
Motion and structure 
estimation using long 

sequence motion models 

Xiaoping Hu and Narendra Ahuja 

This paper presents several algorithms for estimating motion 
and structure parameters from long monocular image 
sequences by using the most apporpriate of a set of long 
sequence motion models. We first present a new two-view 
motion algorithm and then extend it to long sequence motion 
analysis. The two-view motion algorithm generally requires 
six pairs of point correspondences to give a unique solution of 
the motion parameters. However, when the points used for 
correspondences lie on a Maybank Quadric, the algorithm 
requires seven pairs of point correspondences to give all 
possible double solutions. Object-centred motion representa- 
tions and models of motion described by up to the second 
order polynomials are analysed. Two long sequence algor- 
ithms arc presented, one using inter-frame matches, and the 
other using point trajectories. The long sequence algorithms 
automatically find the proper model that applies to an image 
sequence and gives the globally optimal solution for the 
motion and structure parameters under the chosen model. 
Experimental results with several real image sequences 
undergoing different motions are presented to demonstrate 
the performance of the algorithm. 

Keywords: estimation, motion, polynomial motion models, 
structure 

This paper addresses the problem of estimating motion 
and depth tructure from a sequence of mono- 
cular images under perspective projection (motion 
problem hereafter). After a decade’s effort of many 
researchers”‘, significant progress has been made in 
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both theory and algorithms. However. performance on 
real image data is less than satisfactory in many cases 
for several reasons. First, it is not easy to obtain 
reliable, accurate correspondence data from real 
images. Second, the existing motion algorithms are not 
robust enough to obtain good results with the state-of- 
the-art camera resolution. Another reason is probably 
that the existing algorithms either focus on special cases 
(e.g. constant motion) or address general cases at the 
expense of special cases. In the former situation, the 
algorithm needs prior knowledge about motion and is 
very restrictive; in the latter, the algorithm assumes 
arbitrary motion and does not exploit the smoothness 
of motion. Other factors may significantly affect the 
accuracy of estimation; for example, the angle of visual 
field must be large enough to distinguish translation 
and rotation. 

The goal of this paper is to present an approach that 
integrates different motion algorithms into a system of 
methods. First, model-based motion estimation algor- 
ithms (including algorithms for estimating arbitrary 
motions) are developed to estimate smooth motions. A 
strategy for automatically determining the proper 
model is implemented to adapt the algorithms to 
different motions. Second, the state-of-art results about 
two-view motion estimation are integrated to yield a 
robust, adaptive two-view motion algorithm which 
provides necessary initial guesses for the long sequence 
motion algorithms. Third, a global, yet efficient non- 
linear search of the motion parameters is carried out to 
ensure globally optimal solution of the motion para- 
meters. We also present the experimental results with 
real image data which show that the algorithms yield 
very good estimates for a diversity of image sequences 
undergoing different motions. 

Since the long sequence motion algorithms rely 
heavily on the two-view motion algorithm and can be 
more easily described in terms of two-view motion, we 
first present extensive discussion about two-view 
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motion and then extend our discussion to multiview 
motion. 

The following section summarizes the current under- 
standing about two view-motion and introduces some 
notation. We then present a robust nonlinear two-view 
motion algorithm which gives double or unique solu- 
tion for any rigid surface. Long sequence motion 
models and the solutions of motion and structure from 
long sequences are discussed, and experimental results 
with real image data presented. 

solutions can resultS591”~1”‘7, although in rare situa- 
tions there may be an infinite number of solutions5911. 
Most researchers who investigated the plane motion 
problem also proposed algorithms for estimating 
motion and structure parameters. 

For a nonplanar surface, we now know under what 
situations ambiguous solutions arise, how the spurious 
solution are related to the true motion and structure14, 
and how many solutions are admissible6$**. We also 
have sufficient conditions for double or unique solution 
of motion and structure**. There have also been many 
algorithms developed for estimating motion and struc- 
ture of a general surface2~4~7*8~23-27. 

ADVANCED RESULTS ON TWO-VIEW 
MOTION; A SUMMARY 

The two-view motion problem generally involves two 
aspects: 

1. With how many point matches and under what 
conditions is the solution of motion and structure 
unique? 

2. Given the correspondences, which algorithm 
gives the most robust estimation of motion and 
structure? 

In this section we discuss the first aspect only, and leave 
the second to the next section. 

A robust algorithm generally requires a profound 
understanding of the problem. Therefore, to develop a 
robust algorithm for two-view motion solution, it is 
necessary to investigate the conditions under which the 
algorithms work or fail. 

Although in theory multiple solutions arise only for 
Maybank Quadrics, in practice we have found multiple 
solutions exist for general surfaces, especially when the 
object is small or far away. This is due to the fact that 
when the object is small or far away, it is almost always 
possible to fit a Maybank Quadric (or even a planar 
patch) to the object surface. For example, a human 
face at a distance can be fitted very well by an elliptical 
sphere, an hyperbolic paraboloid, or even a planar 
patch. Therefore, linear algorithms hardly work for 
small objects or objects at large distances. Even 
nonlinear algorithms require a sufficiently large visual 
angle to estimate the motion parameters with reason- 
able accuracy. It is thus important to have algorithms 
that require the least stringent conditions for unique 
solution of motion and yield all possible solutions when 
multiple solutions exist. The following are the most 
advanced results in the uniqueness problem, and 
comprise the backbone of our two-view motion algor- 
ithm in the next section. 

The uniqueness problem of two-view motion estima- 
tion can be stated as follows: given n pairs of point 
correspondences (xi, y;), (xl, y:), i = 1, 2, . . ., II, 
under what situations there exist finite, double, or 
unique solution of the rotation matrix R, the translation 
vector T, and the (positive) depths Zj, Z,!, from the 
motion equation: 

Z:[x: yJ l]==ZiR[xi y; l]=+T, 

We assume that R0 and To are the true motion 
parameters and R and T are the other possible set of 
solution. We assume that To #O. When T,, = 0, the 
motion problem is generally more determined**. 

First, let us introduce two matric operations, 62 and 
rs, called Kronecker product and row stretch, respec- 
tively, that will simplify notation used in this paper. Let 

A = (aij)mxn and B = (b!j) be any two matrices. Then 
the Kronecker product is defined as: 

i=l,2,. . .’ n? (1) 

This problem has been attacked by many re- 
searchers’-“.” and is now almost completely solved. 
However, a clear statement of the necessary and 
sufficient conditions for a unique solution of motion 
and structure is still not available, though the maximum 
number of solutions and the relationships between the 
solutions have been known6*‘4,22. In this section, we 
summarize several existing sufficient conditions for a 
finite or a unique solution of motion parameters. These 
conditions are the theoretic foundations of the unified 
nonlinear two-view motion algorithm that is introduced 
in this paper. We so far cannot express a necessary and 
sufficient condition for this problem in a nice, closed 
form, though we can show that the conditions pre- 
sented here are very close to being necessary and 
sufficient. 

A@B=((aijB)= . . . 
[ 

a,,B . . . ulnB . . . . . . 1 (2) 
am,B . . . amnB 

The row stretch of A is a vector obtained by placing all 
rows of A into one column in the row order: 

For planar surface (with the surface shape known in 
advance), we now know that in general at most two 

rsA=[a,,. . .a,,. . .a,,. .u,,lT (3) 

Let 

E= [;] =[i; i; ii] (4) 

be any essential matrix of the form T x R’***‘. Then all 
information for the motion parameters available from 
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point correspondences is the motion epipolar equa- 

h, 

h2 I 11 

@SE) = A,h = A,, - = 0 (5) 

ho 

and the constraint equation for the essential matrix’-‘,2x: 

(ei * ed(el - e3)ef + (9 . e2)(e2. e3) e2 + 

(e2 * cd@, - %) e3 = 0 (6) 

where Oi=[xj y, llT, O,‘=[xl yf IIT, i=l, 2, . . ., 
tz are n pairs of point correspondences. A, will be 
called the coefficient matrix hereafter. 

For YE = 5, Netravali et al.‘” and Faugeras et al. I2 
have shown that there are at most 10 sets of motion 
solutions. However, not all five correspondences assure 
this result. A necessary and sufficient condition is that 
there are five linearly independent epipolar equations, 
or equivalently, that the matrix As defined by the five 
pairs of points has full row rank 5. The maximum 
number of physically feasible solutions from five 
correspondence that has been numerically found is 8”“. 
For n = 6, if the coefficient matrix A6 has a full row 
rank 6, then the motion parameters can be uniquely 
determined with probability 1 ‘3,22, For n = 7, if the 
coefficient matrix A7 has a full row rank 7, then the 
maximum number of solutions is 32y, and the probabil- 
ity for two or three solutions to exist is zero. For n 3 8, 
as is well known, if the coefficient matrix A, has a row 
rank of 8, then the motion is uniquely determined. 
Multiple solutions exist only if the points used to lie 
on a Maybank Quadric. However, if the Maybank 
Quadric is uniquely defined by six or more space 
points, then at most two physically feasible solutions 
can be sustained”‘. 

