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Abstract. This paper presents new forms of necessary and sufficient conditions for determining 
shape and motion to within a mirror uncertainty from monocular orthographic projections of any 
number of point trajectories over any number of views. The new forms of conditions use image data 
only and can therefore be employed in any practical algorithms for shape and motion estimation. 
We prove that the mirror uncertainty for the three view problem also exists for a tong sequence: if 
shape S is a solution, so is its mirror image S' which is symmetric to S about the image plane. The 
necessary and sufficient conditions for determining the two sets of solutions are associated with the 
rank of the measurement matrix W. 

If the rank of W is 3, then the original 3D scene points cannot be coplanar and the shape and 
motion can be determined to within a mirror uncertainty from the image data if and only if there 
are three distinct views. This condition is different from Ullman's theorem (which states that three 
distinct views of  four noncoplanar points suffice to determine the shape and motion up to a reflection) in 
two aspects: (1) it is expressed in terms of image data; (2) it applies to a long image sequence in a 
homogeneous way. 

If the rank of W is 2 and the image points in at least one view are not colinear in the image 
plane, then there are two possibilities: either the motion is around the optical axis, or the 3-D 
points all lie on the same plane. In the first case, the motion can be determined uniquely but the 
shape is not determined. In the second case, a necessary and sufficient condition is to be satisfied 
and at least 3 point trajectories over at least 3 distinct views are needed to determine the shape 
in each view to within a mirror uncertainty, and the number of motion solutions is equal to the 
combinatorial number of the possible positions of the plane in different views. The necessary and 
sufficient condition is associated with the rank of a matrix C: if C has a rank of 1, the plane is 
undetermined; if C has a rank of 2 (implying there are exactly 3 distinct views), then a necessary and 
sufficient condition, whose physical meaning is not completely clear, is to be satisfied to determine 
the plane to within 2 sets; if C has a rank of 3 (implying there are 4 or more distinct views), then 
the plane can always be determined to within two sets. 

If the rank of W is 2 or 1 and the image points in each view are colinear in the image plane, then 
the three dimensional motion problem reduces to a two dimensional motion problem. In this case, 
the uniqueness condition is associated with the rank of the reduced measurement matrix ~. If ~ has 
a rank of 2, then the original 3D points cannot be colinear in the space and the shape and motion 
can be determined to within two sets if and only if three or more views are distinct. If ~" has a rank 
of 1, there are two possibilities: if the rows of ~ are identical, then either the original 3D points 
are not colinear and the motion is zero, or the points are colinear and possibly move between two 
mirror symmetric positions; if the rows of ~ are not identical, then the motion is not determined. 

All proofs are constructive and thus define an algorithm for determining the uniqueness of solution 
as well as for estimating shape and motion from point trajectories. 
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1 Introduction 

The primary focus of the motion researchers has 
been on the perspective projection. This is prob- 
ably due to the fact that perspective projection 
models the imaging process of ordinary cameras 
more accurately and better conditions the prob- 
lem of three-dimensional estimation. However, 
in many situations, orthographic projection is a 
satisfactory approximation of the imaging pro- 
cess. For example, when a telephoto lens is 
used, the imaging process can be approximated 
by orthographic projection provided the motion 
and size of a moving object in the direction 
of the optical axis are negligible compared to 
the average object distance, although a scale 
constant may be involved (Kanatani 1986). In 
medical imaging (such as X-ray), the imaging 
process can be considered as involving ortho- 
graphic projection. Recently, good experimen- 
tal results with real image data using ortho- 
graphic projection models have been reported 
(Debrunner and Ahuja 1990; 1992a, 1992b; 
Tomasi and Kanade 1990; 1992). These re- 
sults show that under certain conditions the or- 
thographic projection is a suitable model for 
imaging process. Since the three-dimensional 
estimation problem is much easier for ortho- 
graphic projection than for perspective projec- 
tion, the orthographic projection case deserves 
further investigation. 

Ullman (Ullman 1977; 1979) has shown that 
given three distinct views of four noncoplanar 
points, the structure of the points can be de- 
termined up to a reflection. This condition 
gives a clear physical meaning and may be gen- 
eralized to more views. However, a problem 
with Ullman's condition is that the condition 
requires a prior knowledge that the views are 
distinct and the points given are not coplanar. 
In the process of structure and motion estima- 
tion, this knowledge is often unavailable. There- 
fore, it is desired to have a condition that is 
expressed in terms of image data only. This 
motivated some earlier papers (Aloimonos and 
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Brown 1986; Hu and Ahuja 1991a). Huang and 
Lee (Huang and Lee 1989) also reconfirmed 
Ullman's results, although there is an additional 
uncertain situation which cannot be resolved 
by the methods that enforce motion consistency 
only (Hu and Ahuja 1991a). Another important 
question that remains unanswered is whether the 
mirror uncertainty in the three-view case also ex- 
ists when more than three views are available. 
A robust and homogeneous method for deter- 
mining the uniqueness of the solution for any 
number of views of an arbitrary surface from 
the image data has not been available. 

In this paper we shall formally prove that 
for orthographic projection, two mirror sym- 
metric solutions always exist. Consequently, for 
the structure and motion problem under ortho- 
graphic projection, uniqueness means two mirror 
symmetric solutions. We use the term shape 
instead of structure in this paper because for 
orthographic projection, the depth information 
obtained is different from that obtained in pers- 
pective projection. In perspective projection, 
the depths are determined to within a multi- 
plicat&e constant, and hence the object structure 
and relative distance to the camera coordinate 
system are determined. In orthographic pro- 
jection, as will be seen soon, the depths are 
determined to within an additive constant, and 
hence the object shape and size are determined 
while the object distance to the camera is not 
determined. 

The central objective of this paper is to obtain 
necessary and sufficient conditions under which 
motion and shape are determined to within a 
minimum number of sets from monocular point 
trajectories. These conditions apply to any num- 
ber of point trajectories over any number of 
views and are expressed in terms of image data 
only. Therefore, they can be actually used in the 
motion estimation algorithms to determine if a 
given set of image data admits a unique pair of 
solutions of shape and motion. For the general 
case in which the 3D points are noncoplanar, 
the uniqueness condition is almost equivalent to 
Ullman's condition (Ullman 1977; 1979) that at 
least three views are distinct (a distinct view means 
involving a rotation around an axis other than 
the optical axis). Therefore, the new conditions 
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are generalized forms of Ullman's condition ex- 
pressed in terms of image data. The new forms 
of the conditions are thus more useful in the 
process of shape and motion estimation, be- 
cause they can be used to determine not only 
whether the solution is unique, but also whether 
the views are distinct and whether the 3D points 
are coplanar. 

