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and then the line invariant (6) was computed for each pair of line 
sets and compared using the metric (7). 

The sets of lines chosen are given in the following table (refer to 
Fig. I) .  

SI = {B.C.J,Zi}, Sz = {D,G,J, ,V} 
Si  = { - 4 , D , H . I } ,  SI = { B ,  D.E.G) 
S 5 = { A C , O , J } .  S f j = { B . I , L . Y }  

The table in (9) shows the results. The only bad entry in this matnx 
is in the position (4, 4). This is because of the fact that the four 
lines chosen,contained three coplanar lines (lines B. D and E) .  This 
causes the values of the invariant to be indeterminate (that is (0, 0, 
O)), and shows that such instances must be detected and avoided. 
0.0129 0.6741 0.3027 0.6885 0.6425 0.4494 
0.6469 0.0338 0.7414 0.8382 0.7069 0.2216 
0.0620 0.G912 0.2292 0.7075 0.7082 0.4613 
0.2866 0.6076 0.1823 0.8903 0.8558 0.3839 (9) 
0.6566 0.5212 0.8996 0.7189 0.0035 0.6913 
0.4731 0.2390 0.5552 0.9179 0.7192 0.0332 

Once again, the four-line invariant is shown to be a useful 
discriminator between sets of four lines. 
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Matching Point Features with Ordered Geometric, 
Rigidity, and Disparity Constraints 

Xiaoping Hu and Narendra Ahuja 

Abstruct- This correspondence presents a matching algorithm for 
obtaining feature point correspondences across images containing rigid 
objects undergoing different motions. First point features are detected 
using newly developed feature detectors. Then a variety of constraints 
are applied starting with simplest and following with more informed 
ones. First, an intensity-based matching algorithm is applied to the 
feature points to obtain unique point correspondences. This is followed 
by the application of a sequence of newly developed heuristic tests 
involving geometry, rigidity, and disparity. The geometric tests match 
two-dimensional geometrical relationships among the feature points, the 
rigidity test enforces the three dimensional rigidity of the object, and 
the disparity test ensures that no matched feature point in an image 
could be rematched with another feature, if reassigned another disparity 
value associated with another matched pair or an assumed match on 
the epipolar line. The computational complexity is proportional to the 
numbers of detected feature points in the two images. Experimental 
results with indoor and outdoor images are presented, which show that the 
algorithm yields only correct matches for scenes containing rigid objects. 

Index Terms- Disparity, feature detection, geometric consistency, 
matching, multiresolution, point features, rigidity. 

I. INTRODUCTION 
This correspondence is about finding pairs of point features in 

two perspective views of a scene such that eacih pair corresponds 
to the same scene point. The relationship between the viewpoints 
used to obtain the two images is unknown, unlike: the case of stereo 
matching. Further, the objects in the scene may be stationary or 
moving. The focus of the work reported in this correspondence is 
to apply a range of constraints and heuristics to determine unique 
matches. The constraints are applied starting with the simplest and 
following with more informed ones. The final matches are those that 
meet all constraints. 

The work reported in this correspondence is  related to other 
work on feature matching ([I]-[SI, [IO],  [40]1). Feature matching 
differs from intensity-based matching ([IS], [l9]), optical flow based 
matching ([17], [38], [39]), and (affine) transformation method ( [ I  11, 
[12]) in that correspondences are obtained for feature points only. 

To match point features across images, point features need to be 
detected first in both images. Although the matching algorithm in 
this correspondence does not rely on any particular feature detector, 
a continuous and robust detection of distinct point features across 
images will definitely ensure better matching results. A number of 
feature detectors are sufficiently good for our matching method, 
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Fig. 1. To match points at depth discontinuity, the window should best 
contain pixels that belong to the same surface. Therefore, to match point 
features of type I ,  2, 3, or 4 shown in the figure, the points should be on 
the upper-left, upper-right, lower-left, and lower-right comer of the window 
respectively. 

among which we recommend the algorithms of Deriche and Giraudon 
([XI), Moravec ([3], [4]), and Hu ([35]). In particular, the features 
in the experiments of this correspondence are detected using the 
improved Moravec interest operator ([35], [36]). 

