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Location- and Density-Based Hierarchical
Clustering Using Similarity Analysis

Peter Bajcsy and Narendra Ahuja, Fellow, IEEE

Abstract—This paper presents a new approach to hierarchical clustering
of point patterns. Two algorithms for hierarchical location- and density-
based clustering are developed. Each method groups points such that
maximum intracluster similarity and intercluster dissimilarity are
achieved for point locations or point separations. Performance of the
clustering methods is compared with four other methods. The approach
is applied to a two-step texture analysis, where points represent
centroid and average color of the regions in image segmentation.

Index Terms—Point patterns, clustering, hierarchy of clusters, spatially
interleaved clusters, density-based clustering, location-based clustering.
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1 INTRODUCTION

CLUSTERING explores the inherent tendency of a point pattern to
form sets of points (clusters) in multidimensional space. Most of the
previous clustering methods assume tacitly that points having simi-
lar locations or constant density create a single cluster (location- or
density-based clustering). Location or density becomes a character-
istic property of a cluster. Other properties of clusters are proposed
based on human perception [1] or specific tasks (e.g, shape from
texture [2]). The properties of clusters have to be specified before the
clustering is performed and are usually a priori unknown.

This work presents a new approach to hierarchical clustering of
point patterns. Two hierarchical, location- and density-based clus-
tering algorithms are developed based on the new approach using
similarity analysis. The similarity analysis relates intracluster dis-
similarity with intercluster dissimilarity. The dissimilarity of point
locations or point separations is considered for clustering and is
denoted in general as a dissimilarity of elements e;. Each method
can be described as follows.

1) Every element e; gives rise to one cluster Cei having ele-

ments dissimilar to e; by no more than a fixed number 6.
2) Asample mean Hei of all elements in Cei is calculated.

3) Clusters would be formed by grouping pairs of elements if
the sample means computed at the two elements are similar.

4) The degree of dissimilarity @ is used to form several (mul-
tiscale) partitions of a given point pattern. A hierarchical or-
ganization of clusters within multiscale partitions is built by
agglomerating clusters for increasing degree of dissimilarity.

5) The clusters that do not change for a large interval of are
selected into the final partition.

Experimental evaluation is conducted for synthetic point patterns,
standard point patterns (80x-handwritten character recognition,
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IRIS-flower recognition) and point patterns obtained from image
texture analysis. Performance of the clustering methods is com-
pared with four other methods (partitional—FORGY, CLUSTER,;
hierarchical—single link, complete link [3]).

In the previous work on clustering [3], [4], all methods are di-
vided into partitional and hierarchical methods. Partitional meth-
ods create a single partition of points while hierarchical methods
give rise to several partitions of points that are nested. Partitional
clustering methods can be subdivided roughly into

1) error-square clusterings [3], [5],
2) clustering by graph theory [6], [3], [7], and
3) density estimation clusterings [8], [3], [5]-

Error-square clusterings minimize the square error for a fixed
number of clusters. These methods require inputting the number
of sought clusters as well as the seeds for initial cluster centroids.
Clustering by graph theory uses geometric structures such as,
minimum spanning tree (MST), relative neighborhood graph,
mutual nearest neighborhood, Gabriel graph, and Delaunay tri-
angulation. The methods using these geometric structures con-
struct the graph first, followed by removal of inconsistent edges
of the graph. Inconsistent edges and how to remove edges are
specified for each method. The two most commonly used hierar-
chical clusterings are single-link and complete-link methods [3],
[9]. The use of clustering methods can be found in many appli-
cations related to remote sensing [10], [11], image texture detec-
tion [12], [13], taxonomy [9], [14], geography [15], [16], and so on.

Proposed location-based clustering can be related to centroid
clustering [3], and density-based clustering can be related to
Zahn’s method [1]. Centroid clustering achieves results identical to
the proposed location-based clustering although the algorithms
are different (see [3]). The only difference in performance is in the
case of equidistant points, when the proposed method gives a
unique solution, while the centroid-clustering method does not,
due to sequential merging and updating of point coordinates.
Zahn’s method consists of the followings steps:

1) Construct the MST for a given point pattern.

