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ABSTRACT. First, we show an uncertain situation for the two-view plane motion
problem in which an infinitc number of solutions may result. Then, we present
necessary and sufficient condilions [or a unique solution of plane motion and
structure from any number of views. These algorithm-independent conditions
enhance our understanding about the problem of ecstimating plane motion and
structure from image sequences and may be incorporated in any practical algorithms
for estimating the motion and structure of a planar surface.

1 Introduction

Although many plane motion algorithms have been developed (e.g., [9], [11],
[6], [3], [7], and [1] ), the conditions obtained for a unique solution of motion and
structure of a planar surface (|9], [71, |11}, [1], [3]) arc restricted to only two and
three views. Even for two and three views, the existing conditions are not complete
in the sense that some rare situations have been ignored, as will be discussed here.

This paper presents necessary and sufficient conditions for a unique solution
of the motion and structure of a planar surface from any number of views under
perspective projection. First, we show an uncerlain situation in the two-view problem
in which an infinitc number of solutions result. Though this uncertain situation rarely
occurs for opaque plancs, it has o be considered when some of the images are
observed through a mirror. The knowledge of this uncertain situation therefore help
analyze mirror-reflected images. Then, we present necessary and sufficient conditions
for a unique solution of the motion and structure from multiple images. These
conditions apply to any number ol images and are algorithm-independent.

2 The Uncertain Situation in the Two-View Problem

A plane can be described by an cquation as {ollows:
NIX:[HL n, nylX =1, 2-1)

where X = [X, Y, Z]" is a point on the plane, and N is the planc parameters which are
used to represent the planc. A degenerate case occurs when a plane has an equation
of NTX = 0. In this case, the projection of the planc in the image plane is a line.
Degenerate views can be removed [rom the image sequence, since it is difficult to
obtain point correspondences when the projection of a plane is a line. Therefore, in
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the following, we assume that the projection of a planc in any view is not degenerate.
Using the conventional perspective projection modcl, the projection of a space point
(X,Y,Z) in the image plane is determined byz = &, y = L. Let © =[x, y, 1]%; then
X = OZ. Similarly, if X’ = [X’, Y, Z’]"; then X' = ®'Z’, where @' = [¥, y', 1],

Let X be a point beforc the motjon and X’ be the position of the point after
motion, then X’ and X are rclated by the following equation

X' =07 =RX+T=RX+TN'X=KOZ , (2-2)
where R is a rotation matrix and T a translation vector, and
K=R+TNT, (2-3)

Matrix K of the form (2-3) is called the plane motion mairix (PMM), and R, T and
N are called a plane motion decomposition (PMD) ol K.

From Equation (2-2), we have the lollowing cquation:
O'xKO = 0. (2-4)

Matrix K can be estimated to within a scalar from Equation (2-4) with four corre-
spondences of points if and only il no three of the points are colinear in the space ([9],
[11], [3]). The scalar can be delermined by the rigidity condition ({91, [11], [3], [1]).
Thus the major problem Ielt is Lo solve for R, T and N from K. We can determine
only the direction of T, N, and the combined magnitude lINIl ITI. Therefore, a PMD
of K is distinct if and only il R, or the dircction of T or N, is distinct.

Tsai, Huang, and Zhu cstablished the following results (see also [8], {71, [1], and
{11] for different versions) regarding the uniquencss of solution:

1. if the singular valucs of K arc all distinct, then K has two PMDs.

2. if two of the singular valucs of K arc identical, then K has a unique PMD.

3. if all three singular values of K are identical, then K has a unique PMD; in this
case, R = K, T = 0, and N is undctermined.t

We now show that there exists an uncertain situation in which K has an infinite
number of PMDs and the third conclusion above should be modified as follows:

3*. if all three singular values of K are identical, then, (a) K has a unique PMD if
det(K) = 1; in this case, R = K, T = 0, and N is undctermined; (b) K has an
infinite number of PMDs il det(K) = —1.