The matching problem is approached by finding two subsets of 
points each from a set of detected feature points in a different 
image such that the two subsets of points are locally intensity- 
matched and preserve the interpoint geometrical structure. As is true 
for all matching algorithms, the underlying principle for matching 
is geometrical similarity and/or intensity (or color) similarity. It 
appears that geometrical similarity is more fundamental and stable 
than intensity similarity since intensities are more liable to change. 
Nevertheless, intensities add more information about each point and 
hence should be used whenever applicable. On the other hand, it is 
computationally intractable to use geometric constraint alone to match 
point features since the number of combinations that a set of points 
yields grows exponentially with the number of points. Therefore, a 
combined use of intensity information and geometric constraints is 
more promising than using intensity or geometric constraints alone. 
This correspondence presents an algorithm which makes combined 
use of both. 

11. THE MATCHING ALGORITHM 

The Plgorithm consists of five stages I-V, and is applied repeatedly 
to images of increasingly fine resolution, starting with the coarsest 
resolution. These stages are: 

I) Point Feature Detection: detect distinct point features. 
11) lntensiry Based Mafching: obtain candidate matches based on 

similarity of local intensities. 
111) Geometry Based Elimination: identify and remove points that 

do not preserve two dimensional geometric consistency in the 
image plane. 

IV) Rigidiry Based Elimination: eliminate such points that do not 
construct a rigid triangle with their two closest neighbors. 

V) Disparify Based Elimination: eliminate all point pairs for 
which one of the points could be rematched and yield a 
disparity value possessed by some other matched pair. 

The following sections describe the motivation and details of these 
stages. 

A. Point Feature Detection 
The matching algorithm does not depend on any particular feature 

detectors. However, a robust detection of distinct point features 
across images is necessary for robust matching results. Among the 
feature point detectors have been reported in the literature ([ l]-[S], 
[71-[9]). we recommend the algorithms of Deriche and Giraudon 
([lX]), Moravec ( [ 3 ] ,  [4]), and Hu ( [ 3 S ] ) ,  which are sufficiently good 

1 i. CO~UB i N, 

Fig. 2.  A pair ( i . j )  is a candidate match, if and only if: 1). A \ f ( i , j )  < A , ;  
2). N ( i .  j )  is the minimum inthe ith row and jth column in matrix M; 3). 
A f ( i .  j )  is smaller than the second best match ,\I(;, j , )  in the ith row by an 
amount A2; 4) M ( i .  j )  is smaller than thesecond best match 'If( i l  . j )  in the 
j th column by an amount 62. 

for the matching method of this correspondence. In the experiments 
of this correspondence, the features are detected using the improved 
Moravec interest operator (see [7] for detail). 

B .  Intensity Based Matching 
After a number of feature points are detected in each image, the 

next goal is to find a subset of the points from each image such that 
they correspond to the same scene points. This is done in several 
steps. The first step is to obtain correspondence pairs which have 
similar intensity environments. The method belob' applies to images 
having small local distortions. 

Given the point features detected in each of the two images, a 
difference measure is computed for all possible feature pairs over a 
window W. Let I ,  ( . r ,  9)  be the image intensity at the ith grid point 
and L, be the average intensity over a window 11- centered at i .  Let 
P, ( . r ,  y )  denote the intensity for ( x .  y )  E 11- after the window mean 
is subtracted, i.e., 

(1) 

Then, the difference measure :If ( i .  j :I for two pixels is defined as the 
sum of absolute differences of corresponding values in P, ( x .  y )  in 
the first image and P,!(.r. y )  in the second image: 

P,(.r. y )  = I , ( . r ,  y )  - L,. ( . I , ,  y )  E 11: 

( J  . Y ) E i L  

where 71 is the number of points in the window. To allow rotations 
around the optical axis across images, we find the orientation of 
the second window such that the difference measure for the two 
windows is minimized. That is, we rotate P, ' (x .  y:i such that :If( i ,  j )  
is minimized. 