2) ldentify inconsistent links in the MST.

3) Remove inconsistent links to form connected components
(clusters).

A link is called inconsistent if the link distance is significantly
larger than the average of nearby link distances on both sides of
the link. The proposed density-based clustering differs from
Zahn's clustering in the following ways:

1) We use the average of the largest set of link distances rather
than nearby link distances for defining inconsistent link, and
this leads to more accurate estimates of inconsistent links.

2) We replace the threshold for removing inconsistent links
(“significantly larger” in the definition of inconsistent links)
with a simple statistical rule.

3) We work with all links from a complete graph1 rather than a
few links selected by MST (this is crucial for detecting spa-
tially interleaved clusters).

Location- and density-based clusterings are suitable for tex-
ture analysis. A texture is modeled as a set of uniformly distrib-
uted identical primitives (see Fig. 1). A primitive is described by
a set of photometric, geometrical, or topological features (e.g.,
color or shape). Spatial coordinates of a primitive are described
by another set of features. Thus, the point pattern obtained from

1. Links between all pairs of points create a complete graph accord-
ing to the notation in graph theory.
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Fig. 1. Example of textures. Top: Original image. Bottom: The resulting five textures (delineated by black line) obtained by location- and density-

based clusterings.

texture analysis consists of two sets of features (e.g., centroid
location and average color of primitives) and has to be decom-
posed first. Location-based clustering is used to form clusters
corresponding to identical primitives in one subspace (color of
primitives). Density-based clustering creates clusters corre-
sponding to uniformly distributed primitives in the other sub-
space (centroid locations of primitives). The resulting texture is
identified by combining clustering results in the two subspaces.
This decomposition approach is also demonstrated on point
patterns obtained in other application domains. In general, it is
unknown how to determine the choice of subspaces. Thus, an
exhaustive search for the best division in terms of classification
error is used in the experimental part for handwritten character
recognition and taxonomy applications.
The objective of this work is to contribute to

1) the theoretical development of nonexisting clustering methods
and
2) the use of clustering for texture detection.

The salient features of this work are the following:

1) A decomposition of the clustering problem into two lower-
dimensional problems is addressed.

2) Anew clustering approach is proposed for detecting clusters
having any constant property of points (location or density).

3) A density-based clustering method using the proposed ap-
proach separates spatially interleaved clusters having various
densities, thus is unique among all existing clustering methods.

The methods can be related to the graph-theoretical algorithms.

This paper is organized as follows. Theoretical development of
the proposed clustering methods is presented in Section 2. Ex-
perimental performance evaluations of the clustering methods
follow in Section 3. Section 4 presents concluding remarks.

2 LOCATION- AND DENSITY-BASED CLUSTERINGS

2.1 Mathematical Formulation

An n-dimensional point pattern is defined as a set of points
| = {pi}iP:l with coordinates (p;, p,, -+, p,). A general goal of unsu-
pervised clustering is to partition a set of points | into nonoverlap-

N N
Ji 1=ULC G N G = 0 and

C, = {pi}iew_ , Where W; is an index set from all integer numbers in
J

ping subsets of points {Cj

the interval [1, P]. The subsets of points are called clusters and are
characterized in this work by the similarity (dissimilarity) of point

locations or point separations. A notion of an element e; O 0" (a

feature vector) is introduced to refer either to a point location p; or

a point separation d(lplyp2)=||p1—p2|| (the Euclidean distance

between two points also called length of a link d(lpl,pz )).

In general, every cluster of elements C; = {e,} can be character-
ized by its maximum intracluster dissimilarity 6= max {| (g; O C)
- 0C) [} (or minimum intracluster similarity € and minimum

intercluster dissimilarity a = min {|(e; O C;) - (e, O C)[[} (maximum
intercluster similarity a), where the dissimilarity (similarity) value
of any two elements e;, e, is defined as the Euclidean distance
O, e = ||ei —ek". Our goal is to partition a point pattern | into

nonoverlapping clusters {Cj}i
and maximum intercluster dissimilarity of elements in order to
decrease the probability of misclassification.

