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Abstract 

This paper is concerned with learning the canonical gray scale structure of the images of 
a class of objects. Structure is defined in terms of the geometry and layout of salient image 
regions that characterize the given views of the objects. The use of such structure based 
learning of object appearence is motivated by the relative stability of image structure over 
intensity values. A multiscale segmentation tree description is antomatically extracted for 
all sample images which are then matched to construct a single canonical representative 
which serves as the model 0fthe class. Different images are selected as prototypes, and each 
prototype tree is refined to best match the rest of the class. The model tree for the class 
is that tree which is best supported over all the initializations with different prototypes. 
Matching is formulated as a problem of finding the best mapping from regions of example 
images to those of the model tree, and implemented as a problem in incremental refinement 
of the model tree using a learning approach. Experiments are reported on a face image 
database. The results demonstrate that a reasonable model of facial geometry and topology 
is learnt which includes prominent facial features. 

1 Introduction 
This paper is concerned with learning the canonical gray scale structure of the images of a class of 
objects. Structure is defined in terms of the geometry, layout and photometric relationships among 
salient image regions that are common across given object images. The use of such structure based 
learning of object appearance is motivated by the relative stability of image structure over intensity 
values across multiple views. Since region boundaries in image often correspond to scene discontinuities 
in illumination, alhedo, objects, etc., these boundaries are more invariant to changes in illumination 
level and viewpoint than the intensity values themselves. Thus, any descriptions of objects inferred in 
terms of the region structures are expected to be fairly stable representations of object images. 
The region structure of an image may be represented by a tree that captures the different geometric and 

photometric scales, and geometric and topological interrelationships characterizing the image regions. 
Large regions are said to have a coarse spatial scale while smaller sizes are said to be associated with 
finer spatial scales. Given a tree that represents such a multiscale segmentation of an image, the goal 
is to extract a tree that serves as the common denominator of the trees corresponding to all object 
images. We use an algorithm that automatically extracts the tree representation of an image without 
any a pmer~ knowledge of the scales present. The trees derived from different object images are matched 
to construct a canonical representation or model that provides maximal degree of match to all the trees. 
The model tree for the class is derived as that tree which is best supported over all the initializations. 
]'he matching of each prototype tree to the rest of the class is formulated as a problem of finding 
the best matches from regions of example images to those of the model tree, and implemented as a 
problem in incremental learning. The learning is realized using a modified Fuzzy Adaptive Resonance 
Thoery (Fuzzy AP~T) architecture that incrementally refines a prototype tree based on the features of 
the matched regions of example images. 
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2 P r e v i o u s  Work 

There have been previous efforts at finding canonical aspects of the images from a single class, ttowever, 
most of these are limited to relatively unstable features such as the responses of an edge detector or, 
edge segments. Shams [15] presents an approach to applying canonical graph representation for pattern 
recognition. He uses local features of orientation and intensity edges for recognizing objects such a plane 
or a tank. Von der Marlsburg et al. [17] uses an architecture for pattern recognition based on graph 
matching to recognize faces [8] and to achieve invariance with respect to some location and orientation 
variabilities [7]. To improve upon the unreliability of the isolated local features such as used in these 
methods, [5] uses simple homogeneity criteria to split and merge tiles defined by an a priori tessellation 
method to obtain more stable segmentations, and thus more meaningful regions, ttowever, a priori 
chosen, low level criteria do not yield meaningful candidate regions for canonical class descriptions from 
real images which is the objective of this paper. Methods have been developed that integrate a priori 
domain knowledge into the segmentation which improves segmentation at the expense of making the 
methods domain specific [19, 16, 18, 12, 3, 6]. 