To allow matching of points close to occlusion boundaries, match- 
ing of other windows not centered at those points. is also attempted. 
The value of ,If is computed for four additional types of windows, 
with the point located at the four corners, respectively. Each of these 
four windows responds the best to comers of a specific orientation, 
shown in Fig. 1. Thus, a total of five windows are used at each point 
to adapt to different environments. The smallest value of JI obtained 
from the five windows represents the quality of match for a given 
pair. In general, more windows give more robust performance, at the 
cost of more computation. 

Therefore the matching process is divided into two steps: given 
a point 1)  in the first image, first search for the orientation of the 
window around a candidate point q in the second image to get the 
best match between p and q ;  then search all candidate points in the 
second image to get the best overall match for 1).  

Two thresholds hl and hz are used to select the best and unique 
matches. Assume there are 1'1 points in the first view and .\-z points 
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(a) (b) 

Fig. 3. (a) A feature point 1’1 is considered as having a valid match 1): if the triangle constructed by 1’1 and its two closest neighbor features 1 ) ~  and 
]I:< is similar to the triangle constructed by their correspondences I ) : ,  i = 1 . 2 . 3 .  1’1 provides supports for 1’2 and p a .  Or, (b) if 1iZ  and 113 all have 
valid matches 1,: and and pi is among the two closest neighbors of both p 2  and 113, then 111 is considered as having a valid match, even if p ,  
has a bad neighbor p ;  which has a wrong match 

U / F6rbidden Regidn 
Fig. 4. Disparity Test: if p ,  ( , r .  y )  and y: ( . i , ’ %  y’) is a candidate matched pair, 
then for each disparity vector d, = ( d r .  f ly)  in the disparity vector set D 
such that p ,  + c<falls out of the forbidden region of 1): ( x ‘ ,  y’ 1, we determine 
if I ) ,  has a good intensity-based match with p ,  + d , .  If so, pt has more than 
one match and the pair (p, ) is removedas a spurious match; if not, pair 
(p, .  1): ) is retained. 

- 
+ 

in the second view. The matchedness measures A I ( i , j )  between the 
ith point in the first view and the jth point in the second view, 
i = l: . . .h’~,  j = 1:‘. . !Vx, construct a matrix M l ~ , x . ~ 2 .  The 
method for choosing a candidate match is described in the caption 
of Fig. 2.  

C. Geometric Tests 
The intensity based matching of Stage 11 is bound to contain errors 

in practice. For example, if there are two similar points in the scene 
such that one is detected in the first image only and the other in 
the second image only, then mismatching may occur. Even if a scene 
point is visible in both images, intensities, being variant, are not alone 
sufficient to find only correct matches. The purpose of this stage is 
to enforce geometrical consistency across views to further eliminate 
bad matches. 

Ideally matching should be done in the 3-D space. It is best to 
examine rigidity of all subsets of points so that a pair of matched 
points correspond to the same scene point. However, in the beginning, 
the depths cannot be computed because the motion is unknown and 
the computational complexity forbids us to consider all combinations 
of points simultaneously since :V points yield 2’v combinations. 
Therefore we start with finding points that preserve local geometric 
consistency in the 2-D space. One simple way to test for local geo- 
metric consistency is to consider only triples of points simultaneously 
and update the set of matched pairs (the rigid set) recursively. The 
goal of these tests is to identify those points that have correct matches 
by considering groups of points together. In the beginning, all points 
belong to a set called working set. As matched dots pass the tests, 
they are transferred away to another set called rigid set. 

Test A (Geometric TestJ: In this test, triples of matched pairs are 
considered simultaneously (Fig. 3) .  Each point and its two closest 
neighbors in the first image construct a triangle. The correspondences 
of the 3 points in the second image also construct a triangle. 
When the motion is rigid and small, the distortion of the triangle 
caused by motion is also small. Therefore, if all of three pairs of 