In the rest of this paper, all different situ- 
ations are enumerated and the necessary and 
sufficient conditions for determining the shape 
and motion to the minimum number of solu- 
tions are established. Section 2 points out a 
mirror uncertainty that cannot be resolved from 
the image data and then defines the uniqueness 
problem for orthographic projection. Section 3 
presents the necessary and sufficient condition 
for the uniqueness problem when the measure- 
ment matrix has a rank of 3. In this case, 
the uniqueness condition is almost equivalent to 
Ullman's condition. Section 4 first shows that 
when the measurement matrix has a rank of 
2, multiple solutions may result; then necessary 
and sufficient conditions are obtained for the 
cases in which rotation is around optical axis or 
the 3-D points are coplanar. Section 5 presents 
a necessary and sufficient condition for the case 
where the image points in each view are all 
colinear. Section 6 summarizes the paper. 

2 The Uniqueness  Problem 

For the uniqueness problem, we assume that 
the image data are generated by rigid motions. 
When we derive the uniqueness conditions, we 
assume that the data are noiseless. A brief dis- 
cussion about how to apply the results to noisy 
situations is also given. The formulation in this 
paper is based on the factorization method in- 
troduced by Debrunner and Ahuja (Debrunner 
and Ahuja 1990; 1992) for constant motion and 
Tomasi and Kanade (Tomasi and Kanade 1990; 
1992) for general motion. The factorization 
method enforces both shape and motion consis- 
tency. Therefore, the conditions obtained using 
this method are algorithm-independent since all 
constraints about rigid motion are utilized. 

For orthographic projection, the basic two- 

view observation model is 

,.11 + 

= T "~ T1 = QXi + TI, (2.1) 

where =~ = [xi, yi] T is an image point before 
r t T  motion, and -iz" = [xi, Yi] is the correspondence 

of E~ after motion. Assume there are P pairs 
of point correspondences with ~=~. being the 
centroid of w~ _~, i = 1 , 2 , . . . , P ,  and Xc being 
the centroid of Xi, i = 1, 2 , . . . ,  P. It is obvious 
that Eb and Xe also satisfy Equation (2.1). 
Therefore, we can eliminate the subtranslation 
vector T1 by subtracting Eb from the left hand 
side of Equation (2.1) and Xc. from the right 
hand side to get 

- i  - Zb = Q(Xi - Xc). (2.2) 

~1 t o  In the discussion below, we shall use ~i 
represent ~iw' _ E~ and ~i- to represent .~.i- - ~c,- 
thus obtaining the following equation 

wl = QXi. (2.3) 

As long as the data is normalized (by subtract- 
ing the centroid from each point), the above 
equation holds. We say that the data is nor-  
mal ized if from every coordinate  for each view 
the centroid coordinates  for that view have been 
subtracted. The notation for normalized and 
unnormalized data will be the same, and un- 
less stated otherwise, image data are assumed 
to have been normalized for all orthographic 
projection. However, the 3D points in the nec- 
essary and sufficient conditions always mean the 
points in the original coordinate system, unless 
stated otherwise. 

Now assume we are given P trajectories of 
points over F frames. Let S{ denote the ith 
point in the fth view, and 

wy = [El ...  Eft]. (2.4) 

We then have the following equation 

[:;] W 2 F x P  ~-~ ~_. 

2 F × P  2 F x 3  

[X] ...  X~,]3xp ~_MS, (2.5) 
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where X~ is the normalized 3-D coordinate of 
the ith point in the first frame, Qi consists of the 
first two rows of the rotation matrix Ri between 
the ith frame and the first frame. Therefore, 

with 

and 

~WT" 
Q :  = l ~ l , f  = 1 . . . .  , g ,  (2.6) 

[z] i i  = , j l  = , (2.7) 

if. if ---- 1, jf .jr = 1, if "jr = O, 
f = 1, . . . ,  F. (2.8) 

We shall call W the measurement matrix, w/ the 
fth entry of W, M the motion matrix, and S the 
shape matrix. If MS is a factorization of W with 
the rows of M satisfying Equation (2.8), then 
MS is called a motion factorization of W. 

Although the fth entry Q: of M contains only 
two rows of the fth rotation matrix R s, the third 
row k~ of R: is uniquely determined by the first 
two rows through 

kf = if x j / .  (2.9) 

In other words, the rotation Rf is given by 

Therefore, 

' } '1 
Rf = J}' l "  (2.10) 

(if x jf) J 

if M and S can be determined 
uniquely, the rotation matrices R:, and the 
translation vectors T:, f = 1 , . . . ,F ,  can all be 
determined to within a constant. But the ab- 
solute distances and the translations along the 
optical axis cannot be determined in anyway. 

Before we give a formal definition of the 
uniqueness problem, let us note a mirror un- 
certainty: if M and S consist of a motion fac- 
torization of the measurement matrix W, so do 
MJ and j-1S, where 

a = 1 (2.11) 
0 - 

and J is called the mirror-reflection matrix. To 
show this, we need only to note that if the rows 
of M satisfy Equations (2.7) and (2.8), so do 
the rows of MJ. It is interesting to note that 
the shape matrix J - iS  = JS is just a mirror 
reflection of S about the image plane: the sign 
of the third row of S is changed. That is, the 
two shapes are mirror images of each other, 
symmetric about the image plane. Since the 
data have been normalized by subtracting the 
mean from each row of W, the positive depth 
constraint does not apply here. Consequently, 
the rotation matrix R: and translation vectors 
TI, for each f > 2, will be affected. 

This mirror uncertainty has been observed by 
Ullman (Ullman 1977; 1979) and Huang and 
Lee (Huang and Lee 1989) for three views, but 
exists for any number of views and cannot be 
resolved by the correspondence data. Conse- 
quently, the uniqueness problem for estimating 
shape and motion from monocular orthographic 
projections is defined as follows. 