Here we see that the row rank of A, determines the 
maximum number of possible solutions; but the actual 
number of physically acceptable solutions depends on 
the positions of all image points. From these results we 
know that given n 3 6 point correspondences, if A, has 
row rank of 6 then the motion can be uniquely 
determined with probability 1. 

Now the problems that remain are: 

I. How to obtain an optimal solution of the motion 
parameters when there is only one solution? 

2. How to know whether the solution is unique? 
3. How to obtain other solutions when there are 

mu1 tiple solutions? 

The last two problems may appear insignificant since 
when six or more correspondences are available, 
multiple solutins rarely exist. However, as we have 
pointed out earlier, when the object is small or far 
away, the points can often be fitted by a Maybank 
Quadric and hence multiple solutions are admitted. 

Therefore, to make the motion algorithm more robust 
and applicable, it is desirable that the algorithm 
requires the least stringent conditions for unique 
solution and yields all solutions when multiple solutions 
exist. 

AN OPTIMAL NONLINEAR TWO-VIEW 
MOTION ALGORITHM 

Motion and structure estimation using long sequence motion models: X Hu and N Ahuja 

A number of linear*,? and nonlinearx,“3.“~~‘7,‘” motion 
algorithms have been developed for motion estimation. 
Linear algorithms rarely work for noisy data, though 
they have been used to produce initial guesses for 
nonlinear algorithms by many authors. The existing 
nonlinear algorithms all assume that the motion is 
uniquely determined and require good initial guesses 
since they do not do global search. When the motion is 
a pure rotation or involves a small translation, the 
existing algorithms often fail to produce good estimates 
of the rotation parameters. We have implemented 
many algorithms2*2”~2h, and find that the following two- 
stage nonlinear algorithm performs most robustly and 
applies to most general situations. Since the algorithm 
solves for rotation parameters first and ten translation 
parameters, the computing efficiency is also much 
higher than other nonlinear algorithms. 

Outline of the algorithm 

Let R = (t-,) and T = [t, t2 t3j” (T can be zero in this 
algorithm) be the rotation matrix and translation vector 
between the two views. Let Oj = [xl yi l]‘, 0; = 
[x/ y: l]‘, i = 1, 2, , . . , n (n 3 5), be n pairs of 
correspondences, where (xi, yl) and (xl, yi) denote 
the image coordinates in the first and the second views. 
Then the algorithm will minimize the sum of squared 
residues of the motion epipolar line equations: 

S, = ~ {(Ol XROi).T}‘=T”‘n~‘n,T=Iln,T112 
I-m I 

(7) 

where 

H,= 

1 

3 llTll’= 1 (8) 

For a given estimate R, the optimal estimate of T 
corresponds to the eigenvector of II,“ II, associated 
with TIi‘fI,‘s least eigenvalue A,, which is just the 
minimum value of S, . Therefore, minimizing S, can be 
reduced to minimizing A,, which is a function of only 
the rotation matrix. The algorithm is thus divided into 
two steps: (1) first search for R to minimize the least 
eigenvalue Am of TIz II,; (2) then estimate T in a 
closed form by solving for the eigenvector of II,‘II, 
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associated with the smallest eigenvalue A,. The sign of 
T is to be determined such that the depths are positive. 

If the motion is a pure rotation, then the resulting T 
in the above algorithm could be anything but zero. To 
determine if the translation is zero, we use the 
following confidence measure: 

in the neighbourhood of the global minimum, different 
optimization algorithms (e.g. Hooke-Jeeves method”‘, 
or gradient method32) all work. 

St is a weighted version of the following criterion 
used by many researchers’8P20~26~33: 

.( 

rll%+rl;?Yi+rl3 

1 

2 

s2= 2 x; - + 

131 xi + r32Yi + r33 

S3 = C (Xi - UJ2 + (y: - Vi)2 iE C d? 
I I 

( 
Y; - 

r21Xi+r22Yi+r23 

r31 xi + r32Yi + r33 1 
2 (9) 

where Ui and v, are the expected position of Xi and y, 
after the motion, Ui and Vi are related to the depth Z, 
and the motion parameters R and T through: 

If S2 is close to zero (the particular threshold depends 
on the camera parameters), then the estimated T is 
unreliable. Otherwise, the translation is visible and 
hence the estimation of T is trustworthy. 

The first step of the algorithm is nonlinear, but the 
second step is linear and gives a closed form. Therefore 
most of the computation is spent on the first step. 
Fortunately, only the rotation matrix R and hence only 
three unknowns are involved in the first step. Thus 
even an exhaustive search algorithm can be applied to 
estimate R. To do this, we represent the rotation matrix 
by the three-angle representation: 

(r11xi+r12Yi+r13) Zi+t~ 
Ui = 

(r31 xi + r32Yi + r33) zi + f3 

(r21Xi+r22Yi+r23) Zi+t2 
Vi = 

(r31Xi+r32Yi+r33) Z,+t3 

For a given estimate of R and T, (Ui, Vi) is on the 
motion epipolar line li defined by the motion and 

Cxi9 Yi): 

R = Ax(wx) Ay(+) Az(wz) 

where 

(10) 

[pi Vi l](TXROi)=O (14) 

The value of Zi determines the position of (Ui, Vi) on li. 
Therefore, the optimal solution of Zi is that which 
makes di the shortest distance between point (x:, yi) 
and line li. Let T X ROi = (Ui, bi, Ci)T, then S3 is 
equivalent to: 

[ 

1 0 0 

Ax= 0 cos w‘y -sin wx 

0 sin ox cos wx 1 S3 = C (0: . (T X R@i)}‘l(ay + bf) (15) 

[ 
cos wy 0 sinw, 

Ay= 0 1 0 

-sin 0 y 0 cosoy 1 
which indicates that Sl is a weighted version of S3. 
Hence, by choosing S, instead of S3 as the optimality 
criterion, the motion algorithm can be significantly 
simplified without loss of performance. 

cos wz -sinoZ 0 

AZ= i sin wz coswz 0 (11) 
0 0 1 1 

Then there are only three unknowns in R. If we 
exhaustively search each angle wx, wy or oz to 
within 1” in the range of (-lw, loo’), then the 
computation time is proportional to 8 X 10”. For real 
images of small motion, the search range can often be 
much smaller. After the rough minimum has been 
found, the estimates can be refined in the neighbour- 
hood of the rough minimum to improve the accuracy to 
any prerequired level of precision. 

Iterative procedure 

Here we present an iterative procedure for searching 
for the global minimum. This procedure converges very 
quickly, and works very well when the rotation angles 
are smaller than 20”, although, like most iteration 
procedures there is no guarantee that it always con- 
verges to the global minimum. 

The search of wx, wy and wz can be accelerated if 
an optimization technique and/or an initial estimate is 
used. For rotation angle of less than lo”, it often 
suffices to start the search of (ox, wy, wz) at (0, 0, 0) 
or at the estimate obtained from linear solution. To 
avoid the dependence of the algorithm on the initial 
guess, the search should start at all points in a 
predetermined grid, e.g. one point in every lo” x 
lo” x 10” cube. We have experimentally found that 

First, note that S, is a function of the estimates of R 
and T. For an estimated R, the optimal solution of T 
that minimizes Sl can be obtained in closed form, as 
discussed above. We then fix T at its most recently 
updated value and search for the angles of R such that 
S, is minimized. Thus, we alternatively update the 
estimates of R and T until the algorithm converges to a 
fixed point which is the optimal solution. The details 
follow-. 

In the small rotation case: 

0 -WZ WY 

R=I+Qx =I+ wz 0 -WY 

-WY WX 0 

(12) 

(13) 

1 (16) 
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If we rewrite the motion epipolar equation: 

(O,‘xRO,).T=O 

as: 

(17) 

where X = OZ is a point on the planar surface with 
correspondence X’ = O’Z’. After the rotation R 
and translation T are known. the depths Z and Z’ can 
be obtained from: 

(TxO;).RO,=O 

w’e then have: 

(18) 

(2.3) 

q; . (I + f2 x ) 0, = 0 (19 

or: 

(0, x Y,)’ 0 = 0;“ ?, (20) 

where q, = T x 0;. We can then obtain a linear least 
squares solution of 0 = [wx wY wz]’ from (20) for 
a given T. 

if and only if 0 is not parallel to T, minimizing the 
squared residue of the motion representation (1). 
Depth Z can also be solved for by minimizing (x’. 
y’) to the epipolar line 1 as defined by (lg), or by 
equalizing (u, V) defined as in (13) to the intersection 
point of 1 and its perpendicular line passing (x’, y’). 
Then with three or more pairs of correspondences of 
points noncolinear in the image plane we can obtain a 
linear least squares estimation of N from equation (22). 