I

First, we have the following lemma,
Lemma 2.1. (Scc also [1].) Il K is a plane motion matrix, the three eigenvalues
A1, Az, and Ay of the matrix KK, with A3 € A, € Ay, satisly

D<A <=1 <Ay (2-5)

Proof: Since the cigenvalues of KK must be nonncgative, we need only show
that Ay = 1. First we show that 1 is an cigenvalue of K'K. Assume R, T and N
constitute onc PMD of K. For any nonzero veclor X that satisfies

N'X=0. and T'RX = 0, (2-6)

using Equations (2-6) and the orthonormality of R, we have
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KTKX=(RT+NTH(R+TNH)X = (R" + NTH)RX =X=1-X, (27)
proving that A = 1 is an eigenvalue. Let it be A;. Then we show that one of the two
remaining eigenvalues, ¢.g., A3 , musl be < 1, and the other, Ay, must be > 1. Let
W be an orthonormal matrix such that

WIYKYKW = diag (A, Az A3). (2-8)

and let X be any nonzero vector orthogonal 1o N, i.c,NTX = 0, then KX = RX.
The orthonormality of W and R gives

wWiw=R'R=1. (2-9)
Now let U= [u; vy us |¥ = WTX, and hence X = WU. Then,
X'K'KX = X'R'RX = X'X. or (2-10)
U'W'K'KWU = U'wW!'wu. (2-11)
From Equations (2-8), (2-9), and (2-11) we have
And 4 Ao 4 Al = Wi+l or (2-12)
(1= X)u; = (A= Dt (2-13)

Because A} = A3 2 0, 10 make (2-13) hold, we must have Ay =2 1 and A3 < 1. Q.E.D.

We immediatcly have (he following corollary, due to the fact that the singular
values of K are the nonncgalive square roots of the eigenvalues of KTK.

Corollary 2.1. One of the singular values of K must be 1.

The uncertain situation occurs wihien all three singular values of K are identical
and det(K) = —1. In this casc, the motion is a mirror reflection. To show that in this
case K has an infinitc number of PMPDs, we nced only note that the singular value
decomposition of K is not unique. 1f all three singular valucs of K are identical, then,
according to Corollary 2.1, they must all be 1. Assume that K has a singular value
decomposition (SVD) as lollows:

K=UIV' =Uuv! (2-14)

in which U and V are two orthonormal matrices and I is a 3x3 identity matrix. Then
for any orthonormal matrix P, we have

K = UPP'V! = (UP)(VD)', (2-15)

in which UP and VP arc also orthonormal matrices. Therefore, according to the
algorithm of Tsai et al. ({91), which depends on a unique SVD of K, K has an infinite
number of PMDs. A numecrical example is K = diag (-1, 1, 1).

A mirror reflection can occur in only two situations: either the camera catches
one of the images through a mirror, or the plane has turned around such that the
camera catches its back rather than its (acc in the second image (implying that the
object must be transparent). So in praclice, unless a mirror is involved, the uncertain
situation rarely occurs for opaque object. However, mirror images are frequently
seen in daily life. The understanding of this situation thercfore help analyze images
observed through a mirror.
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When K is not orthonormal, K always has two sets of PMDs. To remove the
ambiguity, we have 1o resort 1o other ways such as using positive depth constraint
([8]), small rotation constraint {[3]), multiple planes, or multiple views. The multiview
method in the next section will involve decomposing many two-view PMMs. Though
there exist other algorithms (|9], Il]j, |11, 18D for decomposing a PMM, we shall
use the following simpler method ([3]).

Lemma 2.2. If a PMM K is nof orthonormal and W is an orthonormal matrix
that transforms K"K into the diagona| form in Equation (2-8), then the plane normal
vector can be delermined to two solutions, each up o a scalar, as follows:

Nl=[VN=T1T 0 £/T-3]w?t. (2-16)

Proof: Consider any point X (hat satisfics NTX = 0, where N is the plane normal

to be determined. Lct X = WU with U = | u; up uz ]"; then from the intermediate
results of Lemma 2.1, we know that U must satisfy Equation (2-13), or equivalently,

(V=T 0 +/T=X]U = 0. (2-17)

from which we havc

(VA—T1T 0 /TN IWIX = 0. (2-18)

Comparing NTX = 0, and the above equation, we know that the plane normal can
be determined to two solutions, cach up to a scalar, from Equation (2-16). Q.E.D.
After a solution of the planc normal N is obtained, the rotation matrix and the
translation vector associated with N can be determined in closed form ([11], [3], [2]).
For example, a simple, closcd-form solution can be obtained as follows ([3], [2]):

R=[Y, Y Y xYi][X; Xo XxX.]7', T=(K-R)N/|IN|]*, (2-19)
where Y;=KX;, i=[.2,,and Xj, i = 1,2 arc any two vectors satisfying
X 1Xs and XyjxXa=N (2-20)

3 The Multiview Problem

The multiview problem is important, not only because a spurious solution fre-
quently results in the two-vicw algorithms, but because the accuracy of the estimation
can be improved when a long scquence of images are used. Tsai and Huang ([10])
established a uniqueness thcorem for the three-view problem. Their proof and con-
clusion appear to apply (o a special case, as indicated by numerical results and strict
proofs ([2]). In the following, we shall oblain necessary and sufficient conditions for
a unique solution of motion and structure from any number of images, assuming that
no additional constraints are used.