The Uniqueness Problem of Orthographic Pro- 
jection: For a given measurement matrix W2F×p, 
the shape and motion are said to be determined 
uniquely if and only if W can be decomposed, 
up to a mirror uncertainty, into the product of 
two matrices M 2 F x a  and Sz×p such that M can 
be represented by 

] M = (2.12) 

F 

with Q:, f = 1, . . . ,  F, satisfying Equations (2.6), 
(2.7) and (2.8). And, the two solutions defined 
by M, S and M J, JS are called the m i r r o r  

conjugate pair.t 
Let us now examine the relationship of the 

rotation matrices in a mirror conjugate pair. 
Without loss of generality, let us consider the 
rotation of the fth frame. We start with Qf. It 
is straightforward that if 

[/.:1 i:2 i!'a] (2.13) 
Q / =  ka:~ j:2 ayaJ 

is the fth entry of M, then the conjugate of Q: 

Q} = [if, if2 - i : z ]  (2.14) 
L3fl jr2 --.7f3.] 
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is the fth entry of MJ. As a result (see Equation 
(2.10)), if 

[71 if2 i:31 
R: = |3Sl is2 a : a /  (2.15) 

Lks  kf2 kf3J 

is the fth rotation matrix defined by M, then the 
conjugate of R:  

-!,q 
R} = I ;:1 j:2 -a:3  / , (2.16) 

L-ks1 -ks2 kl3J 

is the fth rotation matrix defined by MJ. Us- 
ing the three-angle representation of a rotation 
matrix (Ultman 1979), we conclude that if 

Rf = Ax(OYx)Ay(O:y)Az(O£), (2.17) 

where Ax, Av, and Az are rotations around X, 
Y, and Z axis respectively, then 

R} = A x (  - 0:x)Av ( - @)Az(O£). (2.18) 

That is, the rotation angles 0: x and @ have 
opposite signs in the conjugate pair of rota- 
tion matrices. 

Equations (2.6), (2.7), and (2.8) are the neces- 
sary and sufficient conditions for a matrix M of 
the form (2.12) to be a motion matrix. The mo- 
tion problem for orthographic projection is then 
reduced to recovering the motion matrix and the 
shape matrix from a given measurement matrix. 

First let us note the rank principle (Tomasi and 
Kanade 1990, 1992; Hu and Ahuja 1991a). It is 
obvious that the ranks of M, S, and W are all at 
most 3. Therefore, we have the following fact: 

FACT 2.1. The motion matrix M and the shape 
matrix S all have a rank of at most 3. For 
noiseless data, the measurement matrix W also 
has a rank of at most 3. If 3 or more trajectories 
over 2 or more frames are available, then all 
three matrices have a rank of at least 1.t 

This rank principle is the basis of the fac- 
torization method that has been developed by 
Debrunner and Ahuja and Tomasi and Kanade. 
In the rest of this paper, we shall start with 
Tomasi and Kanade's factorization method and 

then obtain the conditions for unique solution 
of the motion and shape. The difference be- 
tween the method below and Tomasi & Kanade's 
algorithm is that our method applies also to de- 
generate cases and replaces the quadratic fitting 
method in Tomasi & Kanade's algorithm by fac- 
torization method. 

Obviously, at least 3 point trajectories over 
at least 2 frames are needed to determine the 
motion and/or the shape uniquely. Hereafter 
we shall assume that at least 3 trajectories over 
at least 2 frames are available. Otherwise, the 
motion problem is not determined. 

Even when the rotation is determined, there 
is still a constant in the depths and the sub- 
translation vectors which cannot be determined 
in the original coordinate system. Increasing 
the number of views or correspondences does 
not remove this uncertainty. But overall, there 
is only one unknown constant. Let us consider 
only the case of increasing the number of views 
here. Let T{ and Rf be the subtranslation vec- 
tor and the rotation between the fth and the 
first views. Consider the motion of point E o  
Let its position in the fth view be S£ with depth 
Z£. From Equation (2.1) we have 

rr'3l,,s + = =, r,.', 
~ c  - S o  = (:o, L~d Lr~l ~2J 

f = 2 , . . . ,  F. (2.19) 

The above equation can be written into the 
vector form 

where 

T ~ • 

L4fJ 

T = rZ~ + if, (2.20) 

"7,23" 

r~3 
r = - -  : 

r F 
. 13. 

L :J 
(2.21) 

and the superscripts do not mean power. For 
a given Z~, the translation can be determined 
by Equation (2.20). However, no restriction is 
imposed on Zc except that one can require it 
to be positive. More correspondences will give 
more equations similar to (2.20) which will not 
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help to remove the uncertainty since r is the 
same for all points. 

Quite similarly, another constant is involved 
in the translation components along the optical 
axis. Let t3 / be the third component of the 
translation between the f th  and the first views. 
Then from the motion equation (Equation (2) 
in [6]) we have 

f 1 Z~ = [rYal rYa2] F~ + raaZ~ + t~. (2.22) 

For a given Z~, there is another constant in 
Z y and t y c, 3, f = 2 , . . . , F ,  which cannot be 
determined. 

Thus we have the following fact: 

FACT 2.2. For a given solution of the rota- 
tions, the subtranslations and the depths can be 
determined to within to a constant. An addi- 
tional constant is involved in the depths and the 
third components of the translations which also 
cannot be determined. The positive depth con- 
straint does not help remove the uncertainties 
in the translations and depths and does not help 
remove the mirror uncertainty of the rotations.t 

With this fact in mind, we will concentrate on 
the solution of the rotations and shape vectors. 

3 W h e n  W Has  a R a n k  of  3 

The most general situation occurs when W has a 
rank of 3. We first have the following theorem 
which is expressed in terms of the correspon- 
dence data. 