Moghaddam and Pentland [9] present a probabilistic method for 2D object detection. This method 
requires the a priori identification of important object features. It has been applied to  faces and hands 
images, gives interesting results even with few eigenspaces, and seems robust with respect to noise and 
data variations. Murase and Nayar in [11] describe a 3D method based on eigenspace generation. Instead 
of using intrinsic shape information, which is often difficult to extract due to lighting variations, they 
match appearance. As in [9], a suitable number of eigenspaces for each object must be found, ttornegger 
and Niemann in [4] propose a statistical framework for learning, localizations and identifications of 
objects. One of the most prominent connectionist methods is based on the radial-basis function (RBF) 
network introduced by Poggio and Girosi [14] to learn a mapping from an input space to an output 
space. It was applied by Poggio and Edelman [13] to recognize three-dimensional stick figures from 
two-dimensional images. Mukherjee and Nayar in [10] use a learning algorithm to obtain the network 
parameters using basis functions generated from wavelet decomposition of different training images of 
objects. The work described in this paper is aimed at obtaining a canonical representation or model 
of the object images such that the model is explicitly defined in terms of relatively low level, and thus 
domain independent, features, which are also relatively independent of imaging conditions. 

3 Overview of Learning Approach 

Each image is converted into a segmentation tree [I] in which the levels are indexed by a photometric 
scale parameter. Initially, the prototype is stored in the form of the segmentation tree of one of the 
sample object images. The segmentation trees of several other samples are then presented to the learning 
system one image at a time. For every sample image presented, each of its regions at the coarsest scale 
is a candidate for matching with the prototype regions at the same scale. The set of all single region 
candidates constitutes a unarv hypothesis set. In addition to single region candidates, additional regions 
are also generated as candidates by merging two and three neighboring regions in the region adjacency 
graph (RAG) of the sample image segmentation tree giving rise to binary and ~ernary hypothesis sets, 
respectively. The union of unary, binary and ternary hypothesis sets of a sample image constitutes the 
hypothesis set for that sample image. A coarsest-scale hypothesis set consisting of unary, binary and 
ternary hypotheses is analogously generated for the prototype. These sample and prototype hypotheses 
sets are paired to provide the best matches of region features such as area, centroid and shape (measured 
as the eccentricity of the best fitting ellipse). The matching is performed using a learning algorithm. 
At the finer scales, the hypothesis sets are generated, for both the prototype and the sample image~ 
from regions that are the children and/or neighbors of matched regions at the next coarser level. While 
these hypothesis sets also contain unary, binary or ternary intrascale regions, the generation of these 
regions is guided by the matching process at a coarser scale. This prevents the creation of irrelevant 
hypothesis sets at finer scales. 

The prototype hypothesis sets that find matches with each sample image hypothesis set, at each scale, 
are modified in order to reflect the features in the sample image that are different from the prototype. In 
addition to the modifications to the prototype features, the learning algorithm also stores the frequency 
with which each region of the prototype hypothesis set is matched with the regions belonging to the 
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sample image hypothesis set of the training samples. Matched prototype regions with the highest 
frequencies indicate the regions that are most salient. The final result of the learning process is the set 
of regions that  is most salient based on all training samples start ing with a given prototype. While this 
approach is stable with respect to different prototype initializations, we use the commonly extracted 
regions across several initializations as the canonical representation for the object class. This removes 
any bias due to specific prototype initializations. 

4 Choice of Features for Region Matching 

Several feal;ures are used to determine the quality of match between a pair of regions. The work in this 
paper focusses on learning canonical models of  facial image structure. These images contain a face in 
the center and there is little background area. All the sample images are normalized to the prototype 
image such that each face image appears in the center and has about the same size. Region centroids 
represent their relative positions, and are used as one type of feature. Region area is used as another 
feature. The eccentricity of the region is used as its shape feature, and is approximated by that  of its 
best-fitting ellipse. 