Equations (20) and (17) constitute an iteration pair. 
That is. after we have obtained an estimate of T, we can 
use (20) to solve for R, and then use (17) to obtain a 
refined estimate of T. 

If the nonlinear algorithm converges to rotation R, 
and translation T,, the associated structure parameters 
N, of the plane can be obtained by a linear least squares 
solution of equation (22). The other set of motion and 
structure parameters can be obtained by a plane motion 
decomposition of the plane motion matrix: 

Special surfaces 
K=R,+T,N’,r (24) 

The nonlinear algorithm above yields one optimal 
solution for all kinds of surfaces. However, for special 
surfaces like planes and Maybank Quadrics, the 
solution is generally not unique. 

using the method, for example, in Hu and Ahuja” or 
Wang et (11. ‘I’. 

First. let us discuss planar surface. Although planar 
surface can be a branch of a special form of Maybank 
Quadric (two planes), we have to deal with it differ- 
ently from other Maybank Quadrics since planes are 
more often seen than other Maybank Quadrics, and in 
general we cannot determine the Maybank Quadrics 
associated with a plane2’, since the other branch has 
one degree of freedom (we only know that it passes the 
two origins of the coordinates before and after motion). 

Although there are many linear algorithms that give 
closed-form solution of plane motion and struc- 
t”re3~5.10,i I) these linear algorithms need a priori 
knowledge of the surface shape before they can be 
applied. To determine whether the surface is planar or 
not, a general algorithm is still needed. For planar 
surfaces, there are generally two solutions for the 
motion and structure, and the nonlinear algorithm 
above will converge to any one of the solutions. We 
now describe the method with which we determine 
whether the surface is planar, and if it is, we refine the 
estimation by applying plane motion algorithms. 

If the projection of a plane in the image plane is not a 
line, then the plane must have an equation: 

There are many ways for determining if the surface is 
planar or not. The following method is used in our 
work and gives very accurate judgement. Assume we 
have obtained one solution Rr and T, which minimizes 
S,. Then we solve for a hypothesized plane structure N, 
from (22). We then obtain the other set of motion 
parameters Rz, T2 and Nz by decomposing K defined in 
(24). We then substitute R? and T1 into (7) to check if: 

S,(Rz,T7)-S,(R,,T,)<F..S,(R,.T~) (25) 

where E is a preset constant (e.g. 0.1). If so, the 
surface is planar; if not, the surface is not planar. In 
case K has unique decomposition, then the above 
method may not work. However, in this case the 
motion and the depths are uniquely determined. We 
can also use the sum of the distances of the estimated 
3D points to the hypothesized plane to determine if the 
surface is planar or not. When the surface is deter- 
mined to be planar, then the plane motion algorithm” 
is used to obtain a better estimation of the motion and 
structure parameters. 

x 
NrX = [n, nz n3] oz= [n, n? %I y [I Z=l 

I 

(21) 
01-: 

xn, +yn2+n3= I/Z (22) 

One question associated with the above method is: 
what if there exist two motion solutions such that one 
leads to planar surface and the other nonplanar 
surface‘? If this situation occurs then the above method 
will fail irrespective of whether the nonlinear algor- 
ithm, converges to the planar solution or nonplanar 
solution. However, this is unlikely. As we have pointed 
out??, when the surface is planar, six correspondences 
of points that do not lie on a quadratic curve in the 
image plane suffice to exclude motion solutions that 
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lead to nonplanar surfaces. We now briefly illustrate 
why. 

Let RI, T, and N, be a planar motion and structure 
solution and K defined in equation (24) be the 
corresponding plane motion matrix. Then for each 
correspondence pair 0 and 0’ we have: 

70’ = KO (26) 

where: 

Y=Jy (27) 

Assume R and T is another set of solution leading 
to nonplanar surface and E = T x R is the essential 
matrix. Then 0 and 0’ must satisfy the motion 
epipolar equation: 

@‘rE@ = 0 (28) 

Now substituting equation (26) into the above equa- 
tion, we obtain: 

OTKTEO = 0 (29) 

Equation (29) indicates that the points used must lie on 
a quadratic curve in the image plane. Exception may 
occur when KTE is skew-symmetric, but in this case we 
can prove thatz2 K = R + TNT for some vector N. That 
is, solution R and T leads to planar surface. Since five 
points may uniquely define a quadratic curve in the 
image plane, six correspondences of points that do not 
lie on a quadratic curve in the image plane suffice to 
exclude motion solutions that leads to nonplanar 
surfaces. 

The situation for general Maybank Quadrics is more 
complicated. The algorithm presented below requires 
seven correspondences of points that satisfy some 
condition to determine the other possible solution from 
one known solution if the surface is Maybank Quadric. 

Assume one solution Ra = (rij) and Ta = [tr t2 tslT 
has been obtained with the nonlinear search algorithm. 
The goal below is to determine whether there is 
another solution which satisfies the same image data; if 

so, obtain an optimal solution of the alternative 
solution. It is well known that if another solution R and 
T satisfies the data, then the points used for correspon- 
dences must lie on a Maybank Quadric defined as 
follows: 

+Z@T(~;~+~TRII)O+~;~O=O (30) 

where Z is the depth of the image point 0 and E = T x 
R. The depth Z can be solved as described earlier, since 
R and To are known. It is well known that the 
Maybank Quadric passes through ZO = -@T,, = 0 

= [ox oy OzlT, where 0 is the new origin of the 
coordinates for camera-centred motion model. Now 
given n(n b 7) points Oi, i = 1, 2, . . ., n, with their 
depths solved from equation (23), we first fit the points 

with a more general surface of the form: 

(31) 

where A is symmetric and: 

From equation (31) we can determine A and B linearly 
as: 

ra; 

x:z, YTZ, z, 
04 

- 2 2 2 *lY,z, x,z, Y,Z, Yl XI 1 a5 

ah ..,, 

X.‘Z” Y.3” zn 
b, 

--- 
2 2 2 

GYnZ. X”Z” YJ” X” Y. 1 b> 

h 

=Q,C=O 

(33) 

if and only if Q, has a row rank of 8 or above. After A 
and B have been solved, we can then solve E from: 

R,TE+ETRa=A, T;E=BT (34) 

or from: 

rsE=P rsE=C 

(35) 

Equations (33) and (35) can be merged into one: 

Q,PrsE=O (36) 

Since there are at most two solutions of E that satisfy 
equation (34)i4, matrix Q, P must have a row rank of at 
least 8 as long as Re is a rotation matrix and To # 0. 
Therefore with seven or more points that make Q,P 
have row rank of 8 or above, E can be linearly 
determined from equatin (36). The linear least syares 
solution of rsE is ‘ust the 
(subject to 11 rsE I/= 1) 

eigenvector of PTQn Qnp 
associated with the least 

eigenvalue. After E has been solved, we can then 
obtain an optimal solution of T and R using the method 
in Philip34 or the simpler linear decomposition algor- 
ithm presented in Appendix B. 

To determine whether the surface is Maybank 
Quadric or not, we use the following method. If the 
surface is indeed a Maybank Quadric, then E obtained 
from equation (36) will be an essential matrix and thus 
the decomposed T and R will satisfy the image data 
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very well. Otherwise, E will not be an essential matrix 
and thus the decomposed T and R will not satisfy the 
image data. Even for a Maybank Quadric, E obtained 
from equation (36) may not be exactly essential if the 
data is noisy. Therefore, after T and R are obtained, we 
need to search around them to minimize criterion S,. 
Again, equation (25) is used to determine whether T 
and R are really a solution, and whether the surface is 
Maybank Quadric. In case that two solutions are 
admitted, the positive depth constraint can be 
employed to identify the spurious solution if one 
solution yields depths of opposite signs. The ambiguity 
of the motion may also be removed by the long 
sequence motion algorithm that is to be introduced in 
the next section. 

Summary of the two-view motion algorithm 

Before we summarize the nonlinear motion algorithm, 
let us discuss how to properly use the correspondence 
data to make the algorithms more robust. When a large 
number of correspondences is available, a proper 
selection of the correspondence data for motion estima- 
tion may significantly improve the accuracy of the 
estimates of motion parameters. It has been found that 
the motion estimation is very sensitive to the size of the 
camera visual field. If the visual field is too small, 
motion estimation will suffer from the motion aperture 
problem because motion is intrinsically ambiguous for a 
small object. Therefore, to make maximum use of the 
camera resolution, the correspondence points should 
be distributed over the whole image plane. The points 
must be uniformly distributed lest they are crowded 
into some region and again make motion algorithms 
suffer from the motion aperture problem. Since image 
coordinates of far away points are less sensitive to 
translational motion, the correspondences of such 
points yield more accurate estimation of rotation 
parameters. On the other hand, image correspond- 
ences of nearby object points yield more accurate 
estimation of translation vector. Therefore, a minimum 
interpoint distance (e.g. 10 pixels) is chosen to select 
some of the correspondence for motion estimation. 
Further, points of small disparity values are more 
heavily weighted (the weight is proportional to the 
disparity value) than those of large disparity values in 
the solution of rotation and the opposite is true in the 
solution of translation. 