THEOREM 3.1. I f  the 2F x P measurement matrix 
W has a rank of  3, W can be factorized as 

u~': 

W = L2Fx3Y3xP = i [Yl "'" YP], (3.1) 

i u~ 
L,> 

where both L and Y have a rank of  3. Then if 

and only if matrix 

U21 2UllU12 

v~l 2Vl 1 v12 

UllVll UllVl2 q- VllUl2 

D = 

v21 

.Z~FlVF1 

u~2 
v2z 

U12V12 

u22 

v~2 

UF2VF2 

2UFl UF2 

2VFlVF2 

UFlVF2 dr VFlUF2 

2U12U13 

2V12VI3 

~A12Vl3 --1- U12U13 

2UF2 UF3 

2VF2VF3 

UF2VF3 -.1- VF2UF3 

2UllU13 

2VllV13 

I/,11v13 dr v11u13 

2UFlUF3 

2VFlVF3 

UFlVF3 + VFlUF3 

u~3 

V13U13 

(3.2) 

u2~3 
v~3 

UF3VF3 3Fx6 

has a rank of  6, the motion and shape are both 
determined to within a mirror uncertainty, where 
uij and vii are the elements of  ui and vi respectively, 
i.e., 

u~=[usl ~52 us3], 
v~=  Ivy1 vS2 vs3 ], f = 1 , . . . ,F .  (3.3) 

Proof. That there exists a factorization of the 
form of Equation (3.1) for W is a result of 
linear algebra and is obvious from the motion 
equation (2.5). The only thing we need to prove 
is that if and only if D has a rank of 6, then the 
motion and shape are both determined to within 
a mirror uncertainty. First let us note that if L 
and Y are a factorization of W, so are LA and 
A-1Y for any 3 x 3 invertible matrix A. However, 
only when LA can be represented in the form of 
Equation (2.12) with Equations (2.6), (2.7) and 
(2.8) satisfied, LA and A-1Y consist of a valid 
motion and shape factorization. 

Now let us first prove that if L2Fx3, Y3xP 
and M2Fx3, S3xP are two factorizations of W 
and all matrices have a rank of 3, then the two 
2F x 3 matrices L and M can be related by the 
following form 

M = LA (3.4)  

with A a 3 x 3 invertible matrix. Since 

W = LY = MS,  (3.5)  
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postmultiplying the above equation with yT 
leads to 

WY T = L(YY T) = M(syT). (3.6) 

Since Y and S all have a rank of 3, yyT and SY T 
are invertible. Therefore M and L are related 
through 

M = L(yyT)(syT) -~. (3.7) 

Consequently we need only to find a 3 x 3 
invertible matrix A such that LA is a motion 
matrix. If A is determined uniquely, so are 
the motion and shape. If A is not determined 
uniquely, neither are the motion and shape. To 
determine A uniquely, Equation (2.8) is used to 
enforce that LA is a motion matrix. Therefore 
we have the following equations: 

uffAATu/= i, v~AATv/= 1, 

u~AATv: = 0, : = I,...,F. (3.8) 

Let 

and 

] P = AAT = P4 P5 , (3.9) 
P5 P6 

ltl~ = [Ufl Uf2 Uf3], 

= [v:l v:3], (3.10) 

then we can get the following equation for P: 

D3Fx6e(P)6xl = B3Fxl, (3.11) 

where D is represented in Equation (3.2) and 

1 

P2 0 
4 P )  = ;3 P 4 '  B =  ; (3.12) 

P5 1 
P6 1 

_0 3Fxl 

Therefore, if and only if D has a rank of 6, P can 
be uniquely determined from Equation (3.11). 
Once P is determined, A can be determined 
up to an orthonormal matrix by factorizing a 
symmetric P into AA T (the factorization of P 

is discussed in detail in the appendix). That 
is, if A is a symmetric factorization of P, so is 
AU for any orthonormal matrix U. Assume A 
is one symmetric factorization of P obtained, 
e.g., by the singular value decomposition (SVD) 
technique, and AU is the correct factorization 
of P. To determine U, noticing that the rotation 
of the first frame is known, we require 

VTj AU = Q1, or 

UT(AT[ul Vl]) = [il Jl]. (3.13) 

U can be determined up to a mirror reflec- 
tion from 

U T 1,2=[il Jl i 1x  J1] 

× A'v,  + × (A%)]  

= [ATu  i(ATu ) × (ATvl)] 
(3.14) 

where we have used the knowledge that [il Jl 
il × Jl] is identity matrix. The + sign corre- 
sponds to the mirror uncertainty discussed in 
Section 2. Since for noiseless data, there always 
exists at least one solution, the inverse of the 
above equation must exist. 

We have thus proved the theorem. Q.E.D. 

The above theorem provides not only a con- 
dition but also a method for determining the 
uniqueness of the solution for a given set image 
trajectories. Several questions may arise for the 
above method. 

The first question is whether the solution of 
P from Equation (3.12) is always positive semi- 
definite. If not, then P may not find a fac- 
torization into AA T with A a real matrix. For 
noiseless data, if P is uniquely determined, then 
P must be positive semi-definite; otherwise, P 
will not have a real symmetric decomposition 
and hence W will not have a motion factor- 
ization, contradicting the assumption that the 
data are generated by real, rigid motions. For 
noisy data, the positive semi-definite property of 
P may not be warranted by the solution from 
Equation (3.12). However, in our hundreds 
of simulations with reasonable amount of noise 
(10% or less), we have never encountered a sin- 
gle case in which P is not positive semi-definite. 
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Even when it indeed occurs that P is not positive 
semi-definite, one can search for a real matrix 
A, which minimizes l i P -  AAa'][ and replace P 
by AA T, as was done by Tomasi and Kanade 
(Tomasi and Kanade 1992). Then, the rest of 
the method in the theorem can still be used. 

