I(:~2 -- I1., + T2L l K~ -~ (3-12) 

When the above equalion is salisficd, Ihc i)lanc nornlal solution L is consistent with 
all three views. 

Since L is a sohition froua both K2 and K3, wc must have 

K._, = Ili t T i l ,  1 , K:~ = R,:~ + rl':~L '1, (3-13) 

for some rotation matrices R I and 113 and some veclors Tl and T3. Using Equation 
(3-5) we have 
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K.~ j = II.] -I - ( R ] - ] T I ) ( L T K ~ I ) .  (3-14) 

Then from Equations (3-11) and (3-12) we have 

K:~2 = K:~K~ -I = (R,:~ + T:~L';)K~ -1 = R:tK~ -j + T:~LTK~ -1 

= II,:~[R.] -l - (.II.]-IT,)(L'JK~-})] + T;~LTK~ -1 (3-15) 

= R,:~R,[-I + (T :~-  II.:dl.]-lTl)(L'rK~-J). 

It is obvious that if we choose 

R2 = II.:~R,~ -I, T2 = T:~ - R:~R 1 ITI,  (3-16) 

then Equation (3-12) is satisficd. Thr if a plane normal solution obtained from 
K2 is parallel to a plane normal solution from K3, a consistent solution of the motion 
and structure can always be loun(l 12)1 the three views. Q.E.D. 

The above lemma also states that in the multiview problem, to determine the 
uniqueness of the solution we need co~lsider only the plane motion matrices related to 
the first view. Since for each Ki, ()lie plane normal solution admits exactly one motion 
solution, the overall motion solulion lot the image sequence is unique if and only if 
the plane normal solution lor the lirst view is unique (up to a scalar). Therefore, if 
and only if the plane motion matrices related to the Iirst view admit a unique plane 
normal solution for the tirst view, thc structure of the plane and the motion over the 
whole sequence can bc determined uniquely. 

We now prove the major theorem of this Pal)cr. 

Theorem 3.1. Assume that each pla!le motion matrix Ki, i = 2 ..... n, is invertible 
and has three distinct singular values. Then K~, i = 2 ..... n, admit a unique solution 
of the plane structure and motion if ;m(I only if exactly one of M1 and M2 defined 
in (3-9) has a rank of 1. 

Proof: Since two views determine the plane normal in the first view to two 
solutions, at most one spurious solution for the motion problem of the whole sequence 
may result. The truc plane normal N must be one of the solutions fromKi for every 
i. Therefore, by the way in which M~ and M2 are constructed, one of M1 and M2 
must contain solely the plane normal solutions corresponding to the true plane normal 
and the other must contain only the spurious solutions. Without loss of generality, 
assume M1 contains the corrccl solutions and M2 contains the spurious solutions. It is 
clear that MI has a rank of 1. According to Lemma 3.3, the spurious plane solutions 
define a consistent motion if and only if the plane normal vectors L~, i = 2 . . . . .  n, 
are all parallel to each other. When this occurs, there is no way to tell if M1 or M2 
contains the true solution since both of them constitute a consistent motion solution 
and satisfy the image data. When L2, i = 2 ... . .  n, are all parallel to each other, M2 
also has a rank of 1. Therefore, if aml only if both Mt and M2 have a rank of 1, 
a spurious solution results. Q.E.D. 

For noisy data, neither of M~ and M2 may have a rank of 1. In this case, we 
can use the eigenvalues of M tMI T au(I M2M2 T to determine if the solution is unique 
and which of M1 and M2 correspon(ls to thc correct solution. 

When the motion is uniquely dctermincd, an optimal solution of the plane normal 
from MI or M2 can be obtained. Then the motion parameters can be estimated in 
closed forms from either K~ or lhe original correspondence data, using the knowledge 
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of the plane normal. However, this solution may not be the most robust since it is 
a stepwise linear method. A robust nonlinear long sequence algorithm that applies 
to general surfaces as well as p!anar sqrfaces and enforces both motion and structure 
consistence has been presented in [4] and 15]. Nevertheless, the theorem in this 
section reveals some fundamental truth about the plane motion problem and can be 
used to determine the uniqueness of solution. 

4 S u m m a r y  

In this paper we have shown an uncertain situation lot the two-view plane motion 
problem in which an infinite number of solutions of the plane motion and structure 
result. We have also established necessary and sufficient conditions for determining 
the structure and motion of a planar surface from multiple views. The conditions 
obtained are algorithm-independent and apply to any number of images. These results 
enhance our understanding of Ihe plane motion prohlem. 

REFERENCES 

[1] R. Haralick and L. Shapiro, Eds., Computer and Robot Vision, vol. 2, ch. 15.5 
(by X. Zhuang). 1992. 

[2] X. Hu, "Perception of Shape and Motion," Ph.D. dissertation, Dept. of Electrical 
and Computer Engr., University of Illinois, Urbana, IL, 1993. 

[3] X. Hu and N. Ahuja, "A Robust algorithm for plane motkm solution," Prec. Inter. 
Conf. on Automation, Robotics and Computer Vision, 1990. 

[4] X. Hu and N. Ahuja, "Estimating motion of constant acceleration from image 
sequences," Prec. l lth Inter. Con.[i on Pattern Recognition, 1992. 

[5] X. Hu and N. Ahuja, "Long image sequence motion analysis using polynomial 
motion models," Prec. IAPR I~brkshop on Machine Vision Applications, 1992. 

[6] X. Hu and N. Ahuja, "Motion Analysis I: Basic Theorems, Constraints, Equations, 
Principles and Algorithms," Technical note 89-1, Coordinated Science Laboratory, 
University of Illinois at Urbana-Champaign, Jan., 1989. 

[7] C. Longuet-Higgins, "The visual anlbiguity of a moving plane," Prec. of Royal 
Society of London, Series B, vol. 223, pp. 165-175, 1985. 

[8] C. Longuet-Higgins, "The reconslruclion of a planar surface from two perspective 
projections," Prec. R. Soc. London, Set. B, vol. 227, pp. 399-410, 1986. 

[9] R. Tsai and T. Huang, "Estimaling three-dimensional motion parametersof a rigid 
planar patch, 1 I: Singular value decomposition," 1EEE Trans. on Accoustics, Speech 
and Signal Processing, vol. 30, n~. 4, pp. 525-534, 1982. 

[10]R. Tsai and T. Huang, "Esthnating Ihree-dimensional motion parameters of a rigid 
planar patch, 111: Finite point correslxmdences and the three-view problem," IEEE 
Trans. on Accousties, Speech and Signal Processing, vol. 32, no. 2, pp. 213-220, 
1984. 

[ll]J. Weng, N. Ahuja, and T. Huang, "Motion and Structure from Point Correspon- 
dences: A Robust Algorithm for Planar Case with Error Estimation," Prec. Inter. 
Conf. Pattern Recognition, 1988. 