In order to derive these three normalized features, the two-dimensional moment of order (p + q), for 
an NXM discretized image g(z, y) is defined as m~,q ~-~M__~I N-I  = ~ = o  zPYqg(x,Y)" The centroid (e~,cu) 
of each region is defined as c, = into~moo and cu = mot~moo where moo is the area of the region. 
This  area is computed as the number of pixels within each region. To compute the eccentricity, we 
first compute the central moments #pq of the region by replacing z and y in the expression for mpq 
by expressions (x - c~) and (x - cu). These moments  are then normalized with respect to scale as 

vpq = t~pq/moo . The normalized eccentricity r/, which gives a shape measure invariant to translation 
and scale, is computed as q = V/(u~0 - u02) 2 + 4v~l/moo. 

At the coarsest scale only, the area and centroid features were used. The eccentricity information was 
not used at this scale because, the regions at the coarsest scale are normally large. These large regions 
are not very stable in it shape feature. By traversing to finer scales from the coarse level region, its 
features take a more definite shape. For example, a face region at the coarsest scale, extracted as a 
single region or by merging two or three regions, is usually not well defined. However, at finer scales, 
the regions that  are found within it can correpsond to the eye or mouth and these are far more well 
defined in their shape. Thus, at the coarse scale, only the area and centroid were used as features for 
the matching process. At finer scales, the area, centroid and its eccentricity were used. 

5 Criteria for Merging Regions 

The merging of regions is an important and necessary step in our approach. This is because lighting 
effects lead to smooth shading in images. During the multiscale segmentation, this may further lead to 
splitting of shaded regions with subregions at arbitrary locations, and thus to the creation of spurious 
regions. To alleviate this problem, methods need to be developed to merge erroneous subregions into 
the original parent region. Since there is no sharp change in gray-level value across the border between 
spurious regions, the gray-level gradient across the border will be low. This property is used to detect 
mergable regions. If the gradient at most  of the border pixels has a shallow slope, then the two regions 
can be merged. The exact condition for merging depends upon the definition of the terms most of the 
border pizels and the degree of shallow slope. For this purpose, we use two thresholds: Tper (most of 
the border pixels means more than Tpe~%) and Tg~ (degree of shallow slope means slope smaller than 
Tg~). To compute these thresholds, the histogram of gradient values at the border pLxets is plotted. An 
example of the histogram for the image of a car is shown in Figure 1. Experiments suggest that  Tgr 
is best if located at the tail end of the steep part  of curve, just  before it flattens. The threshold Tpe~ 
for the number of border points is selected such that  Tgr is greater than Tpe~. In this paper, Tper was 
set typically between 80 and 90%. Thus,  two regions R1 and R2 can be merged if IBf • 100/IN I > Tp~ 
where B is a border point. A point on the R I - / ~  region boundary is a border point if G(B) < Tar 
where G(B) is gradient at the border point. N is the total number of border points between regions Rx 
and R2. The term 1~] here refers to the sum of the number of elements in z. An important consequence 
of reducing these spurious regions is the reduction in the number of regions that have to be merged to 
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(a) (b) 

Figure 1: (a) Original picture of  the  car on which exper iments  were based. (b) Histogram of  
the  gradient  vMues on border points for the  car. 

generate the hypothesis sets. This increases the efficiency of the matching and learning process. The 
three features that define each region have to be re-computed after merging of two or more regions 
occurs. They are computed from the parent regions unless the regions have already been merged in 
other training samples and their values are available. 

6 Coarse-To-Fine Generat ion of Hypothesis Sets 

At the finest scale, the segmented image typically contains several small regions. Finding the canonical 
representation at this scale would require the generation of several mergings. Therefore, it is desirable 
to use the knowledge that comes from a matching at a coarser scale to guide the matching at a finer 
scale. Using the segmented tree, the algorithm searches for matching regions among the children of 
the regions that have been matched at the previous coarser scale level. This confines the search to 
interesting areas, thus limiting the number of hypotheses. Because the coarsest scale has fewer regions 
than the other scales, it cau be used to initialize the process without expensive computations. 