The second question is what the rank con- 
dition means or in what physical situations the 
D matrix has a full rank. First, since W has a 
rank of 3, the shape matrix S must also have 
a rank of 3. S has a rank of 3 if and only if 
the scene points used are not coplanar in the 
original coordinate system. Then according to 
Ullman's classic theorem (Ullman 1977, 1979), 
three distinct views (a rotation around an axis 
other than the optical axis must be involved 
between any two distinct views) suffice to de- 
termine the motion up to a reflection. On the 
other hand, if the whole sequence contains ex- 
actly two distinct views (in this case, W may still 
have a rank of 3 but D cannot have a rank of 
6), the shape and motion are not determined. 
If the whole sequence contains only one distinct 
view (all rotations are around the optical axis), 
then M and hence W have a rank of 2. This 
situation is discussed in the next section. In 
other words, when W has a rank of 3, then D 
has a full column rank of 6 if and only if there 
are 3 distinct views. A direct rank checking 
procedure (cf. Section 5 for a special case) can 
be used to verify this fact, which is very long and 
does not provide more insight into the problem. 
Therefore, we refer to Ullman's theorem for an 
indirect proof. Then, what is gained in Theorem 
3.1 as it is almost equivalent to Ullman's theo- 
rem? There are two major distinctions between 
Theorem 3.1 and Ullman's theorem. First, The- 
orem 3.1 is expressed in terms of image data 
while Ullman's theorem is expressed in terms of 
the 3D structure of the points and the number 
of distinct views. For a given set of image data, 
the number of distinct views and the surface 
structure of the points cannot be determined 
before solving the shape and motion. There- 
fore, Ullman's theorem can hardly be applied 
in the process of shape and motion estimation 
while Theorem 3.1 can be used in any practical 
algorithms to determine the uniqueness of the 
solution. Second, Ullman's theorem deals with 

three views while Theorem 3.1 applies to any 
number of views in a homogeneous way. For 
a given sequence of images, it may occur that 
some views are distinct and some other views 
are not distinct. It would not be efficient and 
robust if triples of images are examined each 
time if the sequence is very long. Theorem 
3.1 provides such a homogeneous method for 
determining the uniqueness of the solution. 

The third question is how to apply the rank 
condition for noisy data. In general, noise will 
not make a determined problem undetermined. 
Therefore, for the given image trajectories, if D 
matrix has a full rank for the noiseless situation, 
then the presence of small noise in the data will 
in general not reduce the rank of D. Therefore, 
in general, problems exist only in degenerate 
cases in which either the points are coplanar 
or there are only two or one distinct views. In 
either case, noise may increase the rank of W or 
D. To overcome this problem, the rank of W can 
be replaced by the number of nonzero singular 
values and the rank of D can be replaced by the 
number of nonzero eigenvalues. By examining 
the number of singular values (or eigenvalues) 
of W (or D) that are significantly larger than 0, 
one can robustly determine the rank of W (or 
D) and hence the uniqueness of the solution. 
Such rank checking method has been actually 
used in most commercial mathematical software 
packages (e.g., IMSL 1987). Therefore, the 
above theorem provides a robust method for 
determining the uniqueness of the solution. 

When the rank of W is less than 3, the above 
method cannot be used. This situation is called 
the degenerate situation and is discussed in the 
following sections. The discussion about the 
first and the third questions above all apply to 
the methods to be discussed below. Therefore, 
we will not repeat them in the rest of the paper. 

4 When rank(W) = 2 and rank(w/) = 2 for at 
Least One i 

Now let us discuss the situation where the rank 
of W is 2 and w/ has a rank of 2 for at least 
one i. The latter requirement is equivalent to 
that the projections of the points in at least one 
view are not colinear in the image plane. There 
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are three ways in which W can have a rank of 
2: either the motion matrix M has a rank of 2, 
or the shape matrix S has a rank of 2, or both. 
We mainly discuss degeneracy caused by shape 
since a degenerate case caused by motion can 
be dealt with as if the degeneracy were caused 
by shape, as will be seen shortly. 

Clearly, S has a rank of 2 if and only if the 
original 3-D points lie on a plane. Assume 
the plane in the first view has a normal N = 
[n l ,  n2,  r~3] T. A normalized space point Xi in 
the first frame satisfies the following equation 

N T x i  = 0. (4.1) 

We consider only the general situation where n3 
# 0. The case n3 = 0 is discussed in the next 
section. When n3 # 0, we can solve for the 
depth from 

Z~ [ nl n 2 ] _  
= ~ i  ~- [11 I2] ,g,i. (4.2) 

n3 n3 

Then, from the two-view motion equation (2.3) 
we have 

ll 12 

= QL~i - A~i. (4.3) 

Clearly matrix A = QL is a 2 x 2 matrix since 0] 
Lr21 r22 r23J 11 12 

(4.4) 

Therefore, when the points are coplanar there 
exists a 2 x 2 matrix A that relates a point & in 
one image to its correspondence =' in the other 
image. 

A correspondence pair ~ '  and -~ also satisfy 
the following equation (Huang and Lee 1989; 
Hu and Ahuja 1991): 

[r23 -- r13 r32 -- r31 ] = 0. (4.5) 

Using Equation (4.3), Equation (4.5) reduces to 
the following equation 

(r~A + r2T)% = 0, (4.6) 

where 

rT = [/ '23, --1'13 ] ,  r T = [1"32 , --r31 ] .  (4 .7)  

With three matches of noncolinear points, we 
can uniquely solve for A linearly from (4.3) and 
get the following equation for rij, i j  C n = 
{13, 23, 31,32}: 

g A  + r2 T = 0, or r2 = -A~rl .  (4.8) 

With the identity 

llrlH 2 = r23 + r23 = Hr2H 2 = r21 + r232, (4.9) 

we thus have 

rTr2 r]:rl T T (4.10) = = r 1 A A  1 r l .  

Let U be the orthonormal matrix such that 

A A  T = U T A U ,  (4.11) 

where A = diag(A> A2) is a diagonal matrix with 
A1 >_ Az. Then let 

= , rl = UTx, (4.12) 
x = Url X2 

we have 

rTrl = xTUUTx = xTx = rTuTAUrl = xTAx, 
(4.13) 

wherefrom we get 

("~1 ~ 1)x~ = (1 - A2)x 2 (4.14) 

after some simplification. To have nontrivial 
real solution for x, we must therefore have 

A2 < 1 < A1. (4.15) 

When the above inequality is satisfied, any x 
that satisfies (4.14) can be represented as 

x T = [ x l  x 2 l = c ~ [ v / X - A  2 = t : ~ ] ,  
(4.16) 

where c~ is a constant. Using Equations (4.12) 
and (4.8), we can get the following solution for 
rl and r2 

rl = UTx = oLU T ..i_ ~t~-~-'~__ 11 , 

r2 = -c~ATU T [ ~ ] (4.17) 
L± J" 
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A special case that deserves particular atten- 
tion is when 

• "~1 = /~2 = 1. (4.18) 

In this case, we have 

rl = r2 = 0, (4.19) 

and the rotation matrix is uniquely deter- 
mined as 

0 (420, 

where IAI is the determinant of A which is either 
1 or -1 .  The surface shape is not determined 
in this case since the depths are not related to 
the image data in any way. This corresponds to 
the case when the motion matrix has a rank of 
2. That is, degeneracy caused by motion can be 
dealt with in the same way (cf. Hu and Ahuja 
1991) as above. Therefore, if W has a rank 
of 2, we can first assume that the degeneracy 
is caused by shape and solve for A first. If 
the eigenvalues of AA T are all 1, then it can 
be concluded that the degeneracy is caused by 
motion (the shape is unknown); otherwise, it 
can be concluded that the degeneracy is caused 
by shape. 