First, we have the following lemmala about the planc motion matrix.

Lemma 3.1. A PMM K is rank reduced if and only if the projection of the plane
after motion is a line in the image planc.

Proof: If K is rank reduced, then, there exists a nonzero vector N7 such that
N'TK = 0. Assume that X is an arbitrary point on the plane defined by Equation
(2-1) and X' is the correspondence of X. Then, X/ = KX. We therefore have
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NTX' =N'"KX = 0, e NTO®' = N[+ ¢y 1]7= 0. (3-1)
The above equation gives a line equation in the new image plane.
The sufficient part can be proven by contradiction. Assume that the projection

of the plane of Equation (2-1) in the ncw image plane is a line and K has a full rank,
Then from Equation (2-2) we have

X=K X', (3-2)
Thus from (2-1) we have the new plane equation alter motion as
N'K™'X' =1, (3-3)

whose projection is not a line in the image planc, contradicting the assumption.
Therefore K must be rank reduced. Q.E.D.

We immediately have the following corollary:

Corollary 3.1. When a planc motion matrix K has a full rank, the plane normal

N after the motion will be (K') 'N. ¥

To ensure that all plane motion matrices have [ull rank, we need only to remove
degenerale views in which the projection of the planc is a line. The situation in which
some plane motion matrices arc rank reduced is complicated. In practice, degenerate
views do not help much in determining the motion and structure of the plane since it
is difficult to obtain correspondences for degenerate views. Therefore, we will assume
in this section that all planc motion matrices have full rank.

Lemma 3.2. I a fufl-rank planc motion matrix K has a PMD of the form
K = R+ TN', (3-4)

then .
K '=R™' - (R™IT)(NTKY). (3-5)

Proof: Using K™! to postmultiply Equation (3-4) and then using R to premul-
tiply the resulting cquation, we oblain

R'=KkK'+R'TN'K. (3-6)
from which we obtain Equation (3-5). Q.E.D.

The muliiview problem generally involves decomposing motion and structure
parameters from multipic planc motion matrices.  Assume that n (n23) views are
available. Let K; be the planc motion matrix between the jth and the first views, i
= 2, ..., n. Itis clear that if K; is an orthonormal matrix, then K; is either a mirror
reflection matrix or a rotation matrix; in either case, K; provides no information
about the plane structure and can thus be discarded, without affecting the uniqueness
conditions (sec¢ [2] for more dctails). Therefore, in the following, we assume that K;
is not orthonormal for all i, i = 2, ..., n. (An orthonormal K; must be removed.)

From the last section we know (hat cach nonorthonormal K; gives up to two
solutions of the planc normal in the first view, onc of which is the true solution.
Clearly, if one of K; admils a uniquc PMD, the multivicw problem is uniquely
determined. A morc general situation occurs when cvery K; admits exactly two
PMDs. We now discuss this general situation.
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Let N; 12 pe the two planc normgl solutions in the first view from K;, i =2, ...,
n, respectlvely Let the plane normal solutions be indexed as follows. First, label
NZ" arbitrarily. That is, let one of (he plane normal solutions from Kz be L} and the
other solution be L3. Now consider the plane normal solutions N; from Kj. If

min (NG x L% [IN3 % L3|J°) < min (N3 x L% [ING < L3)1°). - 3Dy

then let L = N& & = 1,2; otherwise, let L} = N3, L% = N} This process
continues recursively for other views. That is, for i =4, ..., n, if

i-1 i1 i1 o i-l o
min ZHN?J JZHN;’XL;’IIl <min Zl]N?XL}||&’Z||N3XLJI"|Z
i=2 = = i=2 ad)

then let Lf = NF, k= L. 2; otherwise, Iet L} = N%, L? = N!. Finally, form two
matrices using Lhc plane normal vectors as follows:
M, =[L§ LY o L] k=12 (3-9)

The next lemma cstablish a uniquencss condition for the three-view problem,

Lemma 3.3. In the three-view problem, if both K; and K; are nonorthonormal
and K; has full-rank, then a unigue solution results i and only if the equations in

LixLi=0and LIxLi=0 (3-10)
do not hold simuitancously.

Proof: Since the truc planc normal must be a planc normal solution from both
K; and K3, onc of the cquations in (3-10) must hold. Without loss of generality,
assume that L} and Li correspond to (he true solution, and L3 and L3 are spurious
solutions. We necd prove only that when both cquations in (3-10) are satisfied, a
motion solution consistent with all three views can be obtained.