If clusters of elements are not clusters of points as in the case
point separations, then a mapping from the clusters obtained to
clusters of points is performed. The mapping from clusters of
point separations (links) to clusters of points takes two steps:

having a minimum intracluster
1

1) Construct an MST from the average values of individual
clusters of links.

2) Form clusters of points sequentially from clusters of links in
the order given by the MST (from smaller to larger average
values of clusters).

2.2 The Clustering Method

Given a set of elements | and the goal, the unknown parameters
of the classification problem are the values 8and a for each final
cluster, as well as the number of final clusters N. Two steps are
taken to partition the input elements into clusters. First, a value
of intracluster dissimilarity @is fixed, and clusters characterized
by 6 are formed by grouping pairs of elements. The result of the
first step is a set of clusters denoted as {CE&}:(Z since they are

characterized only by @ Second, values of 8and a are estimated
for every final cluster CEf'“ by a maximization of intercluster
dissimilarity a and a minimization of intracluster dissimilarity 6.
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The final partition {CEJ""} is asubset of {CEg]} 01 and is aimed
i= m=

N
to be identical with a ground truth partition {Cj}_ X which is
j=

assumed to exist for the purpose of evaluating the classification
accuracy (number of misclassified elements).

M
Step 1: Grouping pairs of elements into clusters {CEfn} 91
m=

Let us assume that there exists C; in the ground truth partition
with intraclustering dissimilarity 8 The grouping of elements g; in
C; is based on a certain estimate of the cluster C; computed at each
element e;. The best estimate of an unknown cluster C; is obtained
at a single element e; if the element e; gives rise to a cluster Ce,

identical with the unknown one C;. It would be possible to create
the cluster C, = C; if the unknown cluster C; of elements is char-

acterized by a value of intercluster dissimilarity a larger than a
value of intracluster dissimilarity 6. Under the assumption a > 6,

the cluster C, = {e,} is obtained from any element ¢; 0 C; by

grouping together all other elements e, satisfying the inequality
le; — el £ 8. Thus, for any two elements e, and e, from the cluster
C,, . their pairwise dissimilarity is always less than 28 if e, € C_,
and e, € C, , then [le; — &)l < 26 The last fact about 28 intracluster

dissimilarity leads to a notation C, = Cgf’ Furthermore, if e; and

e, belong to an unknown cluster C;, then CZ’ = CZ’, otherwise

ey’

C2? = CZ7. Therefore, the clusters {CEi} characterized by 6can be
obtained in the following way:

1) Create clusters C2’ = {e, }, such that [le; - e, < &
2) Compare all pairs of clusters C;G .

3) Assign elements into the final clusters of elements {CE,i}
based on the comparisons in (2).

26 . .
For a < 6, clusters C co are not identical to an unknown
ejeC;j

0, 26 . 6,
cluster Cj “. Acluster C,. is asuperset of Cj % pecause the clus-
1

ter Cgf also contains some exterior elements of Cje’“ duetoa<é
Our analysis assumes that the case a < 8 occurs due to random
noise. This assumption about random noise leads to a statistical
analysis of similarity of clusters Csia. Two issues are investigated
next:

1) a statistical parameter of a cluster st"x that would be invari-

ant in the presence of noise and
2) a maximum deviation of two statistically invariant parame-

ters computed from clusters Cf'“ and Ce26 .
1

First, let us assume that deterministic values of elements in Cf‘a
are corrupted by a zero mean random noise with a symmetric
central distribution. Then a sample mean (average) HJ- of elements
in Cje'“ would be a statistically invariant parameter because the
mean of noise is zero. Second, a sample mean is computed from
each cluster les and is denoted as Hei . The deviation of Hei from

1, is under investigation. If ng is a subset of ij”“(cezi6 c Cf‘“),
1
then the sample mean 1, would not deviate by more than 6from
1