Here we see that when the surface is a plane, 
there are two sets of solution for r~j, ij  E n, 
that determine r~j to within a scalar. The sign 
uncertainty in Equation (4.17) cannot be com- 
pletely removed with correspondence data, as 
shown indirectly in the following. 

Huang and Lee (Huang and Lee 1989) have 
shown that three views yield at most 16 motion 
solutions for three views and 4 shape solutions 
corresponding to the first view, including mirror 
symmetric solutions. Adding more frames will 
generally reduce the number of shape solutions 
for each view and the motion solutions between 
any two views. However, the method that solves 
motion first and then shape later is not good 
for this situation since there are too many mo- 
tion solutions. We now present a method that 
solves for the shape first and hence an opti- 
mal solution for noisy data can be obtained. 
With this method we also obtain the uniqueness 
conditions. 

Assume wa has a rank of 2 (if wl has a rank 
of 1, but w~ has a rank of 2 for some i, then 

exchange the position of wl with wi). Let the 
plane equation for the first view be (4.2). Then, 
for each wf, there exists a 2 x 2 matrix A f 
such that 

wf = A f W l =  [al y a2 f ]w l ,  f=2,... ,F. 
(4.21) 

Because Wl has a rank of 2, A f can be deter- 
mined uniquely from Equation (4.21). From 
Equation (4.4) we have 

Af=QIL= z, z= 

where QI is the first two rows of the fth rota- 
tion matrix Ry.  For planar surface situation, the 
above equation contains all information avail- 
able about the rotation matrix Ry. Let 

Er3  r lfl t 
L/EJ 

(4.23) 

Then we have 

[.1, I:i: [ ] 
(4.24) 

Using the orthonormality of Rf we can solve for 
b f i = 1, 2, as 

a f 2 = ( 4 . 2 5 )  b { = - 4 - ~ 1 + l  2-11 ill , i 1,2. 

Rotation matrix R f  c a n  have a solution from 
Equation (4.24) if and only if (see Hu and Ahuja 
1991b) 

Lb J 11 1 2  
(4.26) 
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If the above equation is satisfied, R I can be 
solved for from 

Rf = [cll c~ e ( x c 2  f ] [ d l  dz dl x d 2 ]  -1,  
(4.27) 

where 

Lb(j 2 NJ 12 
(4.28) 

Equation (4.26) can be simplified to 

I f  b ib  2 = lfl2 - all. a2 I, (4.29) 

o r  

:t: ( i  + t~ z - l ja ( I j2 (1  + l~-i la~ll  ~ 

= 1112 - all. 32/. (4.30) 

From this equation we can see that two motion 
solutions are associated with each plane solution 
since the sign of I Y b lb 2 must be the same as the 

sign of 1 1 1 2 -  all. a~. Squaring both sides of 
the above equation and simplifying the result, 
we get 

o~112 + fl.flfl2 + 3,1I~ = 6f, f = 2 , . . . ,  F, (4.31) 

where 

~I = i -Ila~ll 2, 
3'1 = 1 -IlallllL 

; i  = 2 ( . (  @, 
6f = (al  f .  a ; )  2 -- ecy3,f. 

(4.32) 

Equation (4.31) can be used to determine 11 
and 12. Let  

C =  " , A =  , 

OLF flF 3,F (F-1)x3 6 
(4.33) 

Equation (4.31) becomes 

1 
c/11121 = A. 

Lzi J 
(4.34) 

If C has a rank of 3 (implying F > 4), then 
11 and 12 can be determined to within two sets 

linearly from the above equation. If  C has a 
rank of 2, then ll and 12 can be determined to 
within four sets from the above equation. If C 
has a rank of 1, then the shape and motion are 
not determined. 

When C has a rank of 2, the following method 
can be used to obtain a closed form solution of 
ll and 12. Without loss of  generality. Let  us 
consider that Equation (4.31) yields two inde- 
pendent  equations for f = i and f = j .  Let  

11 = p sin ~, 12 = p cos ~o, (4.35) 

we then have 

p2 (ted sin 2 ~ + /3 / s in  ~ cos 

+ q? cos 2 ~)  = ~s, y = i , j .  

(4.36) 

Eliminating p from the above two equations and 
simplifying the resulting equation we can get 

a tan: ~ + b tan ~ + c = 0, (4.37) 

where 

a = oqSj - a j6 i ,  b = fl i6j - ~ j6 i ,  

c = "ti6j - 3,i6j (4.38) 

It is clear that tan ~ can have two solutions from 
Equation (4.37) and then p can have four solu- 
tions from Equation (4.36). In total la and 12 
can be determined to within four sets. The nec- 
essary and sufficient condition for determining 
11 and 12 to within 2 sets is 

b 2 - 4 a c  = 0. (4.39) 

When C has a rank of  3, 11 and 12 can al- 
ways be determined to within 2 sets linearly. 
However,  for noisy data, an optimal solution 
is desired. Again, representation (4.35) can be 
used to obtain a nonlinear least squares solution 
which needs to search for ~ only. Let  

hf(~p) = c~f sin 2 ~ + fly sin ~cos  qo 

+ 7f cos2 ~, f = 2 , . . . ,  F. (4.40) 

Then Equation (4.36) becomes 

hf(~o)p 2 = ~f, y = 2, . . . .  F .  (4.41) 
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For a given 99, the optimal solution of p2 that 
minimizes the residue 

is 

F 
e z =_ ~ (hf(99)p 2 - 6y) 2 (4.42) 

f=2 

p2(99) _ E i   h (99) 
•y  h2¢(99 ) . (4.43) 

With P2 chosen above, the residue becomes, 
after some simplification, 

e2(~) = ~ 6 } -  (Es6shs(~))2  (4.44) 

Therefore, the optimal choice of 99 is that which 
maximizes 

w = (EfSshs(~P))2 (4.45) 
E / h } ( P )  

When C has a rank of 3, there is only one 
99 within [0, 7r) that maximizes w. An optimal 
search is needed to solve for 99 and afterwards 
pa can be obtained in closed form from Equa- 
tion (4.43). 