Three views give threce PMMs K, K3, and Ks,, which are the PMMs between
the first and second views, belween the first and third views, and between the second
and third views, respeclively. Obviously,

<= KoKy, or Ky = KqK7 ' (3-11)
Now assume L (L = L} = o L3 for some constant o according lo Equation (3-10))
is a common solution of the planc normal obtained from both K; and Ks;. Then,
~1
according to Corollary 3.1, (K, L. should be a planc normal solution from Ka;.
Therefore, we need and need only 1o prove that there exist some rotation matrix R,
and some vector T, such that
Ky = Ry + TyLIKG L (3-12)
When the above equation is satisficd, the planc normal solution L is consistent with
all three views.

Since L is a solution from both K, and Kj, we must have

K,=R,+TL'" Kj=R;+TiL', (3-13)
for some rotation matrices Ry and Ry and some vectors Ty and T;. Using Equation
(3-5) we have
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K;' =Ry = (R7IT) (LK), (3-14)
Then from Equations (3-11) and (3-12) we have
Ki = KiK7' = (Ry + TaL')K; ' = RuK; ! 4 T5LTKS !
=Rs[R7' — (R7'T) (LK Y] + ToLTKS! (3-15)
= RaRy '+ (Ty - RaR7'T)) (LTKDY).
It is obvious that if we choosc
Ry = R3R7!, Ty =Ty - RyR7'Ty, (3-16)
then Equation (3-12) is satislicd. Therefare, if a plane normal solution obtained from

K is parallel to a plane normal solution from K3, a consistent solution of the motion
and structure can always be found [or the three views. Q.E.D.

The above lemma also states that in the multiview problem, to determine the
uniqueness of the solution we need consider only the plane motion matrices related to
the first view. Since for cach K;, one planc normal solution admits exactly one motion
solution, the overall motion solution for the image sequence is unique if and only if
the plane normal solution [or the first view is unique (up to a scalar). Therefore, if
and only if the plane motion matrices related Lo the first view admit a unique plane
normal solution for the first vicw, the structure of the plane and the motion over the
whole sequence can be determined uniguely.

We now prove the major thcorem of this paper.

Theorem 3.1. Assume that cach plane motion matrix K;j, i = 2, ..., n, is invertible
and has three distinct singular valucs. Then K, i = 2, ..., n, admit a unique solution
of the plane structure and motion if and only il exaclly onc of M; and M; defined
in (3-9) has a rank of I.

Proof: Since two views determine the planc normal in the first view to two
solutions, at most onc spurious solution for the motion problem of the whole sequence
may result. The truc plane normal N must be onc of the solutions fromK; for every
i. Therefore, by the way in which M; and M, arc constructed, one of M; and M;
must contain solely the planc normal solutions corresponding to the true plane normal
and the other must contain only the spurious solutions. Without loss of generality,
assume M; contains the correct solutions and M, contains the spurious solutions. It is
clear that M; has a rank ol 1. According to Lemma 3.3, the spurious plane solutions
define a consistent motion if and only il the plane normal vectors LY, i = 2, ..., n,
are all parallel to cach other. When this occurs, there is no way to tell if M; or My
contains the irue solution since both of them constitute a consistent motion solution
and satisfy the image data. When L7, i = 2, ..., n, arc all parallel to each other, M,
also has a rank of 1. Thercfore, il and only il both M| and M, have a rank of 1,
a spurious solution results. Q.E.D.

For noisy data, ncither of M, and M3, may have a rank of 1. In this case, we
can use the eigenvalues of MM, " and M>M," 1o determine if the solution is unique
and which of M; and M; corresponds (0 the correct solution.

When the motion is uniquely determinced, an oplimal solution of the plane normal
from M; or Mj can be obtained. Then the motion paramelers can be estimated in
closed forms from cither K; or the original correspondence dala, using the knowledge
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of the plane normal. Howcver, this solution may not be the most robust since it is
a stepwise linear method. A robust nonlinear long sequence algorithm that applies
to general surfaces as well as planar syrfaces and cnlorces both motion and structure
consistence has been presented jn [4] and [S]. Nevertheless, the theorem in this
section reveals some fundamental truth about the planc motion problem and can be
used to determine the uniquencss ol solution.

4 Summary

In this paper we have shown an uncertain situation for the two-view plane motion
problem in which an infinite number of solutions of the plane motion and structure
result. We have also eslablished necessary and sufficient conditions for determining
the structure and motion ol a planar surface from multipie views. The conditions
obtained are algorithm-independent and apply (o any number of images. These results
enhance our understanding of the planc motion problem,
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