I I I - -  I 

Fig. 5. Only when all of the following four conditions are satisfied, can a 
mismatched pair and $16 survive the rigidity tests and disparity test: ( I )  
the correct match p i  of 111 is undetected in the second image; (2) the correct 
match 112 of p i  is undetected in the first image; (3) the local intensities of 111 
matches the local intensities of p ; ;  and (4) thetriangle constructed by 1’1 and 
its two closest neighbors 1)s and p 4  pass the geometric and rigidity tests with 
respect tothe triangle constructed by p: ,p$ ,  and p i .  

correspondences are correct, the two triangles i n  the image plane 
must be similar (the similarity of two triangles is examined by 
computing the proportions of the lengths of the corresponding sides 
of the triangles). If one or more pairs are wrongly matched, then 
the similarity can be only accidently preserved. The probability with 
which three points in the first image wrongly match three points in 
the second image such that the two triangles are similar is almost 
zero (see the discussion later on Dispariry Testj. The exact method 
of Test A is described in the caption of Fig. 3. It is well possible that 
some correct matches will be eliminated if their nearest neighbors 
are wrongly matched. This effect is called had nrighhorhood e#ect. 
To achieve higher reliability, more than 3 points can be considered 
together, although more correct matches could also be eliminated 
and more computation is needed. 

Test B (Geometric Test): If a correctly matched point has a neigh- 
bor which is either wrongly matched or lies across an object boundary 
in another object, then the correctly matched point may also be 
classified as a bad match by Test A. If we have already had some 
valid matches, we can use these correspondences to judge if other 
correspondences are valid or not. In this test, a point is grouped with 
its nearest two points that have passed Test A to form a triangle. 
Therefore, the bad neighborhood effect in Test A can be eliminated. 
Two sets of input data are required for Test B. Let these be denoted by 
SCL- and Sn. SLT- is the set of points that are to be checked (working 
set), while SR is the set of points that have passed Test A, or the 
rigid set. For each point 1) in .St\-, we find its two closest neighbors 
in SR.  We now determine if the triangles constrlucted by the three 
points and their correspondences are similar; if yes, IJ is put into SR;  
otherwise 1) is discarded. 

Test C (Geometric Test): In the above tests, the nearest neighbors 
are defined in terms of image plane distances. Perspective distortion 
could be a serious problem when the neighboring points in the 
image plane have large depth differences. This is called the closest 
neighhorhood effect. To reduce this effect, the closest neighboring 
points could be required to have nearly the same disparities. That is, 
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Example I .  (a) Features detected. (b) The result of intenhity-based Fig. 6. 

given a point p of disparity 4 the nearest neighbours of are c_hosen 
as two points closest to 1) whose disparities are within (d  - ?. (1 + ?), 
where tr and F' are vectors in the image plane. The choice of the 
value of F' is discussed in Section 111. Test C differs from Test B 
only in the choice of closest neighbors. This test is to adapt the 
matching algorithm to images of large depth difference or perspective 
distortion. 

D.  Rigidify Test 
The above geometric tests are based on 2-D similarity and may 

hence result in error. A more profound constraint is the 3-D rigidity 
of shape and size. The following test enforces exactly this constraint, 
but unlike the geometric tests, i t  applies only when there is a 
single relative motion between the camera and the scene. However, 
to compute depths motion parameters are needed, which cannot 
be estimated without an initial set (2  6) of matched points. The 
geometric tests serve to provide the correspondences needed for 
motion estimation. Points that preserve 3-D rigidity may not preserve 
2-D geometric similarity and vice versa. But only in rare situations 
does it happen that points preserving 2-D geometric similarity do not 
preserve 3-D rigidity. 

Test D (Kifidiry Test): Given two views, we can only construct 
one 3-D interpretation of the scene, thus it seems that we need three 
or more views to apply the 3-D rigidity test. However, since all 

1) 

matching. 

TABLE 1 
THE PARAME7liKS U S E D  

points undergo the same 3-D motion. we computc the depths for the 
points that have passed tests A, B, and C in the first and second 
views by using the motion parameters which are estimated from a 
small number of matches of high reliability. (The algorithms used for 
motion estimation and depth computation are referred to 191, [35].) 
Then we test if each 3-D triangle in the first view has the same size as 
the corresponding 3-D triangle in the second view. It' so, the rigidity 
is preserved; otherwise, not. So this test is essentially the same as 
Test B except that the depth data are used and the equality of a pair 
of 3-D triangles instead of the similarity of a pair of planar triangles 
is examined each time. 