At each scale, the hypothesis sets are generated for the sample and prototype images in two steps. 
First, two sets of unary regions or unary hypotheses are extracted from the segmented images at the 
current scale. One is extracted from the prototype RAG, and another from the current sample RAG. To 
select the unary hypotheses at the coarsest scale level, all the regions of RAG are selected for matching. 
Below this level, hypotheses are selected in two ways. Let us assume that a match has been found 
between prototype and sample RAG. Then for the finer scales, children of these matched regions are 
selected to compose a pair of unary hypothesis set. Neighbors of these children are also added to the 
sets. This process is repeated for every matched region of the preceeding coarse level. 

For the regions in the prototype that are not children of matched regions, a centroid-based hypothesis 
generation strategy is used, where the region that has a nearby centroid in the sample image is selected. 
Neighbors of these two regions are also selected to form two sets of unary hypotheses. The centroid- 
based method generates small but numerous sets of hypotheses. However, experiments have shown 
that, in most cases, the number of matches obtained from using the first strategy is more important 
than from the centroid-based method. Therefore, the first strategy can still be used for objects or 
scenes where the positioning of regions is not precise by possibly expanding the neighborhood. Once 
the pair of unary hypothesis sets is formed, unary hypotheses are merged to generate binary and ternary 
hypotheses. The output of the hypothesis generation process is, therefore, two sets of regions which are 
candidates for matching. 

7 Learning Algorithm and Archi tecture 

In this approach, a learning architecture adapted from Fuzzy ART algorithm [2] was chosen to perform 
matching because it is self-organizing, robust to noise, and massively parallel, which makes it useful for 
on-line pattern recognition applications. One of the most important properties of the architecture used 
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is that the majority of processing involves simple compare and add operations, resulting in an efficient 
learning algorithm. 

7 .1  F u z z y  A R T  R e p r e s e n t a t i o n  a n d  N o t a t i o n  

In developing an algorithm to perform the above computation, we have used fuzzy set theory [20] to 
represent classes as well as perform computations [2]. For concreteness, we will explain the notation for 
the 2-dimensional space; it generalizes to other spaces in a straight forward manner. 

Class: A class is represented by specifying two diagonally opposite vertices of its rectangle. This 
is done by a vector consisting of the coordinates of one vertex followed by the complement (with 
respect to 1) of the coordinates of the diagonally opposite vertex. Thus, for example, the output 
class represented by the rectangle defined by vertices (zl ,  y~) and (z2, Yz) is represented by the vector 
(zl,  y~, 1 - xi, I - Yt). For a (class consisting of) a single point (vertex) (zt,  Yl), the representation is 
the 4-tuple (zl ,yl ,  1 - zt ,  1 - Yl), denoted by its weight vector W.  

Norm:  The norm IV[ of a vector (class) is the sum of the city block distances of the class from the 
points (0,0) and (1, 1). 

Dis tance :  The distance between a sample point and a class rectangle is denoted by the city block 
distance to the nearest point in the class. 

A N D  Opera t ion :  The fuzzy AND (or A) between two classes is the vector whose elements are 
obtained by taking pairwise MIN of the corresponding elements of the operand vectors. AND of two 
classes (points) denotes the result of adding one to the other, possibly requiring expansion. 

Cho ice  [ 'unct ion:  The choice function is used to determine the class defined by its weight W that 
. . . II^WI is closest to a given point. Given a new point I and a class W ,  the choice function is aennea as t - ~  -~, 

which assumes highest value for that class which is at shortest distance from I. If the choice function 
is one for a given class, then the class is a fuzzy  subset choice for input I. This means that the input I 
is completely contained within the class W .  If more than one category is a fuzzy subset choice, then a 
small but positive parameter c~ is added to the denominator to break the tie such that the class that 
maximizes IW] among the fuzzy subset choices is chosen. 