We summarize the discussion above as the 
following theorem. 

THEOREM 4.1. Let the 2F x P measurement 
matrix W be written as 

W2 
W = , (4.46) 

F 

where w y is a 2 x P submatrix of the measurement 
of the fth frame, for f = 1, 2 , . . . ,  F. When W 
and wi for some i have a rank of 2 (implying 
P > 3), we can exchange the position of wi and 
wl such that wa has a rank of 2. Then, there exist 
2 x 2 matrices A I, f = 2 , . . . ,  F, such that Equation 
(4.21) holds. Then if AY, f = 2,. . .  ,F, are all 
orthonormal matrices, the shape is not determined 
and the rotations can be uniquely determined as 
follows: 

Rf = [0Af 0 ]Af[~ ] '  (4.47) 

where [Af[ is the determinant of A f, which is either 
1 or -1. Otherwise, the normalized 3D points lie 
on a plane whose equation at the first view can be 
written as (4.2). Then when the C matrix has a 
rank of  3 (implying F >_ 4~ the plane for the first 
view can be determined to within a mirror uncer- 
tainty. When C matrix has a rank of 2 (implying 
F >_ 3), in general there are four plane solutions 
for the first view, and if and only if Equation (4.39) 
is satisfied for two independent equations of the 
form (4.31), the number of solutions can be re- 
duced to two. I f  C has a rank of 1, then there are 
infinitely many solutions for the plane at the first 
view. For each plane solution for the first view, 
the rotation R f between the fth and the first views 
has up to two solutions determined from Equation 
(4.27).t 

A physical interpretation of the above condi- 
tions has not been obtained, though this short- 
coming does not affect the usefulness of the 
conditions in the process of shape and motion 
estimation. 

5 When rank(W) < 2 and rank(w0 = 1 for 
All i 

Now let us consider the situation where each 
entry wi of the measurement matrix W has a 
rank of 1. Obviously only when the image 
points in all views are colinear in the image 
plane, will such situation occur. This situation 
is quite similar to. but more general than the 
one discussed by Tomasi and Kanade (Tomasi 
and Kanade 1990). 

Clearly, if the image points are colinear in all 
views, the 3-D points must lie on a plane or- 
thogonal to the image plane. This corresponds 
to the situation n3 = 0 in the planar surface 
case that is just discussed above. Therefore the 
following equation holds for normalized image 
data for each view: 

[n l  n2]z~ = 0. (5.1) 

When such a situation occurs, we can first solve 
for the rotations about the optical axis and then 
align the lines in different views all to the same 
direction, say, to the X axis by rotating the 
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lines about  the optical axis. Then the three 
dimensional motion problem is reduced to the 
two dimensional motion problem to be discussed 
below. 

Consider the two dimensional case of the mo- 
tion problem under orthographic projection. To 
make the notation consistent with the three di- 
mensional case, we consider, without loss of 
generality, a special case of the three dimen- 
sional motion problem in which the rotations 
are all about  the Y axis. Then the two-view 
motion equation (2.3) for normalized data re- 
duces to 

x i '=[cosO - s i n 0 ]  Zi 

where 0 is the rotation angle about the Y axis. 
The information on the other dimension (Y 
axis) does not contribute to the solution of ro- 
tation and shape, but  only to the solution of the 
translation component  in Y direction. Given 
P trajectories of points over F frames with the 
normalized coordinates on the X axis denoted 
by z[ , i  = 1 , 2 , . . . , p , f  = 1 , 2 , . . . , F ,  then we 
can obtain the following equation for long se- 
quence motion 

L 4  ..- 4 J F x F  
cos01 - s i n 0 1 J  

. . . . . . .  [ x l  " . .  x P l 2 × F  
t cos0F - s i n 0 F  r×2 

- m s ,  ( 5 . 3 )  

where O:,f  = 1 , 2 , . . . , F ,  is the rotation angle 
about  Y axis between the fth frame and the first 
frame, and xp = [xp, Zv] v is the pth  point in the 
X - Z  plane. It follows that 01 = 0. An F x 2 
matrix m and a 2 × P matrix s are said to be 
a motion factorization of ~ if and only if m can 
be represented in the following form 

[cos01 - s i n 0 1 ]  
m . . . . . . .  (5.4) 

Lcos 0F - sin 0pJ 

with 01 = 0. Again, the mirror uncertainty ex- 
ists for this situation. That is, if m and s are a 
motion factorization of kv, so are m J2 and J2s, 

where J2 = d iag (1 , -1 )  is the two dimensional 
mirror reflection matrix. Now the problem is: 
given a measurement  matrix kv, under what con- 
ditions can it have a unique mirror conjugate 
pair of motion factorization? The following 
theorem answers this question. 

THEOREM 5.1. For the two-dimensional case, if 
the normalized measurement matrix k[tFxP has a 
rank of 2, ~PF×P can be factorized into ly for some 
F × 2 matrix ! and some 2 x P matrix y, both of 
which have a rank of 2. Let 

lll I12 ] 
i . . . . . . .  , ( 5 . 5 )  

LIrl IF2J 

then if and only if 

(5.6) 

has a rank of 3, or if and only if 

cos z 01 - cos 01 sin 01 sin 2 0~ ] 
a' . . . .  / (5.7) 

cos z OF - cos OF sin OF sin 2 OF J 

has a rank of  3, both the motion and shape are 
determined up to a mirror uncertainty, where Oi is 
the true rotation angle for the ith view. Otherwise, 
both the motion and shape are not determined. 

