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Abstract—In camera calibration, the radial alignment con-
straint (RAC) has been proposed as a technique to obtain closed
form solution to calibration parameters when the image distortion
is purely radial about an axis normal to the sensor plane. But, in
real images this normality assumption might be violated due to
manufacturing limitations or intentional sensor tilt. A misaligned
optic axis results in traditional formulation of RAC not holding
for real images leading to calibration errors. In this paper, we
propose a generalized radial alignment constraint (gRAC), which
relaxes the optic axis-sensor normality constraint by explicitly
modeling their configuration via rotation parameters which form
a part of camera calibration parameter set. We propose a new
analytical solution to solve the gRAC for a subset of calibration
parameters. We discuss the resulting ambiguities in the analytical
approach and propose methods to overcome them. The analytical
solution is then used to compute the intersection of optic axis and
the sensor about which overall distortion is indeed radial. Finally,
the analytical estimates from gRAC are used to initialize the non-
linear refinement of calibration parameters. Using simulated and
real data, we show the correctness of the proposed gRAC and
the analytical solution in achieving accurate camera calibration.

I. INTRODUCTION

Camera calibration estimates the physical (intrinsic) prop-
erties of the camera and its pose (extrinsic) with respect to a
known world coordinate system using known locations of 3D
scene points and their measured image coordinates. Typically
camera calibration is a two step procedure. In the first step,
either all or a subset of unknown calibration parameters are
linearly estimated by using a linear constraint, e.g. DLT [1],
collinearity of a scene point and its image [2] under the
assumption of no image distortion or image noise. In the
second step, image distortion and noise are taken into account
and calibration parameters are non-linearly optimized [3]. This
step is typically initialized by the calibration estimates obtained
in the first step.

Assuming radial distortion as the major source of image
distortion, Tsai [4] observed that the location vectors of a
scene point and its distorted image point should be radially
aligned about the optic axis of the lens and thus their cross
product must be zero. This was termed as the Radial Alignment
Constraint (RAC) and could be analytically solved for a subset
of calibration parameters. The major assumption of RAC was
that the optic axis is normal to the sensor at the Center of radial
Distortion (CoD) and was known a priori. Although, later it
was shown that the RAC could itself be used to compute the
CoD [5].

But in a generic imaging setting, the optic axis may not be
normal to the image sensor due to manufacturing limitations

in aligning lens elements or assembling lens-sensor planes ex-
actly parallel to each other. Although, sometimes an intentional
tilting of sensor can prove useful in obtaining slanted depth-of-
field effects like tilt-shift imaging [6], omnifocus imaging [7]
and depth from focus estimation [8]. Under such a setting
where sensor is non-frontal to the lens, the RAC can be
interpreted in the following two ways, both of which we show
to be inaccurate: (1) RAC can be modeled about an “effective”
optic axis which is normal to the sensor at the location denoted
as the principal point. But the total distortion about this point is
a combination of radial and decentering [2] distortion and thus
the world and distorted image point are not radially aligned. (2)
If RAC is formulated about the physical optic axis, then even
though the world and image point lie on the same 3D plane,
they are not parallel to each other and thus are not radially
aligned.

Thus, in this paper we propose the generalized Radial
Alignment Constraint (gRAC) to handle the more generic
case of sensor non-frontalness. We first model the lens-sensor
configuration by an explicit rotation matrix about the optic
axis [9] and include it as a part of intrinsic calibration
parameter set. Second, the rotation parameters are used to
project the observed image points on the non-frontal sensor
on to a hypothesized frontal sensor assuming that the pixel
size (in metric) are known a-priori. The gRAC constraint is
then derived for these frontal image points (Sec. IV) about
the optic axis and the CoD. As this constraint is different
than RAC [4], it requires a new analytical method to solve
it for a subset of calibration parameters (Sec. V). Third,
the analytical technique is used to computationally estimate
the CoD (Sec. V-C). Sec. III describes the RAC from [4].
Sec. II describes the coordinate system and the generic lens-
sensor configuration for which gRAC will be derived. Sec. VI
describes the results obtained on synthetic and real data.

II. CALIBRATION COORDINATE SYSTEMS

In this section, we describe the Coordinate Systems (CS)
used in this paper for the task of camera calibration (Fig. 1).
(1) World Coordinate System, where the location of world
points in metric units is known, e.g. corners of a checkerboard
(CB) of known dimensions.