Step 3. Use any optimal searching procedure to 
search around w,, wZ and w3 to any prerequired 
precision (e.g. 0.001’) to minimize A, again. Let the 
optimal estimates of wX, wY and wZ be w:, w*y and 
w>, and let the resulted rotation matrix be R. 

Step 4. Substitute w;, w*y and w> into equation (8) 
to compute II,TII,. If all eigenvalues of n:I-I, are 
close to zero, or if the confidence measure defined by 
S2 is low, then T = 0; otherwise, T equals the eigen- 
vector of n:TI, associated with A,,,. 

Step 5. If the translation is zero and the points (six 
mor more) are not on a quadratic curve in the image 
plane “, then the motion is uniq ue; otherwise, estimate 
the hypothesized plane normal N and decompose the 
plane motion matrix K( = R + TNT) to obtain the 
other set of motion R2, Tz. Check if R?, Tz also 
minimizes criterion S, using equation (25). If so, the 
surface is planar, if not, the surface is nonplanar. 

Step 6. If the surface is not planar and the translation 
is not zero, then compute the hypothesized Maybank 
Quadric parameters A and B. An alternative set of 
motion solution R2, T2 is then obtained from equation 
(36) and is locally refined by searching. If inequality 
(25) is satisfied, then the surface is Maybank Quadric 
and two solutions result. Otherwise, R and T consist of 
the unique solution. 

This algorithm has four good features: 

1. It works for general motion (including pure rota- 
tion and translational motion) of objects of planar 
or general surfaces, and significantly outperforms 
the existing algorithms in efficiency and robust- 
ness. 

2. It does not depend on initial guesses of the motion 
parameters, and gives a robust and globally 
optimal solution for the motion parameters for the 
given criterion S,. 

3. Irrespective of how many correspondences are 
used, it gives unique solution as long as the motion 
is uniquely determined by the correspondence 
data. Therefore this algorithm requires the least 
stringent condition for unique solution of motion 
parameters. 

4. The search space of R is small enough for real time 
application. 

The algorithm in this section can be summarized as 
follows: 

MOTION ESTIMATION FROM LONG 

SEQUENCE OF IMAGES 

Step 1. Check the interpoint distances of the corres- 
pondences and remove some from those crowded 
regions. Weight each correspondence pair according to 
its disparity value for the solution of rotation and 
translation as described above. 

Step 2. Search (exhaustively, iteratively or starting 
from an initial estimate) wX, wy and wZ to within a 
predetermined coarse level of resolution (e.g. 1”) to 
minimize the least eigenvalue A,,, of n:II,. Let the 
optimal estimates of wX, wy and wZ be wl, w2 and 

w. 

The accuracy of motion estimation can be greatI? 
improved when a long sequence of images is used”-. 
This is because more evidence about the motion is 
present. In the previous approaches’g2’.35.“h, either 
arbitrary motion, or restricted motion such as constant 
motion, or velocity decomposition models are 
assumed. Debrunner and Ahuja” and Tomasi and 
Kanade38,“Y obtained impressive results by using 
orthographic projection and the factorization 
method3’. They assume arbitrary shape and need 
trajectories of points as input. Debrunner and Ahuja 
analysed the constant motion case. and Tomasi and 
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Kanade analysed the arbitrary motion case. The 
motion problem is much simpler under orthographic 
projection since the motion can be reduced to pure 
rotations. Even under perspective projection, the 
solution of a pure rotation or a pure translation is much 
more accurate than the solution of a motion involving 
both rotation and translation, and two views suffice to 
yield good results. 

Reordering equation (41) as: 

In this section we introduce a model-based approach 
to motion estimation under perspective projection 
which uses an accurate, yet flexible, object-centred 
motion representation, and optimally adapts to dif- 
ferent motions. It is evident that a model-based motion 
algorithm should give better results than a general 
motion algorithm, since a correct model involves fewer 
unknowns and employs more constraints. We first 
present the algorithms for several motion models, and 
then present a strategy for automatically determining 
the proper model to be used. 

Camera-centred and object-centred motion 
representations 

First let us describe the camera- and object-centred 
motion representations, both of which are used in our 
approach. For different motion models, we find that 
different representations are more convenient. 

The camera-centred interframe motion representa- 
tion is as follows’8: 

X, = R,X,_l + t, (37) 

A general representation for motion between the ith 
and jth (i > j) frames is: 

Xi = Rii Xi + ti; (38) 

where: 

Rij= RiRi_r . . . Rj+, 

i-l 
ti,j = ti+ C Ri,ktk 

k=l+l 

(39) 

(40) 

This representation gives a purely mathematical 
description of the relationships between multi-frame 
motion and interframe motion. 

From the point of view of mechanics, the motion of a 
rigid object can also be considered as rotation about a 
centre 0 which translates relative to the camera centre 
C. The coordinate system used is still camera-centred. 
We use 0, to denote the rotation centre’s position and 
X, any point on the object at time n. R, and T, denote 
the rotation matrix of the object and the translation 
velocity of the rotation centre at time II. Then the 
obiect-centred motion representation between two 
consecutive frames is as foilows: 

X, = R, [X,_, - O,_,] + 0, 

O,=O,_,+T,=. . .=Oc+ 5 Ti 
,=I 

Rotation models 
The models approximate a rotation by a polynomial of 
increasing order. 

(41) 1. Constant rotation 
In this case, the object rotates about a centre at a 
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X, - 0, = R, (X,_, - O,_,) (42) 

and using equation (39) we can obtain the following 
representation of motion between frame i and j (i > j): 

Xi= Ri,j[Xj-Oj] +Oi 

= Ri,jXj-R,j[Oo+$, TX] +%+ ,$, T/c 

= Ri,jXj+ [I-R,j][Oo+ $, T/c] + k$+,Tk (43) 
_ Ri,jXj + ti,, 

Let us note that the above representation is signifi- 
cantly different from the camera-centred motion repre- 
sentation when the motion involves rotation. However, 
for translational motion where R, = I for all II, the 
object-centred representation and the camera-centred 
representation are identical. In this representation, the 
initial rotation centre Oa, and the motion parameters 
T, and R,, n = 1, 2, 3, . . ., are the unknowns and to 
be determined. It is evident that a scale constant is 
involved in the translation vectors. Also, O0 may not 
always be determined uniquely. For example, when 
R,, II = 1, 2, 3, ., share the same rotation axis nn,, 
then if O0 is a solution, O”+cunn, for any constant LY, 
is also a solution, due to the fact that: 

That is, any point on the rotation axis can serve as 
the rotation centre. However, this uncertainty will not 
affect our understanding of the motion. Whenever such 
uncertainty occurs, we can remove it by enforcing the 
following equation: 

o. ’ nR, = 0 (45) 

Motion models 

To take advantage of a long-sequence of images, it is 
often assumed that the motion parameters change 
slowly between frames. We now examine several 
special cases. The solutions for these cases are pre- 
sented in the following sections. In the models below, 
the choice of models for rotation and translation can be 
independent, for example, the rotation can be constant 
but the translation may have constant acceleration, and 
vice versa. We first discuss the rotation models and then 
the translation models. 



constant velocity, that is R, = R for all n. The rotation 
matrix R,, reduces to the following form: 

R 
‘.I 

= R’-’ (46) 
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4. Arbitrary rotation model 
In this case, no smoothness constraint about the 
rotation is enforced during the solution. Therefore, all 
rotation matrices R,, i = 1, 2, _, n, are considered to 
be independent and unknown. The three-angle repre- 
sentation is used for each rotation matrix, and rotations 
betwen two nonconsecutive frames are expressed in the 
form of equation (39). 

R is expressed in the three-angle representation (10) 
during solution process and hence only three unknowns 
are involved. 

2. Rotation with constant acceleration 
Tn this case, the rotation velocity changes at a constant 
rate about a fixed axis, that is: 

R,,=nn”-(nn7‘- I) cos 4n + n X I sin +n (47) 

with 

where n is the rotation axis, 4, the rotation angle, and 
I the identity matrix. Since the rotation axis n is fixed, 
we have: 

R,,, = nn~’ - (nn”‘- I) cos f$,,, + n X I sin &, (49) 

where: 

h., = Z?l 4~ = (i-i) 40 + la, - a;1 4, 
h / 

(51) 

(W 

For the purpose of estimation, we represent the 
rotation axis n by two angles cx and ,f3 in the form of: 

and: 

h k(k+ 1) 
ok= 1 j=- 

,-I, 2 

sin (Y cos/3 

n= 

[ 1 cos Ck (52) 

sin (Y sin/3 

Therefore. LY, p, &, and #I, are the unknown 
rotation parameters. 