When only two views are used, Test D is equivalent to enforcing 
the motion epipolar line constraint and the positive depth constraint. 
Therefore, this test fails for mismatches that satisfy the motion 
epipolar line equation and yield positive depths. We call this effect 
as epipdar efecr, which also exists in stereo matching. If a group 
of points is mismatched to another group of points that have similar 
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Fig. 6. Example I. ( c )  The result after Test A. (d)  The result after 
(d) 

Test 0 

interpoint geometry and satisfy the epipolar line equation, then all 
above tests may not eliminate the epipolar effect. This occurs for 
images of periodic patterns or of identical objects (see [34], [35]). 
One way to eliminate the epipolar effect is to consider more than 
two views at each time. Another way is to apply the disparity test 
that follows. However, when a sequence of images is available. Test 
D is stronger than the union of the epipolar constraint and the positive 
depth constraint since Test D requires further that the reconstructed 
depths of the points be consistent from frame to frame. 

E .  Disparity Test 
As has been pointed out above, for two views the epipolar effect 

cannot be overcome by the rigidity test. Therefore, at this stage we 
still cannot guarantee that all valid matches are correct, although 
only a small number of mismatches may survive the above tests. The 
disparity test discussed below is intended to remove the remaining 
mismatches. 

The basic idea is to check if any point in a matched pair can be 
rematched by another point on the epipolar line which is not detected 
as a feature point. Ideally, all possible matches on the epipolar line 
that yield positive depths should be examined. which would result 
in a considerable amount of computation and possible elimination of 
correct matches. However, when motion is unknown or when multiple 
motions are involved. the search space would be too large if one tests 

for all points in the image plane. Therefore, an efficient method that 
does not use motion parameters is needed. The disparity test below is 
designed to limit the search space to the disparities that are possessed 
by the obtained matches. This method works under the assumption 
that disparities possessed by the already matched pairs include those 
possessed by other correct, yet unknown matches. 

The disparity test below can also be applied after the motion 
is known. In this case, the set of dispurity wmxs in the test 
below should be replaced by all disparities on the epipolar line that 
yield positive depths. Then all possible matches on the epipolar 
line that yield positive depths are examined. This rules out all 
ambiguous matches. However, if wrong matches are used for motion 
estimation, the estimated motion parameters may be wrong and hence 
the disparity test may not be effective. Therefore, a robust motion 
algorithm which gives good results for noisy data is very important. 
In any case, disparity test will not worsen the results. 

Test E (Disparity Test): Given a set of pairs of matches y ,  = 
( . r , .  y# ) and 11: = ( r : ,  .I/: 1, Test E examines them .For uniqueness and 
eliminates any nonunique ones as spurious matches. A :et of disparity 
vectors D is formed by collecting the disparity vectors t l ,  for currently 
matched pairs 11, and 11: for all i (if motion is available, D is formed 
by the disparity vectors of all possitle matches on the epipolar line 
that yield positive depths), where (1 ,  = ( . r :  - . I , .  - y, ). When 
the number of matches is small (say, when less than 100 matches are 
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( e )  

Fig. 6. 

(ti 
Example I. (e) The result after Test C. (0  The result of using Test A again. 

available in a 512 x 521 image), D is enlarged by adding neighboring 
vectors (say in a 3 x 3 window) of each disparity vector corresponding 
to the matches. A matched pair ] J ,  and 1); is accepted if for each 
(1, €_D such that 1111, + i, - p:ll > <, (when motion is known, 
11, + d ,  must also lie on the epipolar line defined by p , ) ,  it is true that 

where ( is a constant denoting the radius of a forhidden region 
surrounding 1):.  The reason for excluding disparity vectors falling 
within the forbidden region in Test E is that when p ,  matches 1):.  the 
difference measure for I J ~  and any point near 1,: will also be low. This 
method is shown in Fig. 4. Again, this test is done in both directions: 
from the first image to the second image and vice versa. For images 
related by single, known motion, the disparity space reduces to a line 
segment along the motion epipolar line. 