(2) Image Coordinate System, where the observed image
points are measured in pixels.

(3) Lens Coordinate System, whose origin lies at the lens
center (center of projection) and whose z axis coincides with
the optic axis. It has metric units.

(4) Sensor Coordinate System, whose origin is at the CoD,



the z axis coincides with the optic axis and the xy plane lies
on the sensor surface. It has metric units.
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Fig. 1. Coordinate systems for camera calibration.

III. TsSAI’S RADIAL ALIGNMENT CONSTRAINT

In this section, we describe the radial alignment constraint
as proposed in [4]. Consider Fig. 2(a) which describes the co-
ordinate system used in [4]. The lens and the sensor coordinate
system are assumed to be parallel to each other with a common
z-axis (z; or zg) as the “effective” optic axis and Oy as the
principal point. The image of world point P, = (24, Y, 2uw)
on the sensor is formed at P; = (x4, y4). Assuming only radial
lens distortion about Oy, this point would ideally be imaged
at P, = (x4, y,) such that the triplet O, Py, P, are collinear.
Let P, be denoted as P, = (x,y;, 2;) in the lens coordinate
system, Then the normal from P, onto the “effective” optic
axis will be incident at P,, = (0,0, z;).
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Fig. 2. (a) Imaging model for RAC [4]. (b) An Illustration of RAC not
holding true in real images, when the sensor maybe non-frontal with respect
to the lens plane.

Then, the RAC says that the vector P,.F; is radially
aligned to the vector O Py or PP ||Os Py, as the two vectors
are normal to the same line, namely “effective” optic axis and
also lie on the same 3D plane formed by the points O, P,,, O;.
Thus, we get the RAC constraint P,, P, x OsP; = 0, which
is solved to obtain a subset of calibration parameters. Fur-
thermore, assuming that radial distortion was symmetric about
O, the RAC constraint was also used to estimate the principal
point Oy [5].

But, while the imaging model in [4] assumed that radial
distortion was symmetric about “effective” optic axis, in reality
this is inaccurate for real images. Here, radial distortion is
symmetric about the physical optic axis which may not coin-
cide with the former due to unintentional lens misalignment or
intentional sensor tilt (See Sec. I). Thus, a more generic image
formation model is required (See Fig. 2(b)) [9], [10] where
the non-alignment of lens and sensor is explicitly modeled
via a rotation matrix and the distorted (F;) and undistorted
(P,) image points are radially aligned about the CoD (O,).
It can be seen that the world point P; lies on the 3D plane
formed by triplets {O,, P,, O;} (shown in blue in Fig. 2(b)).
In comparison, the 3D plane formed by {Os, Py, O;} (shown
in red in Fig. 2(b)) is different from the blue plane as O, is not

a part of this plane. For RAC to hold, the two vectors: m
and P, P,,, should be radially aligned which constrains them
to lie on the same plane. Since O P; belongs to red plane and
P, belongs to the blue plane which does not coincide with red
plane, P, is out of plane with respect to red plane. Thus the
normal P P,, from P; normally incident onto the “effective”
optic axis (edge of red plane) can never be coplanar with O, Py,
or traditional RAC [4] cannot hold. Thus, next we propose the
gRAC for a generic non-frontal sensor model.

IV. GENERALIZED RADIAL ALIGNMENT CONSTRAINT
(GRAC)
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Fig. 3. Tllustration of generalized radial alignment constraint (gRAC).

In this section, we derive the gRAC (See Fig. 3). Here
the lens and sensor planes are assumed to be not parallel to
each other but related via a rotation transformation R [9], [10],
about the optic axis. Under these settings, if a world point P,
(P, in lens coordinate system) is imaged at P,y on the sensor
(in sensor coordinate system) , then as per RAC, P,.F; is
not parallel to O, P, . But, if the relative rotation R between
lens and sensor coordinate system is known, then the projected
frontal image point Py of P, ¢ on a hypothesized frontal sensor
gets radially aligned with the world point F;. In other words,
we will have that O, P¢|| P,, F;. In the following we will derive
this constraint as a function of R and then solve it to get
a closed from solution to a subset of calibration parameters
including R.