3. Rotation described by second order polynomials 
In this case, the rotation velocity between two consecu- 
tive frames is approximated by second order polyno- 
mials in time. i.e.: 

and: 

(53) 

R,, = Ax(4t) Ad&) AZ(&) (54) 

The rotation between two nonconsecutive frames is still 
expressed by equation (39). Three vectors CL,,, f2, and 
Oh are the unknowns to be estimated. 

Translation models and the corresponding solutions 
Similarly, a translation is also approximated by polyno- 
mials over time. 

1. Constant translation 
In this case, the rotation centre translates at a constant 
speed, i.e. T,,=T for all n. Then from equation (43) 
we have: 

t,,, = U,.,Oo + Vl.,To 

from which we have: 

(55) 

(t,., x U,.,) Oo+ (t,,, .x V,.,) T,, = 0 

where 

(56) 

U,., = 1 -R,,,. V,,, = iu,,, + (i - j) I (57) 

2. Translation with constant acceleration 
In this case, the rotation centre’s translation changes at 
a constant acceleration, i.e.: 

T, = T,, + n T,, (58) 

Then, the translation between ith and jth frame (i>j) 
is: 

t,,, = U,., 00 + V,,, To + W,., T, 

from which we have: 

(59) 

(t,,, x UC,,) 00 + (t,., x V,,,) To + (t,., x W,.,) To = 0 

(W 

where: 

W,,, = a, U,., + (a, - 0,) I (61) 

and U,,, and a, are the same as defined above. 

3. Translation described by second order polynomials 
In this case, the rotation centre’s translation is approxi- 
mated by a second order polynomial, i.e.: 

T,=T,,+nT,+n’T, (62) 

Then, the interframe translation between the ith and 
jth frame (i > j) is: 

t,., = U., 00 + V,., To + W,., ‘I’<, + Y,., T/y (63) 
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from which we have: Let hi,j be the least eigenvalue of IIzjII,,j. The 
rotation parameters for each model are searched for to 
minimize: (ti.j X Ui.j) 00 + (ti,j X Vi,j) To + (ti,j X Wi,j) 

T, + (ti,j X Y,,j) Tb = 0 (64) 

where: 
R = C Wi,jhi,j 

i>J 

Yi,j = bjUi,j + (bi- bj) I (65) 

bk = i j2 = d k(k + 1)(2k + 1) 
I=0 

(66) 

and other variables are the same as defined before. 

4. Arbitrary translation model 
In this case, no smoothness constraint about the 
rotation centre’s translation is enforced during the 
solution. Therefore, all translation vectors Ti, i = 1, 2, 
. . .) n, are considered independent unknowns. Then, 
the interframe translation between the ith and jth 
frame (i> j) is: 

k=]+l 

from which we can obtain: 

C (ti,j X Ri.k) fk = 0 
k=j+l 

where we assume Ri,i = I, and Ri,j is represented by 
equation (39). 

Solution using interframe matches 

The following algorithm applies to the worst situations 
in which only interframe matches are present. The 
solution is based on the motion models presented 
above. 

The algorithm is divided into three steps: (1) first 
solve for the rotation parameters nonlinearly; (2) solve 
for the translation parametrs in a closed form; (3) 
estimate the depths using all related correspondence 
data for each point. 

The solutions for the above rotation models 
are all the same, though different parameters are 
searched for to minimize the same criterion. Let 
02 = rXl;’ yy I]T, @/ = [Xii y;i l]T, P = 1, 2, 

. . .) Pi,j, be Pi,j pairs of correspondences between the 
ith and ith frames, where (xy, ~2) and xi’, y$‘) 
denote the image coordinates in the ith and jth frames. 
Let: 

(@iii x Ri j @/;,i)T 

1 

Since IITjII,,j is a 3 X 3 matrix, its eigenvalues can 
be obtained in a closed form. With good initial guesses 
from the two-view algorithms, globally optimal solu- 
tions are generally obtained for models of second or 
lower orders. 

After rotation parameters are obtained, the transla- 
tion parameters of the first three models are estimated 
in a closed form. First ti,j is obtained for all i and j with 
i> j using the two-view motion algorithm and the 
estimated rotation parameters. Then O0 and To (also 
T,, Tb) are solved for from equations (56), (60) or (64) 
with the linear least squares method. The obtained 00 
and To (also T,, Tb) are then used to compute ti,j using 
again equations (56), (60) or (64). The solution for the 
arbitrary model is also the same as that for the 
polynomial models, except that equation (68) instead 
of (56), (60) or (64) is used. 

After the motion is solved, we can integrate all 
information available about a point to get an integrated 
solution of the structure about the point. Consider the 
points in the first frame. Let 0, = [x1, yl, llT be a 
point in the first frame that has correspondents with 
points in any other views. Then we track O1 in the 
image sequence to get its trajectories in a subsequence. 
Reorder the subsequence into a sequence and assume 
there are F frames in the sequence for O1. Therefore, 
the problem is reduced to estimating the structure 
with known motions from a point trajectory over a 
sequence. We now consider the reduced problem. 

Assume we have a point trajectory over F frames 
with the point position in the ith view being Oi = 
[xi, y,, lIT. Let Ri j = (r$$, ti j = [tv’, t$‘, t$‘IT (i > j) 
be the known rota&on and traislation between ith and 
jth views. We now need to solve for the depth Z, of the 
point at time 1. This is done by searching Z, such that 
the following error: 

sq= i 

biZ, +t’l’ ’ 

Xi - (71) 
i=2 ciz, + ty 

is minimized, where: 

il ai=r\:xl +r;\yl+r12, 

bi=r~:x,+r~~y,+r~:, 

ci = r$xl + rf712y1 + r ;: (72) 

S4 is the sum of squared distances between the 
observed point positions and the estimated positions 
assuming a depth value Z1. A good initial guess of Z, is 
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obtained in a closed-form by minimizing: 

s;=i: [.x;(CiZ,+t~‘)-(a;z,+t~‘)]2+ 
I ? 

[y;(c;Z, + t:‘) - (b;Z, + t$‘)]2 (73) 

Solution using point trajectories 

The solution above needs to consider all interframe 
motions, and hence the computation complexity is very 
high. In case point trajectories are available, we can 
integrate information about the depths in the first 
frame and the motions between the first and other 
frames to solve only the depths and motions related to 
the first frame. This is the best situation for motion and 
structure estimation in the sense that an integrated 
solution of motion and structure can be obtained 
simultaneously. Requiring both motion consistence and 
structure consistence places a stronger constraint on the 
motion and structure parameters than requiring only 
motion consistence, as in the previous method. There- 
fore, the accuracy of the motion and structure para- 
meters in this method should be much better if the 
number of trajectories is comparable to the number of 
interframe correspondences. 

Nonlinear solution 
If the depths and motion parameters are considered 
simultaneously, the number of unknowns can be too 
large to handle. Therefore, we need a formulation 
which involves both structure and motion but allows 
stepwise solution. The following formulation satisfies 
this purpose. 

Let M, == R,, be the rotation and V, = tj, the 
translation between the ith and the first views. Let 
@J+ [X’ P, y/i, 11”‘ be the position of the pth point in 
the fth image. Let XL= ZfOr p p, where Zi is the depth. 
Then, the following motion equation holds: 

Z;@$=Z;MfO;+Vf, f =2,. . ., F (74) 

Equation (74) describes the motion equation between 
the fth frame and the first frame for point p. 

Consider equation (74) for p = i and p = j. Subtract- 
ing the equation for i from the equation for j, we have: 

Z;@+/ -7r@‘=M.S I ‘I J f 1., 3 

i#j, i,j= 1 1.. ., P f=2,. . .,F (75) 

where: 

S,=ZlOl-Z:O: (76) 

is the vector connecting the ith point and the jth 
P 

oint. 
Equation (75) indicates that vectors Zq@f, Z~Oj, and 
MfS,, must be coplanar. Therefore we have: 

i#j. i,j= 1 9.. ., P, f=2,. . .,F (77) 
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Equations (76) and (77) yield the following equation: 

<of x 0;)“’ 

(of x 0;)“ Mz 1 S,, = a,, S,, = 0. i #j, 

i.j= 1,. 

” ’ (78) 
The solution of the motion and structure parameters is 
based on the above equation. 