Proof That ~P can be factorized into ly for some 
F x 2 matrix ! and some 2 x P matrix y is obvious 
from the motion equation (5.3). Similar to the 
three dimensional case discussed in Theorem 
3.1, to find a motion factorization, we need to 
find a 2 x 2 invertible matrix a such that la is 
a motion matrix of  the form (5.4) with 01 = 
0. Let 

p=aaT= [~ P3P2], (5.8) 
To make la of the form (5.4) we then have the 
following equation for p:  

dFx3. e(p) = bFxl, (5.9) 

where d is represented in Equation (5.6) and 

['] e(p) = P2 , b =  (5.10) 

P3 Fxl 
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It is straightforward that if and only if d has a 
rank of 3, p can be uniquely determined from 
equation (5.9). For noiseless data, d and d' 
have the same rank. Therefore, if and only if d' 
has a rank of 3, p can be uniquely determined. 
After p is determined uniquely, matrix a can 
be determined up to an orthonormal matrix u 
from p. That  is, if a is a symmetric factoriza- 
tion of p such that aa T = p, so is a u  for any 
2 x 2 orthonormal matrix u. Assume one of the 
symmetric factorization a of p is obtained, e.g., 
using the SVD technique described in the Ap- 
pendix. We then need to find the orthonormat 
matrix u such that l a u  is a motion matrix of the 
form (5.4) with 01 = 0. Let  

[In 112]a=[z1 z2], (5.11) 

then u is to be determined from 

[zl z2]u = [1 0], and uTu = 12, (5.12) 

where I2 is a 2 × 2 identity matrix.  The solution 
of the above equation is given in dosed form 
by the following formula 

u = z 2  + x------~ z2 xl 4-1 ' 

where the 4- sign corresponds to the mirror 
uncertainty. Since for noiseless data, at least 
one solution must exist, in the above equation, 
we must have z 2 + x2 2 ~ 0. Therefore, u can 
always be determined to within two sets as long 
as p can be determined uniquely. 

We have thus proved the theorem. Q.E.D. 

It is easy to verify that matrix d or d' has a 
rank of 3 if and only if there are three distinct 
angles Oi in d', or if and only if there are three 
distinct views, consistent with Ullman's proof 
(Ullman 1979). 

Now let us consider the situation where k~ has 
a rank of 1. From equation (5.3), we know that 
there are only two ways in which k~ can have 
a rank of 1: either the motion matrix m has a 
rank of 1, or the shape matrix s has a rank of 
1. In the first case, 

m =  , ~ . . . .  . ( 5 . 1 4 )  

. . .  4 J  

That is, the image points never move in the 
image sequences and the rows of k~ are the same. 
It is obvious that the shape is not determined. 
However one has to be cautious to conclude 
that the motions are all zero. If  the points 
in the X - Z  plane are not colinear, then it is 
always true that the rotations have to be zero. 
However, if the points in the X - Z  plane are on 
a line, then there are two positions for the line 
which yield identical projections on the X axis. 
But the probability that in the image sequence 
the points move back and forth between the two 
positions is zero. In the second case, the motion 
is not degenerate, but the points lie on a line in 
the motion plane ( X - Z  plane) and consequently 

$ =  

z  2zl... pz  ' 

 2xl... 
= : : : : (5.15) 

That is, the columns of s are proportional to 
each other and the same is true for k~. It is clear 
that in this case one column of gr provides all 
information existing in g', implying there are only 
F independent equations for F + 1 unknowns 
(F  rotation angles and 1 depth). Therefore, the 
motion and shape (the orientation of the line) 
are both undetermined. In summary, we have 
the following theorem. 

THEOREM 5.2. When g~ has a rank o f  1, the shape 
(i.e. the depths of  the points) is not determined. 
In this case, if the rows of  ~ are identical, then 
there are two possibilities: either the original 3D 
points are not colinear and the motion is zero, or 
the points are colinear and possibly move between 
two mirror symmetric positions; if the rows of  if' are 
not identical but the columns o f  gr are proportional 
to each other, then the motion is not determined, t 

6 S u m m a r y  

In this paper we have obtained new forms of nec- 
essary and sufficient conditions for determining 
the shape and motion to the minimum num- 
ber of solutions from point trajectories under 
orthographic projection. All surface configura- 



Shape and Motion f r o m  Orthographic Projection 309 

tions of  the points, including general, planar,  
and colinear cases, have been considered. Un-  
like Ut lman ' s  condition which is expressed in 
terms of the surface situation and the number  
of  distinct views, the new conditions are ex- 
pressed in te rms of the image data and hence 
can be used in any practical algorithms to de- 
te rmine  the uniqueness of the solution. These 
conditions enhance our understanding of the 
mot ion problem under  or thographic projection. 
We have formally proved the mirror  uncertainty 
which always exists for orthographic projection. 
All proofs are constructive so that they define 
a robust  factorization algorithm for determining 
the uniqueness of  the solution as well as the 
solution of shape and motion itself. 

Appendix SVD Based Factorization 

In this appendix we briefly discuss the sin- 
gular value decomposi t ion (SVD) factorization 
method that  is needed to factorize some matri-  
ces. The re  are s tandard methods (Golub 1971) 
and commercia l  packages ( IMSL 1987) for the 
SVD factorization. 

Given a matrix W2F×p of rank k ,k  = 1,2,3,  
we now find a factorization L2F×k and Yk×P such 
that  W = LY. Using the SVD technique, W can 
be factorized into the  following form 

W .= U2FxNANxNVNxP,  (A.1) 

where  N = minimum(2F,  P) ,  A = diag(A1, 
• . . ,AN) with singular values A1 _> . .-  >_ AN, 
and U and V are two matrices of  dimensions 
2 F  x N and N × P respectively. When  W has a 
rank of k, then exactly the first k singular values 
are not zero. Therefore ,  let L2F×k be the first k 
columns of U, and Rkxp be the first k rows of V, 
and Ak = diag(A1, . . . ,  Ak), then it is clear that  

W = L A k R  = L(AkR) = (LAk)R. (A.2) 

L and AkR or LAk and R consist of  a desired 
decomposit ion.  

Now let us discuss how to factorize a symmet-  

ric matrix PN×N into the form AA T. When P is 
symmetric,  there  exists an or thonormal  matrix 
U such that  

P = UAU T, (A.3) 

where  A is a diagonal matrix, or A = diag(Aa, 

. . . ,  AN). Let  A½ = diag(v'X~l,. . . ,  v/XN-). Then 

A = UA~ is one of the desired factors such that  
P = A/i T. 
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