We define R as a rotation matrix which aligns the lens
coordinate system with the sensor coordinate system and
is parameterized by two Euler angles (p, o) corresponding
to clockwise rotations about its x and y axis respectively.
The rotation of lens coordinate system about the z axis is
considered redundant as the lens is symmetric about its z
axis. Thus, the final Euler angle representation of rotation is
R(p, 0,0) where:

cos(o)  sin(p)sin(o) cos(p)sin(o)
R(p,0,0) = 0 cos(p) —sin(p)
—sin(o) sin(p)cos(o) cos(p) cos(o)
(1)

Let 7;; denoted the i*" row and j'" column entry of R. Next,

we derive the gRAC by analyzing the geometric relationship
between a given known 3D scene point P, and its correspond-
ing observed distorted image point P, ¢ as a function of various
calibration parameters.

Consider the imaging configuration in Fig. 3, where a
known world point P, = (Zu,Yw, 2w) in world coordinate
system gets imaged at the pixel location P, = (I,J) in
image coordinate system. Let the world and the lens coordinate
system be related by a rotation S = (s;; : 1 < (i,7) < 3)
parameterized by Euler angles (6, ¢,) and a 3 x 1 translation
T = (tz,ty,t,). Then, P, can be expressed as P, = (x1, Y, 21)
in lens coordinate system, where P, = SP,, + T. Thus,

2 $11Tw + S12Yw + 132w + T
Y | = | S21%w + S22Yw + S232w + 1y | . 2)
2z 831Tw + $32Yw + 5332y + 12

Let the imaged point P, be expressed in sensor coordinate
system as P,y = (xzdy s, yd,y), where

ydnf = (J + JO)sy 3)

and (lo, Jo) is the location of the CoD in pixels and (s, s;)
are the pixel sizes ( in metric units e.g. mm) along the = and
y axis of sensor coordinate system.

xdny = (I + 1o)ss,

Now, we compute the projection of P,y on a hypothesized
frontal sensor, so that a radial alignment constraint can be
deduced between the frontal projected sensor point and the
world point P, expressed in lens coordinate system. Let the
projected point on the frontal sensor be Py = (zds,ydy).
Given the sensor tilt parameterized by rotation R, the distance
A between the lens and frontal sensor coordinate system along
the optic axis and the collinearity of center of projection
O1,P,y and Py, we get the coordinates of Py as:

d —(riizdns+raiydng) A
{ rayg } — T13%dy f +123Ydn f— X\ )
ydy

—(rizzdns+raoydng)A
T13Tdp £ +123Ydn g —A

Next, we project world point P; on the optic axis to obtain
P,. = (0,0, z). Then, we have that location vectors O, Py

and P,. P, are coplanar lying on a plane formed by points
(Op, Py, P;) and are also parallel and radially aligned to each

other. From the radially aligned constraint, we have O, Py X
P,. ﬁ‘l = 0, which given O, P = :L'df% + ydfj' and P,, P =
z17+ ;7 (both in lens sensor coordinate system) simplifies to

the generalized radial alignment constraint (gRAC):

xdy -y = ydy - 1. 5)
If it is assumed that the subset

U, = (107 JOavasy) (6)

of calibration parameters is known, then P, = (zdy¢, ydny)
can be computed using Eq. 3. Given known P,f, Eq. 4 can
be used to obtain hypothesized frontal points Py = (xdy, ydy)
as a function of unknown calibration parameters (R, \). Also,
using Eq. 2, P, = (z,y;) can be obtained in terms of unknown
extrinsic calibration parameters (0, ¢, v, t;,t,,t,) and known
world points Py, = (24, Yw, 2w ). Thus, Eq. 5 can be simplified
to obtain the linear equation Aq = b, relating i*” world-image
point observation as

q1
[2dnfrw Tdnyw Tdnpzw Tdng YdnsTw Ydnfyw Ydngzw | { : } = ydpy . (7)
<L

A b

q7

——
Here, (A,b) are known, while q = {¢1,---,¢7} encodes
seven calibration parameters denoted here as Us:
U2:(p70701¢awatzvty)‘ (8)
N
R s
via the following non-linear relationships:
11821 — 712511 711822 — T'12512
n=——"""0 @=—T—""400
rooty Tooty
T11523 — T'12513 Tty — T2t
@3=—""7"7"— (D g1 = ———— (12)
T22t:r T’Qgtx
—S811 —S12 —813
45 = (I3) g = (14) g7 = (15)