Clearly, for each i and j, to make the structure S,, 
have a consistent solution, we must have: 

rank (Q,,) = 2 (79) 

However, for noisy data, it is possible that no rotation 
parameters M,, f = 2, .1 F, can make every @,, 
have a rank of 2. We now consider a two-step least- 
squares solution. For any given a,,, the optimal 
solution of S,j subject to )IS,;jl= 1 that minimizes: 

E,, = II @I, s,, II2 = qxpk, s,, Gw 

is the eigenvector of @$ @‘I, associated with @y; = 
@,,‘s least eigenvalue Al,, which is the minimum value 
of E,, for a given Qj,. Now, the problem that remains 
is to estimate the rotation parameters and minimize 
A,,. However, to solve for M,, f = 2, ., F, uniquely, 
we need to consider all the points simultaneously. 
Let: 

I’ I’- 1 

ss= c c w,,A,, = Ix w,,A,, 
,r,+ I ,-I I>, 

where A,, is the least eigenvalue of @‘;:Q(, and w,, a 
weighting factor. Then, the optimal solution of M,, 
f = 2, . ., F, is that which minimizes Ss defined above. 

In general, an optimal solution of M,, f = 2, . ., F, 
that minimizes S5 requires a nonlinear search of the 
rotation parameters. If the polynomial rotation models 
are used, many fewer unknowns will be involved for 
long-sequence motion than when the arbitrary motion 
model is used. 

After Mf, f = 2, . ., F, have been found, the 
structure vectors S’,, i > j, can all be determined to 
within a scalar and chosen as the eigenvector of @y;@,, 
associated with th: least eigenvalue. Let the scaled 
solution be S,, be S,,. Then, because of equation (76) 
we have the following equation: 

z;o,‘-z;o; =a;,L!2;, (82) 

where LY,, is some constant to be determined. Using s,, 
to cross-multiply both sides of equation (82) we obtain 
the following equation for the depths: 

Zj (0: X S,,) - Z: (Oj' x S,,) = (I3 

i>j_ i,j= 1 3.. ., p (83) 

The above equation gives 3P(P- 1)/2 linear equations 
for the P unknown depths. We can reorganize equation 
(83) into the following matrix form: 
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B i’ ’ 

0 -HZ=0 is then given by: 
I) I 

/3/a, 0 

i>j, iJ= 1 ,- * *, p w 

The depths can be determined to within a scalar from 
the above equation using the least-squares method. 

After the rotations and depths are known, there are 
many ways of determining the translation vectors. For 
example, the two-view motion algorithm discussed 
earlier can be used to determine the direction of V, 
after Mf is known. However, to determine the relative 
scales of V,, f= 2, . . ., F, the constancy of object 
size still needs to be enforced. Therefore, we present a 
different algorithm which uses the depths in other 
views. Let S, be computed as in equation (76), and let 
X6 = MfSij, Then equation (75) gives: 

Z<C$--Z{@f=X&, i,j= 1,. . .,P (86) 

Using 0; to take the cross-product with both sides of 
the above equation, we obtain the following equation 
for Z{: 

Zf(@fX of> = x&x of, j = 1 ,* * .I P (87) 

Depth Zf can be solved for linearly from the above 
equation by a least-squares method minimizing 

The solution is given in closed form by: 

A$.B{ 
ZfY.--..- i=l 

A$.#-’ ‘. 
. .,P, f=2,. . .,F W9 

where 

After the depths are all obtained, the optimal 
solution of translation vector V, that minimizes 
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(90) 

Since translations can be solved in closed form with 
well-defined optimality criterion after the rotations are 
known, in general, there is not much need to use the 
translation models if rotations are estimated with good 
accuracy. However, if a suitable model applies, the 
results can still be improved by applying the estimates 
of Vf= tf, obtained as above to the model-based 
estimation method for translation vectors discussed in 
the last section. 

Iterative solution for arbitrary motion model 
In the algorithm discussed above, if the motion cannot 
be described by a low-order polynomial, then an 
arbitrary motion model has to be used. Therefore, a 
robust and efficient algorithm for solving arbitrary 
motion is desired, Here, we describe an alternative 
algorithm which solves motion and structure itera- 
tively. 

As has been shown above, if the rotation are known, 
the depths and translations can be solved in closed 
form. On the other hand, if the depths and translations 
are known, the rotations can be solved in closed form 
as follows. 

Let: 

Sg=Z;@f-Z$@f 

From equation (75) we have: 

(91) 

S$=MfSij, i#j, i,j=l,. . .,P (92) 

If S(j and S;j, p = 1, . . . , P, are all known, Mf. can be 
determined uniquely using the methods of Faugeras 
and Hebert40 or Arun et al 41 . . Or, M, can be searched 
around the previous estimate to minimize: 

(93) 

Since only three unknowns are involved and the earlier 
estimate of M, can be used as an initial guess, any 
optimization method should work; Mf is solved for 
independently for each f. 

After Mf. f= 2, . . ., 
p=l,. 

F, have been obtained, S,, 
. ‘> P, can be updated using equation (78) and 

then refined using equation (76) after the depths are 
computed from (84). Therefore, the iteration algorithm 
consists of two iteration steps: 

1. Each rotation matrix Mf, f= 2, . . ., F, is updated 
by solving equation (92) or by minimizing 
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using the current estimates of S, (and S&, if 
needed), i>i, i,j= 1, . . ., P. 

2. Each shape vector S,j is first updated by the 
eigenvector of cD;@ij defined in (78) associated 
with the least eigenvalue of CD~~,. The depths 
are computed from equation (84) using the 
updated shape vectors Sij, i>i. Finally, Szi is 

recomputed using equation (76). 

The algorithm iteratively repeats the above two steps 
until it converges to a solution at which Ss has a 
ininimum value. The initiai estimates of Mf, f= 2, . . . , 
F, can he obtained using the two-view motion algor- 
ithm discussed earlier. 

automatic selection of models 

Since models of different orders use the same 
optimality criterion, in general, a higher-order model 
gives a smaller objective function value, but the correct 
model gives the best estimation results. For real 
applications, it is important to select the correct model 
for the given data. We implemented the following 
method which does not require any heuristic infor- 
mation about motion, but only the correspondence 
data. Here we consider only the algo~thm using 
interframe matches. 

In the above models, the polynomial models termin- 
ate at the second order. Any third- or higher-order 
polynomial models can be similarly built with increas- 
ing computation complexity. However, our experience 
shows that the solutions of third order or higher order 
rnodels are not robust, and in general a globally optimal 
solution is not guaranteed. Therefore, for a very long 
sequence of images whose motion cannot be approxi- 
mated by a second-order polynomial, it is better to 
divide the sequence into subsequences so that second- 
or lower-order models can be applied. Therefore, in 
the following discussion about how to automatically 
determine the correct model, we are concerned with 
only the first three models (polynomials of up to the 
second order) for both rotation and translation. 

There seems to be no efficient way except to apply all 
models to the same data and see what happens. In 
general, a model of higher order needs a larger number 
of views to stabilize the solution. For a sequence of a 
few images, probably only low-order models apply. In 
the following, we assume that a sufficient number (e.g. 
IO) of frames is available so that all models can be used. 

Consider the rotation parameters first. In general, 
the two consecutive models give comparable results 
about lower-order parameters. Then a decision is made 
about which model is the right one according to the 
results. This is done as follows: 

1. If the minimum objective function vaIue /\i 
obtained by the first model is smaller than those 
obtained by the second and third models, then 
rotation is constant and the first model is used. 

2. Otherwise, obtain the rotation vector fin = 
(wFY w’b m%IT for each time instant n for the 
third and the second models. If the distance 
between the two solutions at any time instant is 

3. 

larger than a threshold (e.g. 0.3”) determined 
according to the system resolution, then the third 
model is used. 
Else, obtain the rotation vector 0” for each time 
instant IZ for the second and the first models. If the 
distance between the two solutions at any time 
instant is larger than a threshold (e.g. OY’), then 
the secod model is used. Otherwise, the first 
model is used. 

A somewhat different procedure is used for deter- 
mining the translation model. The numerical behaviour 
of the solutions for translation parameters is much 
worse than that of rotation parameters. Therefore, for 
small translation a wrong selection of the translation 
models may occur. Fortunately, the direction of the 
translation is still quite accurate, even if a wrong model 
is chosen. The procedure is listed formally as follows: 

1. First the translation parameters estimated from 
different models are properly scaled so that the 
magnitudes of the solutions are comparable. 

2. At any time instant II, the interframe translation 
vector ti,j+, for solutions from the third and the 
second models are obtained. If the two vectors 
differ in direction by more than a threshold (e.g. 
Y), or if the two vectors differ in magnitude by 
larger than another threshold (e.g. IO%), then the 
third model is used. 

3. Otherwise, at any time instant tr the interframe 
translation vector tr,i+ 1 for solutions from the 
second and the first models are obtained. Again, if 
the two vectors differ in direction by more than a 
threshold (e.g. S:), or if the two vectors differ in 
magnitude by more than another threshold (e.g. 
IO%), then the second model is used. Otherwise. 
the first model is used. 