Vig i lance  funct ion:  The vigilance function is used to enforce the restriction on class size. For 
example, given a sample I and a class W,  W is allowed to (expand and) include I if the value of the 

II^WI . vigilance function, defined as I~-~T --~, ts no smaller than a certain a priori (user specified) threshold p 

called the vigilance parameter. 

7 .2  T h e  M o d i f i e d  F u z z y  A R T  A l g o r i t h m  

The modified Fuzzy ART algorithm consists of two layers as shown in Figure 2. The F1 layer is called 
the inpul layer while the F2 layer is called the proiotype layer. The F1 layer receives each region 
m belonging to the sample image hypothesis set as an input vector Sin. This vector is defined as: 
S m  = (S,~I,S,~=, .. +,S,~M) where the parameters S,,i (for i = 1 , . . .M) ,  in general, represent the 
characteristic features of each region such as area, centroid, color, etc+ 

. . . . . . . .  + e e e  ...e 
~a glv~ ~ e  l ~ fr./M 

t 
S ~  

F~ 

Figure 2: The mod/fied fuzzy ART network. 
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The learning algorithm is outlined now. First, initialize the components of the weight Wn corre- 
sponding to each region n of the prototype hypothesis set to the M-dimensional feature value vector 
P,~ = (P,~t, P n ~ , ' " ,  PriM). Select a region rn from the sample image hypothesis set as input. Then, 
present the feature vector $,n = (S lm,  S~m, " • ", S.~t,n) to [1. This input and its complement are stored 
as a single vector I in Ft. Compute the class n E P,, that  is closest to the input I using the choice func- 

tion T~ as T, = ~ Form the hypothesis that the selected class n is the appropriate classification jw~l 

given input. Then, test the hypothesis using the vigilance criterion as p, = ~ >_ p for the where 

p is the vigilance parameter set by the user. 
If class n satisfies the vigilance criterion, then the input I is added to the list Lmn- If there are more 

regions in the sample image hypothesis set, then repeat the above steps for these additional regions. 
When all the regions are processed, determine the maximum value in the list Lmn for each region n of 
the prototype hypothesis set. For each such region, update the weights Wn using the features of the 
matched region m as W~ = 81I A Wn[ + (1 - ~ ) W ,  where ~ controls the rate at which the features 
of the matched input region m are allowed to refine the weight Wn. Typically, fl < 0.2 during training 
so that only the regions that have extremely good matches are allowed to refine the weights W~. The 
bound on the size of the hyperrectangle, [Dnl, for each class n can be defined as ]Dn[ < M(1 - p )  where 
M is the number of features in the input. Thus, if the vigilance parameter p is small, the size of the 
hyperrectangles are bigger and vice versa. The training process continues until the input feature space 
is covered with hyperrectangles. The frequency of winning for all winning nodes in F2 is incremented 
by 1. If there are more training samples, then repeat the above steps for the new samples. It should be 
noted that there is a separate Fuzzy ART network for each scale. At the end of the learning process, 
the regions with the highest frequency of winning are the regions that correspond to the 2D model for 
the given training samples. 

8 Experiments and Results 

The proposed algorithm was tested for 20 different initializations of face images (from the O.R.L. face 
database) with all initializations being frontal views in a neutral position. For each initialization, 400 
training images of 92x112 each were used to train the network. These images were presented in different 
orders. The segmentation transform used four different scales. The scales are ranked from level 0 to 
3 with the coarsest scale corresponding to level 0 and the finest scale to level 3. The feature vector 
for matching consisted of area and centreid information for all scales. The canonical representations 
have been found to be most stable with the following range of fuzzy ART parameters, from scale 0 to 3 
where a = (0.85, 0.9, 0.9, 0.9) and/3 = (0.1, 0.2, 0.1,0.2). This range of parameters allows the algorithm 
to converge slowly to canonical features. 