Llj,

ﬁei - ﬁj" < 0. This statement is always true. If there are two
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arbitrary subsets C2’ < C/"* and CZ’ c C/*, then their sample

means would not be more than @apart, as well; <0o.If

CZG

€i

/_‘lei - :l_lel
is a superset of C}“(CZ’ > CJ") then the same deviation of

U, from either u; or 1w, is assumed as before for e;, e, € Cf’“;
I

< 6. The validity of the previous if

i, —ﬁj" <6 and |1, -1,
statement depends on the ratio of elements from the true cluster
ng’“ and other clusters exterior to CJ—G”Z . Thus for the second issue,
the sample mean Hei is not expected to deviate from Hj by more
than 6

grouped together if their corresponding sample means Hel and

e, —ﬁj" <6, and any two elements e, and e, would be

i, are not more than fapart; if

[, — | <06, theney, e, e CE].

The inequality < 0 used for a < @can be applied to the

ﬁel _ﬁez
case a > 6 There would be no classification error in the final
partition {CE:‘}:; for the case a > @ if the inequality was used.
For a < g the classification error is evaluated in a statistical

>9]_

6 and a are estimated by exploring the set of clusters {CEri}

framework as a probability Pr(

'ue' scf"" 'uj

Step 2: Estimation of fand a

Mg
m=1"
Clusters CE’ that do not change their elements for a large interval
of 8 (maximize a and minimize 6) are selected into the final parti-

tion {CEm}::. The set {(:Em}:i1 is an estimate of the ground truth

N
partition {Cj}_ iy and NE is the estimate of the number N.
j=

The methods are called hierarchical because the set of clusters
M
{CE,?} 91 is defined as a nested sequence of sets of clusters along
m=

the @axis. The nested sequence is understood as follows: A clus-
ter obtained at scale @ cannot split at scale & + A and cannot
merge at scale @ — A with other clusters. The hierarchy of mul-
tiscale classification results is guaranteed by modifying elements

within the cluster CE? created at each scale 8to the sample mean

of elements of the cluster (Proof: Two elements e; and e, which

have identical values e; = e, belong to the same cluster CEf1 for
all scales 6=0.).

3 PERFORMANCE EVALUATION

We begin with an example of image texture analysis performed
in two steps (see Figs. 1 and 2). First, texture primitives (color
homogeneous image regions) are obtained using an image seg-
mentation, and a point pattern is created by measuring an aver-
age color and centroid coordinates of each primitive. Second,
features are decomposed into color and centroid coordinate cor-
responding feature sets, therefore two lower-dimensional pat-
terns are created from these features. The location-based clus-
tering is applied to the pattern shown in Fig. 2a consisting of the
color feature, and the density-based clustering is applied to the
pattern consisting of the centroid coordinate features. Clustering
results are combined and shown in Fig. 2b. The method demon-
strates its exceptional property of separating spatially inter-
leaved clusters (marked by labels 0, 6, and 26 in Fig. 2) which is a
unique property of the clustering methods described here.
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Fig. 2. Spatially interleaved clusters (original and labeled points).

Accuracy of both proposed clustering methods is tested using
point patterns with known ground truth partitions. Quantitative
evaluation is conducted by measuring the number of misclassified
points with respect to the ground truth. Clustering accuracy is
tested for

1) synthetic point patterns generated using location and den-
sity models of clusters (no interleaved clusters) and

2) standard test point patterns (80x, IRIS), which have been
used by several other researchers to illustrate properties of
clusters (80x is used in [3] and IRIS in [1], [3], [9]).

Experimental results are compared with four other clustering
methods: two hierarchical methods—single link and complete link;
and two partitional—FORGY and CLUSTER [3]. Decomposition of
features followed by location- and density-based clusterings is
explored for each point pattern (80X and IRIS). It is unknown how
to determine the choice of features for the decomposition. The goal
is to create lower-dimensional point patterns showing inherent
tendency to form sets of points with similar locations or approxi-
mately constant density. An exhaustive search for the best division
in terms of classification error was used. A summary of clustering
results in terms of misclassified points is provided in Tables 1, 2,
and 3 for synthetic and standard data.