After the above tests have been applied, only mismatches in 
rare situations may survive, which are described in Fig. S .  If a 
point p l  with true correspondence is mismatched to IJ;  whose 
true correspondence is p z .  then according to the feature detection 
algorithm, 1): and 11.; must be separated by some distance and 
therefore do  not fall within each other's forbidden region. Unless 
both 1,: and 1 ~ 2  are undetected as point features (e.g., when 1,; and 
112 are occluded in their own images), the pair 1'1 and 1);  are unlikely 
to survive the intensity-based matching. Thus, as long as (p', - pI ) 

is in the disparity vector set, the pair 1'1 and pb  would not survive 
the disparity test. Even when the pair does survive. to escape the 
geometric Test A, ( p 1 ,  p!J must preserve the triangle similarity with 
their closest neighbor points. The probability for this to occur is 
essentially zero, irrespective of whether the images contain regular 
patterns. If more than 3 points are tested at a time for geometric 
consistency, mismatches may be completely eliminated (although 
more good matches may also be eliminated due to perspective 
distortion). 

Test E can be used twice, once before the motion is solved for and 
once after the motion is solved for. At each time, the disparity space 
D has different contents as described above. 

F .  The Stepwise Algorithm 

The essence of the algorithm consists of the tests which must be 
arranged in logical order to function properly. 'Test A is used to 
starr rigidity based testing since it does not require valid matches 
as references. Tests B and C need reference points. Test D needs 
knowledge of motion parameters. To achieve better performance, 
quadruples or larger sets of points can be used by each test. After Tests 
B and C are applied. generally speaking, more point correspondences 
will be found. However. it is possible that some newly obtained 
correspondences will not satisfy the local geometric constraints and 
are hence wrong matches. This situation occur:, very often near the 
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(b) 

Fig. 7. Example 11. (a) Point features detected. (b) The result of intensity-based matching. 

occlusion boundary, especially for views involving multiple objects 
of different motions. Therefore. it is necessary to apply Test A or D 
again to the matches obtained by Test B and/or Test C. 

In the stepwise algorithm below, 1.1-1 and Il:, are the two working 
sets which are the input for each step, and R I  and Rr are two rigid 
sets containing points that are the outcome of each step. Both working 
sets and rigid sets are updated constantly. 

Step I: Cross-match the detected feature points in View I with 
those in View 2 based on intensities. Assume TT-1  and TI : l  are the 
sets of points of unique matches in View 1 and View 2, respectively. 

Step 2: Now apply Test A to matches given by 11-1 and 11, and 
those pairs which pass the test either in View 1 or View 2 are moved 
into R I  and Rr. respectively. Test A is repeatedly applied to points 
in 11-1 and Wt until no more good pairs can be obtained. 

Step 3: Test the points in I T - I  with reference to the points in R I  
and points in 11-2 with reference to the points in R2 using Test B. 
Again, matched pairs that pass the test in either view are moved into 
R I  and Rt respectively. 

Step 4:  This step is similar to Step 3 except that Test C is used. 
Srep 5;(Now apply Test D (If single relative motion) or A (if 

multiple relative motions) to R I  and R,. A pair 0). q )  is removed 
from (RI. R,) if either 11 fails the test in R ,  or '1 fails in Rs.  

Step 6:  Apply the (Disparity) Test E to R I  and h'z. If motion 
is unknown, the set of disparity vectors D is obtained from the 
correspondence data in R I  and Rt. If motion is known, then for 
each point in concern, D consists of all possible disparities defined 
by the pixels on the epipolar line that yield positive depths. The; a 
pair (y, q )  is remove_d from ( R I .  R2) if for any disparity vector tl in 
D such that ) ) p  + ([- 4 ) )  > (, either 1' matches point 1) + t i o r  (I 
matches point 4 - d. The remaining pairs in ( R I .  R,) comprise the 
results of the algorithm. 