8 .1  R e s u l t s  f o r  D i f f e r e n t  I n i t i a l i z a t i o n s  

To illustrate the effect of different initializations, consider the original gray level images of two different 
faces as shown in Figure 3(e) and Figure 4(e). These images are segmented into quite different initial 
regions by the multiseale transform as shown in columns (a) and (d) of these figures. The coarse scale 
segmentation on top of the column provides a good estimate of ' the quality of initialization: while 
the image in Figure 4 has many features, such as the eyes or mouth in the right place, it is more 
difficult to find these features for the image in Figure 3. Despite these different initializations, the 
algorithm extracts similar features after being trained on 400 different face images. In column (b) 
and (f) the most frequently found regions are shown. These regions are approximated with ellipses and 
superimposed on a face image not used in the learning process called the neutral/ace. The area, eentroid 
and eccentricity for each region is extracted from the weight vector as the mean of the weight vector 
and of its complement corresponding to each region. In these figures, the 8 best regions of the coarsest 
scale level (level 1), 10 best regions for level 2 and 3 and 15 best regions for the two last pictures (scale 
level 4 without and with eccentricity information) are shown. This selection was based on whether the 
regions were matched at least for half of the training examples presented. Furthermore, it has been 
observed that the extracted features are similar among all initializations for this choice of number of 
regions at each scale. Columns (c) and (g) show the number of times each pixel of the image has been 
matched by the 25 most frequently found regions. Here, the darker the pixet, the more frequently it 
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has been matched. Because the silhouette of the face is often found at the coarsest level as can be seen 
in columns (c), the images for the coarsest level are much darker i.e., more regions are matched. The 
most frequently matched regions show that the algorithm concentrates on the area with the obvious 
features: eyes, mouth. 

i ~ @  . 

(a)  (b )  (c)  

Figure 3: For scale levels 0 (row 1) to 2 (row 3): (a) OriginaJ segmentation tree. (b) Empse 
approximation. (c) Pixel match frequencies. (d) Original segmented image for scale level 3. 
(e) Original gray-scale image. (f) Ellipse approximation for scale level 3 without using shape 
for matching (top), using shape for matching (bot tom).  (g) Pixel match frequencies without 
shape (top), with shape (bottom).  

8 .2  R e s u l t s  a f t e r  P o s t p r o c e s s i n g  

As mentioned in Section 3, the results obtained from different initializations are used to select the most 
commonly found regions across all these initializations. Results of this postprocessing is illustrated 
using Figure 5. The regions represents the final canonical representation at each scale level. This 
representation was computed using the most frequently occurring regions (ranging from 8 for scale 0 
to 15 for scale 3) across nit initializations. The Figures (b) are the elliptic approximations of the most 
frequently matched regions. Match frequencies from the postprocessing show a clear difference between 
the matched and unmatched regions. This enables us to extract the most frequent regions. For each 
of these stable regions, the pixels that have been most frequently matched are represented in columns 
(c). The darker pixels correspond to the more frequently matched regions. At finer scale levels, there 
exists a clear threshold to separate the most frequent regions from others. The effect of thresholdiug (60 
% percent of the maximum frequency) the stable regions in columns (c) is shown in columns (d). By 
superimposing the thresholded regions in columns (d) into a single image, we obtain the result shown 
in columns (a). Despite the variabilities in the database and with a limited range of possible matching 
regions (only up to ternary hypothesis sets), these results show that the algorithm has been able to 
efficiently extract the main features of faces. 
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(a)  

0 m 

( b )  (¢) 

Figure 4: For scale levels 0 (row I) to 2 (row 3): (a) Original segmentation tree. (b) Ellipse 
approxi_matiom(c) Pixel match frequencies. (d) Original segmented image for scale level 3. (e) 
Original gray-scale image. (f) Ellipse approximation for scale level 3 without using shape for 
matching (top), using shape for matching (bottom). (g) Pixel match frequencies without shape 
(top), with shape (bottom). 
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