Using the above methods. the algorithm can automati- 
cally select the correct model to solve for the motion 
parameters. It is worth noting that the algorithm is so 
robust that even if a mistake” is made about the model. 
the resulting estimation is still acceptable. 

Uniqueness condition 

For two-view motion there are many theoretical results 
about the uniqueness of the solution. However, for 
multiview motion, it is very difficult to analyse the 
uniqueness problem. because there exist too many 
situations and unknowns. As pointed out earlier’“. in 
the noisy case, the uniqueness problem of motion 
solution is often changed to the uniqueness problem of 
the global optimum of a given criterion. Therefore. for 
the algorithm using interframe matches, if for a given 
model, the globally optimal solution minimizing A is 
unique, then the motion is uniquely determined. 
Otherwise. the algorithm yields only one of the solu- 
tions. Fortunately, even for two-view motion, when six 
or more correspondences are available, there are, in 

*In cas,e of noise. the algorithm tends to choose a polyn~)mi~] of 
higher dcgrcc. This mistake is not serious and makes the cstimates 

only somewhat less accurate. 
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general, at most two solutions. Therefore, the multi- 
view motion can, in general, be uniquely determined, 
since multiview motion is more determined than two- 
view motion. Thus, as long as six or more correspond- 
ences are available for any to consecutive views then, 
practically there is no need to worry about the 
multisolution problem. 

The algorithm using point trajectories, in general, 
gives a unique solution of motion and structure when 
four point trajectories over at least three views, with 
the points noncolinear in space, are available. A 
necessary and sufficient condition in general cannot be 
expressed in closed form. However, if the solution is 
uniquely defined by the image data, the algorithm will 
generally give the correct solution. If multiple solutions 
are defined, then the algorithm, will give one of the 
solutions. It can be shown4* that four is the minimum 
number of point trajectories over three views from 
which a unique solution can be obtained. Therefore, 
the algorithm above requires the least stringent condi- 
tions for a unique solution of motion and structure. 

The first example contains a sequence of 15 
images. Figures la and b show the first and last images 
and the correspondences obtained between the two 
images. The white points on a dark background and the 
black points on a bright background are the matched 
feature points. Figures lc and d show the eighth and 
ninth images and the correspondences. The motion 
involves a constant rotation of 0.55” per frame around 
the Y axis ([0 1 OIT) and a translation along the Z axis 
([0 0 llT) with parameters: 

tO,=l.O, t”x=o, &=0.015 

The estimated rotation parameters are: 

(94) 

n = [0.004216 0.999967 -0.0069641, 

&J = 0.537975” (95) 

EXPERIMENTAL RESULTS 

In this section we present some experimental results 
with real image data using the algorithm that uses 
interframe matches. Experimental results with real 
image data for the algorithm using trajectories are still 
not available because we have not obtained a robust 
trajectory-finding algorithm. The images are acquired 
by the University of Illinois active vision system which 
can yield required motion and capture a motion 
sequence. The images are taken with a Cohu solid state 
camera having wide angle lens (Vicon VlO-100M). The 
maximum visual field of the camera is about 50”. 
Cameras of such wide angle must be carefully cali- 
brated. A method for calibrating wide angle lens 
distortion is presented in Appendix A. 

Since the ground truth for the rotation centre and 
translation parameters is not accurate, we provide here 
only some estimated interframe translation vectors. 
The algorithm automatically approximated the trans- 
lation with the constant acceleration model. The 
normalized translation vector between the first and the 
second views is: 

t,,* = [0.643008 0.034012 0.7651041 (96) 

which is inaccurate. However, the translation direction 
improves from the third view. For example, the 
normalized translation vector between the third and the 
fourth views is: 

t3,4 = [0.185518 0.010620 0.9825841 (97) 

and the normalized translation vector between the 
fourteen and the last views is: 

In the examples provided below, only the ground 
truth for rotation angles is accuratly recorded. The 
accuracy of the rotation angles is 0.001” for pan and 
0.002” for tilt determined by the step motors. As we will 
see soon, the accuracy of the estimates of rotation 
angles for short range scenes is comparable. Because of 
the difficulty in measuring the direction of the camera’s 
optical axis and the position of rotation centre relative 
to the position of optical centre, we are not able to 
measure the rotation axis and translation direction 
accurately. It is therefore meaningless to present the 
reference ground truth for the translation directions 
since the ground truth may contain larger errors than 
the estimates do. From our experience with simulation 
data, the estimation of rotation axis is usually more 
reliable than that of rotation angle. The same is true for 
translation direction if translation causes large enough 
changes in the images. However, we can still get a sense 
of the accuracy of the algorithm from these rough 
measurements. 

t,4,,5 = [0.117105 0.001030 0.9931191 (98) 

The small translation along the X axis caused by 
rotation cannot be accurately measured. Therefore, we 
do not know how accurate the translation directions 
are. However, we can compare the above results with 
those obtained with the two-view motion algorithm or 
arbitrary motion model. Here we give a few examples. 
The two-view motion algorithm gives the following 
results: the rotation between the first and the second 
views is: 

n = [0.022721 0.998677 -0.0461381. 

4 = 0.609610“ (99) 

and the rotation between the fourteenth and the last 
views is: 

In the experiments below, the weighting factor Wij is 
chosen as the inverse of the number Ni,j of correspond- 
ences between the ith and jth views. If Ni,j= 0, then 
Wi,j is set t0 zero. 

n = [0.377904 0.672219 -0.6366401, 

+, = 0.478300” (100) 

The arbitrary motion model gives the following results: 
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a b 

d 

Figure 1 Example 1. Some images and the correspondences obtained. (a) (b) first and last images and the correspondences obtained between 
them; (c) (d) eighth and ninth images and the correspondences obtained between them 

the rotation between the first and the second views is: 

n = [Cl.591695 0.791808 0.151541], 

C& = 0.556398”(101) 

and the rotation between the fourteenth and the last 
views is: 

n = [0.296980 0.831835 0.4688861, 

+a = 0.520983” (102) 

The second example contains a sequence of 20 
images. Figures 2a and b show the first and last images. 
Figures 2c and d show the tenth and eleventh images 
and the correspondences. The motion involves a rota- 
tion of second order polynomial around the X axis 
([l 0 Ojr’) with: 

w; = 0.42”, w”x = -0.08”, w”x = 0.008 (103) 

and a translation of constant acceleration along the Z 
axis ([0 0 llT) with parameters: 

It is obvious that the model-based motion algorithm 
yields much better results. t; = 1.0. t> = -0.06, ts = 0.01 (104) 
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a b 

d 

Figure 2 Example 2. Some images and the correspondences obtainea. (a) (b) first and last images; (c) (d) tenth and eleventh images and the 
correspondences obtained between them 

The rotation also causes a small translation along the Y 
axis since the rotation centre is not at the optical centre. 
The estimated rotation parameters are: 

and the interframe translation direction vectors are, for 
example: 

t ,,2 = [0.034507 0.066768 0.9971721 (106) 

t ,o,, , = [0.027467 0.123701 0.9919391 (107) 

t ,9.20 = [0.008584 0.177239 0.9841301 (108) 

0.008151 

fib= [ -0.000314 1 0.000300 
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Only two interframe translations are not accurate, 

(105) 
which are: 

t ,,* = [0.342731 0.311376 0.8863301 (109) 
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a b 

d 
Figure 3 Example 3. Some images and the correspondences obtained. (a) (b) first and last images and the correspondence’; obtained between 
them; (c) (d) tenth and eleventh images and the correspondences obtained between them 

t ,,, ,x = [ -0.259094 -0.682176 (I.6837441 (110) 

axis ([0 1 (I]“) with: 

6J$ = 0.5”. W”v = 0.04”. LO’; = -0.03” (111) 

The estimate of interframe translation vectors is more 
vulnerable to noise in the image data. We are finding 
methods to improve the accuracy of estimation of 

and a translation of constant acceleration along X axis 
([l 0 O]“) with parameters: 

translation. 
The third examole also contains a seauence of 20 t’.;, = 1 .O, t”x = -0.04286 (112) 

1 1 

images. Figures 3a and b show the first and last images 
and the correspondences obtained between the two 
images. Figures 3c and d show the tenth and eleventh 
images and the correspondences. The motion involves 
a rotation of second order polynomial around the Y 

However, in this example, the rotation causes a 
translation along the 2 axis that is comparable with the 
translation along the X axis. Therefore, we do not 
know the ground truth of the translation directions. 
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a b 

c d 
Figure 4 Example 4. Some images and the correspondences obtained. (a) and (b) first and last images; (c) (d) eighth and ninth images and 
the correspondences obtained between them 

The estimated rotation parameters are: 

slo= [~;;~~zzzJ n,= [ ;zzL3;;] ) 