111. IMPLEMENTATION AND EXPERIMENTAL R m i m  
In this section. we describe some experiments with real image data 

while also presenting implementation details through the examples. 
The parameters used in the algorithm are given in Table I .  As long 
as the parameters are in a reasonable range. the algorithm is not 
sensitive to the choice of them. Typically. on a SUN Sparc station. 
the intensity-based matching algorithm takes a few minutes to 20 
minutes to match two 512 x 512 images containing 1.000 points. The 
geometric and rigidity tests take negligible time and the disparity test 
takes a few minutes. 

Eh-umple I: The first example illustrates the effect of the rigidity 
tests. Fig. 6(a) shows about 500 points detected by the point feature 
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(d)  

Fig. 7. Example IJ .  ( c j  The result after geometric and rigidity tests. (d)  The final result after disparity test. 

detector in two indoor images resulting from a single, rigid motion. 
In these images, only comers form good point features. Fig. 6(b) 
shows the matched pairs obtained by the intensity-based matching. 
We see that there are some mismatches near the vertical boundaries 
of the images. However, after applying Test A, only a small number 
of correspondences survive, as shown in Fig. 6(c). More correct 
correspondences are obtained after using Test B, as shown in Fig. 
6(d). Fig. 6(e) shows that even more matches are obtained by using 
Test C. Fig. 6(f) shows the final matches. Some good matches are also 
removed along with the bad matches. The disparity test is useless here 
since no mismatches survive over the geometric and rigidity texts. 

Example I I :  The second example (the original images were pro- 
vided by Dr. M. Leung and Prof. T. S. Huang) shows the performance 
of the matching algorithm on images of two object!, undergoing 
different motions (a truck moves in the background and the camera 
moves accordingly to track the truck). In this example. the disparity 
test plays a significant role in removing mismatches occurring in 
similar objects. Fig. 7(a) shows the about 500 points detected by the 
point feature detector. Fig. 7(b) shows the intensity-matched pairs. 
There are many mismatches in the background and the truck. The 
geometric tests remove all but three mismatches which are on the 
tire as shown in Fig. 7(c). It is interesting to note that the three 

points are located on different tires in the two images but preserve 
the local geometrical relations. It is hard to determine that they are 
mismatches by examining the local region. However, the disparity 
test successfully, and easily, identities the matches as ambiguous and 
removes them from the set of matched pairs. as shown in Fig. 7(d). 

Iv. SUMMARY 

The matching algorithm in this correspondence uses newly devel- 
oped geometric tests, rigidity test and disparity test to obtain unique 
point correspondences in two different views of a scene containing 
rigid objects. We have applied the algorithm to it variety of images 
and obtained good results (cf. [35]-137] for more data). The matches 
found are reliable, although possibly small in number. Therefore, they 
allow reliable estimation of motion parameters. 

The algorithm yields only correct matches under the following 
assumptions: 1 )  a fair number (I> 3) of disrincr point features 
corresponding to the same scene points can be detected in both 
images; 2) local intensity change and geometric diatortion from view 
to view is small enough to allow initial matching using intensity-based 
or token based methods and to allow the use of geometric tests; 3) 
for the rigidity test, at least 6 pairs of initial matches from a single, 
rigid object must be available; 4) for the disparity test, either the true 
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disparities of every mismatched pair is possessed by other correct 
matches or  the motion parameters are accurate enough to  allow the 
use of the motion epipolar lines. 
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Control Structure for Interpreting Handwritten Addresses 
Edward Cohen. Jonathan J. Hull. and Sargur N .  Srihari 

Abstract-This correspondence describes the control structure for an 
intelligent handwritten address interpretation system. The system takes 
a grey-level address image, segments the address into lines and words, 
parses the address into meaningful syntactic categories, recognizes words 
using dynamically generated lexicons, and determines the destination code 
with the aid of postal directories. 

lndex Terms-Text processing, handwriting recognition. image process- 
ing 

I .  INTRODUCTION 
The Handwritten Address Interpretation Systetn ~HI+!AlSj takes an 

off-line handwritten postal address image and determines a unique 
mail delivery point (e.g.. a mailbox). I n  the United States, each 
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