The best method for a class of point patterns generated with a
location model (Gaussian clusters) is the proposed location-based
clustering (see Table 1). A class of point patterns generated with a
density model (regular grid clusters perturbed by uniform noise of
magnitude A or Gaussian noise with =0 and 0) was clustered the
most accurately by the proposed density-based clustering (see
Table 2). A combination of location- and density-based clusterings
applied to 80X and IRIS data led to the best clustering results (see
Table 3). The eight-dimensional point pattern 80X was decom-
posed experimentally into two lower-dimensional spaces; one ng =
four-dimensional subspace (features 1, 2, 7, 8) and one n; = four-
dimensional subspace (features 3, 4, 5, 6) in order to achieve the
result stated in Table 3. By applying the location-based clustering
to n; = four-dimensional points followed by the density-based
clustering applied to ng = four-dimensional points, we could sepa-
rate 0 from 8X and then 8 from X. The four-dimensional point
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0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0
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pattern IRIS was decomposed experimentally as well, but the
clustering results were not better than the results from location-
based clustering applied alone. All six methods used for the com-
parison were applied to a class of point patterns with spatially
interleaved clusters, e.g., Fig. 1. Proposed density-based clustering
outperforms all other methods because it is the only method that is
able to separate spatially interleaved clusters.

A time requirement for running each method is linearly pro-

portional to the number of processed elements (Npgine POINtS, Ny

links) and to the number of used elements for a sample mean cal-

culation at each element (NCFZ,5 and N_ 2 ). The number of proc-
Pi 3

essed links Nj;, was reduced by sequential mapping of clusters of
links to clusters of points, therefore the time requirement was
lowered.

4 CONCLUSION

We have presented a new clustering approach using similarity
analysis. Two hierarchical clustering algorithms, location- and
density-based clusterings, were developed based on this approach.
Location-based clustering achieves results identical to centroid
clustering. Density-based clustering can create clusters with points
being spatially interleaved and having dissimilar densities. The
separation of spatially interleaved clusters is a unique feature of
the density-based clustering among all existing methods. Perform-
ance of the clustering methods was compared with four other
methods. Location- and density-based clusterings were used for
image texture analysis. The contributions of this work can be
summarized as

1) addressing a decomposition of the clustering problem into
two lower-dimensional problems,

2) proposing a new clustering approach for detecting clusters
having a constant property of interior points, such as loca-
tion or density, and

3) developing a density-based clustering method that sepa-
rates spatially interleaved clusters having various densities.
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TABLE 1
NUMBER OF MISCLASSIFIED POINTS (LOCATION MODEL)
location model o=3 o=3 o=5 o=5 perform.
method / data 30 pts | 60 pts | 30 pts | 60 pts > order
locat. clus. 0 1 1 3 5 1
dens. clus. 1 11 8 11 31 6
single link 1 2 7 9 19 5
complete link 1 2 5 6 14 4
CLUSTER 2 1 2 3 8 3
FORGY 1 0 2 3 6 2
TABLE 2
NUMBER OF MISCLASSIFIED POINTS (DENSITY MODEL)
density model
method / data no noise A=+05 0=0.25 > order
locat. clus. 0 13 10 23 5
dens. clus. 0 3 1 4 1
single link 9 14 13 36 6
complete link 0 11 4 15 2
CLUSTER 6 6 6 18 4
FORGY 5 6 6 17 3
TABLE 3
NUMBER OF MISCLASSIFIED POINTS (80X AND IRIS)
80x and IRIS 80x IRIS perform.
method / data 45 pts 150 pts > order
locat. + dens. clus. 7 14 21 1
locat. clus. 24 14 38 4
dens. clus. 18 24 42 5
single link 24 25 49 7
complete link 12 34 46 6
CLUSTER 15 16 31 3
FORGY 7 16 23 2
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