The accuracy of this and the next example is worse 
than the first two examples. The main reason is 
probably due to the fact that the objects in this and the 
next example are further away, and the translation 
contains a component along the X axis which can be 
easily confused with rotation. However, for most time 

0.017744 

[ I 

instants, the estimated rotation parameters are very 
close to the ground truth. 

anb = -0.002894 (113) 
In the fourth example, 15 images are taken by a 

0.000046 
moving camera. Figures 4a and b show the first and last 
images. No correspondences are found between these 

The estimates of the interframe translations are two images because of the large motion between them. 
omitted here for this example. Figures 4c and d show the eighth and ninth images and 
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the correspondences. The motion involves a rotation 
(tilt) with constant acceleration around the X axis 
([l 0 OIT) with &= 0.6” per frame and +a = 0.04 
per frame, and a constant translation along the X axis 
([l 0 OIT). The rotation also causes a translation along 
% and Y axes, the amount of which is not accurately 
measured. The estimated rotation parameters are: 

n = [0.970392 -0.197587 0.1389171 (114) 

4” = 0.637189”, 4, = 0.041694” (115) 

Due to image noise, the algorithm chooses a second 
order polynomial to estimate the translation para- 
meters. Here we present a few interframe translation 
direction vectors: 

t ,,* = IO.416507 -0.741442 -0.526104] (116) 

t 7,x = [0.520486 -0.782628 -3414501 (117) 

and: 

t ,4. ,5 = [cl.649293 -0.758120 0.060604] (118) 

Clearly, the translation vectors in this example are 
much less accurate than those in the first two examples. 
We are currently developing methods to evaluate and 
improve this accuracy. 

SUMMARY 

In this paper, we have presented a long sequence 
motion algorithm using the most appropriate of a set of 
motion models and a nonlinear two-view motion 
algorithm for estimating motion parameters from a 

long sequence of images. These algorithms utilize the 
state-of-the-art techniques developed by many motion 
researchers and are very easy to use. The whole 
process, from feature detection to matching and then to 
motion estimation, is fully automated. The application 
of the algorithms to real image data has yielded good 
results, from which we can conclude that model-based 
methods yield much better results than those assuming 
arbitrary motions. 

The algorithms in this paper can use either inter- 
frame matches or point trajectory points as input. 
Because the number of structure parameters does not 
increase with the number of image frames, trajectories 
contain much more information than interframe corres- 
pondences. Therefore, the accuracy of motion algor- 
ithms should be better if trajectories of points are used. 
Nevertheless, the results obtained using interframe 
matches over no more than 20 image frames are good 
enough for many applications. 

APPENDIX A: CALIBRATING A WIDE-ANGLE 
LENS 

In this appendix we present a simple method for 
calibrating wide angle lens cameras. This method 
is based on the assumption that the distortion is sym- 
metric around the optical centre. Figure Au is a grid 
image taken with an uncalibrated camera, where we see 
straight lines are distorted into curves. The problem of 
calibration is to restore the curves to straight lines. To 
do this, we use a stretching function. defined below, to 
stretch the warped lines: 

r’ = r(1 +cur+/3?) (Al) 

where r is the distance of a point to the optical centre 
(x,,, yo) before calibration, and r’ is the calibrated 

~_, . . , ...r_,..” 

Figure Al Calibration of a wide angle lens camera. (a) Grid image of straight lines taken with uncalibrated camera; (b) same image after 
calibration 
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distance. We need to optimize four unknowns, (Y, /3, 
x0 and y0 such that the warped lines become mostly 
straight. The objective function used in the optimiza- 
tion process follows. Assume there are N horizontal 
and M vertical lines. 

First, we rewrite equations (5) or (7) as: 

S, = i {O;T(TxR)Oi}2=hTA~A,h 
i=l 

First, the N x M intersection points of the lines in the 
uncalibrated image are identified. Then, the positions 
of the grid points on each horizontal line are fitted by a 
quadratic function: 

y=yh+a,x+a2x* (A2) 

where x is the horizontal coordinate of a point and y the 
vertical coordinate. Yh, a, and a2 are optimized for each 
horizontal line. Similarly, a quadratic function of the 
form: 

x=x,+b,,+&y2 (A3) 

is used to fit grid points on vertical lines. The NX M 
intersection points of the quadratic curves are the 
refined positions of the grid points and are to be used 
for calibrating the parameters (Y, p, x0 and y,. 

For each choice of (Y, p, x0 and y. we find the least 
squares line fit to the refined grid points on horizontal 
or vertical curves. That is, for each curve (horizontal or 
vertical), we find a line: 

where h = rsE. In the above equation we force 
11 h1l2 = 2 so that the corresponding solution of T 
below satisfies IIT /I2 = 1. The optimal solution of h 
that minimizes S, corresponds to the eigenvector of 
ATA, associated with its smallest eigenvalue. Although 
the sign of h is uncertain, this uncertainty will not affect 
the decomposition discussed below. Then the goal 
below is to estimate a unit translation vector T and a 
rotation matrix T such that I/E-TX R)j2 is mini- 
mized, where the (Frobenius or Euclid) norm of a 
matrix is defined as the sum of its squared elements. In 
general, an essential matrix will have two decomposi- 
tions of the form TXR, which constitute a twisted 
pair*. However, only one decomposition yields positive 
depths for the correspondence data. The following 
method finds the solution that yields positive depths for 

‘h~tc~r?~n~~~~‘4 that if (T, R) is the optimal 
decomposition of E, then T corresponds to the eigen- 
vector of ETE associated with its least eigenvalue 
subject to //T/l* = 1. Therefore, T is the linear least 
squares solution of the following equation: 

I& 12 m Y ll’= 0 (A4) 
ETT = ET[t, t2 f31T = 0 032) 

such that the sum of its squared distances to the grid 
points related to that curve is minimized. The optimal 
solution of LY, 6, x0 and y. is that which minimizes the 
N+ 1w sums of squared distances. 

To determine if T or -T is the right solution, we need 
make use of the correspondence data. Let: 

Figure Alb is the calibrated image of Figure Ala, 
where we see that the lines are almost straight. This 
simple method is easy to apply and gives reasonable 
accuracy. 

TX=[_t -1 -;] = G=[ ;;] (B3) 

It is unfortunate that symmetry assumption is not 
true for all cases. Therefore, the results would be better 
if the image is divided into regions and the calibration is 
done piecewise. But this requires a more complicated 
method and more parameters to search for so that a 
globally optimal estimation of the parameters is often 
impossible. For the problem of motion estimation, we 
find that as long as a wide angle lens camera is used, the 
estimation accuracy is not so sensitive to the camera 
parameters. Therefore, the calibration method pre- 
sented here should satisfy many purposes. 

Then from the motion equation: 

we would have: 

TX (O’,Z:) = (TX R) OjZi, or 

Irrespective of whether T or -T is the right solution, 
Z:iZ, can be determined by: 

APPENDIX B: LINEAR TWO-VIEW MOTION 
ALGORITHMS Z: J 
Although linear solutions cannot be superior to nonli- 
near solutions, linear algorithms may give a very good 
starting point for nonlinear algorithms. 

Let: 

When the surface is not a ~aybank Quadric, we can 
first solve the essential matrix E = TX R linearly and 
then decompose E into T and R. Among the linear 
algorithms2,7,34, Philip’s Singular Value Decomposition 
(SVD) algorithm is optimal in the sense of least 
squares. Here we present severai simpler solutions. 
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interpretations of a moving plane , J. Opt. Sot. Amer. A. Vol 7 
(1990) 
Cui, N, Weng, J and Cohen. P ‘Extended structure and motion 
analysis from monocular image sequences’. Proc. Srd ICCV, 
Osaka, Japan (1990) pp 222-229 
Broida, T and Chellapa, R ‘Estimating the kinematics and 
structure of a rigid object from a sequence of monocular images’. 
IEEE Trans. PAMI, Vol 13 No 6 (1991) pp 497-513 
Young, G and Chellapa, R ‘Monocular motion estimation using 
a longsequence of noisy images’. Proc. Int. Conf. on Acoustics, 
Soeech and Sianal Processina, Toronto. Canada, Vol 4 (1991) 
pi 2437-2440 - 
Young, G and Chellapa, R ‘3-D motion estimation using a 
sequence of noisy stereo images: models. estimation, and 
uniqueness results’. IEEE Trans. PAMI. Vol 12 No 8 (1990) pp 
735-759 

then if L, < Lz, T is the correct solution; else we must 
have L2 < L, and -T is the correct solution. We denote 
the correct solution as T in the below. 

After T is determined, we need to estimate R such 
that J/E-TxR~\~ or IIE~-R~G~I~ is minimized. 
The algorithms40.4’ can then be applied to obtain the 
optimal solution of R. For motion of small rotations, 
the rotation angles can also be solved for from equation 
(20) in a closed form. 
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