As (A, b) are known, Eq. 7 can be solved in least squares
sense given four or more observations of scene points to obtain
an estimate q. This estimate can be used to analytically solve
the set of non-linear relationships in Eq. (9-15) to obtain U, as
we shown in Sec. V. It can be noted that in Tsai’s RAC [4], R
was an identity matrix and their solution was derived based on
this assumption. In the gRAC case, the derivations are com-
paratively more involved due to the inclusion of R parameter.
For calibrating the remaining calibration parameters, namely

Us = (A t2). (16)

we adopt the technique of [4] as shown in Sec. V. Thus, from
Eq. 6,8,16, the final set of camera calibration parameters to be
calibrated is U = {U;, Uz, Us}.

V. ANALYTICAL SOLUTION TO GRAC

In this section, we analytically solve Eq. (9-15) for the
seven calibration parameters U, (Eq. 8) assuming that U
(Eq. 6) is known. Later, we will show a technique similar
to [5] and estimate U; given optimal estimates of Us applied
to the gRAC based linear Eq. 7. We use |z| to denote that
magnitude of x without knowing the sign.

A. Stage 1: Determining sign ambiguous estimates

1) Solving for t,: Squaring and adding Eq. (13-15) and
from orthonormality of first row of extrinsic rotation matrix S



(Eq. 2), t, can be computed with a sign ambiguity as
1
te] = ————= (17)
(45 + 4§ + a7)

2) Solving for s11, s12, s13: Given ¢}, using Eq. (13,14,15),
we get we get
813 = —qrts (13)

s11 = —@Q5lz  S12 = —Qeta

3) Solving for so1,s92,523: Adding the product of
Eq. (9,13), Eq. (10,14), Eq. (11,15) we get,
T12

P t2 (q1g5 + 9296 + 43q7) (19)

M

Also, adding the squares of Eq. (9,10,11) and using the
orthonormality of first and second row of S, we obtain

P2 42
MR 2 i+ ad) (20)
I
2
Tl arp2 244 :
2, = Nt; — M~t; (Using Eq. 19) 21

As 711 = cos(o) > 0 and 193 = cosp > 0 from Eq. 1, the

ratio 7= from Eq. 21 can be determined uniquely as

22
T /NE2 - M (22)
722 N ————
P

Applying Eq. (19,22) and Eq. (13-15) to Eq. (9-11) respec-
tively we can solve for so1, S22, s23 With sign ambiguity as

(qn — t2Mgs)t,

S91= "5 (23)
— t2Mqe)t,

sy = LMo )le (24)
—t2Mgq)t

oy = B8 - q7)ts 25)

4) Solving for ss21, Soo, 523 uniquely: Assuming right hand
coordinate system, the cross product of the first (Eq. 18) and
second (Eq. (23-25)) row of S can be used to determine the
third row of S: (s21, S22, S23). These estimates are unique as
the it involves terms of ¢2 which is greater than 0 and all other
terms involving ¢; are uniquely known.

5) Solving for t,,: Applying Eq. (19,22) to Eq. 12, we get

(qs + t2M)t,

D (26)

ty =

6) Solving for {r11,--- ,rs3}: The left hand side of Eq. 19
and Eq. 22 can be expressed in terms of Euler angle (p, o) via
Eq. 1, which expresses sensor rotation matrix R in terms of
its component Euler angles as follows

12 sin psino

=—""— =M, and, 27)
722 Ccos p ~
L
m_2_p (28)

722 COSs p

These two equations can be solved for (p,o) with a sign
ambiguity to obtain

24P +1— /T2t PPy 1) _4p?
p_:I:cosl< +P2 41— /(L7 + P?+1)

2P?
(29)

o= +sin ! ( 1—p? cos2(p)) (30)

Although the individual signs of (p, o) are not known uniquely,
the relative sign of (p,o) with respect to each other can be
determined from the sign of L in Eq. 27 as the denominator
in Eq. 27 is always positive (cosp > 0). The ambiguity
here arises from the fact that gRAC is designed for a frontal
coordinate system which is obtained by projecting the non-
frontal sensor coordinates P, onto a frontal sensor to give Py.
Since, this projection involves taking the cosine of tilt angles
encoded in R, it is many-to-one leading to sign ambiguity in
analytical estimate of (p, o).

B. Stage 2: Determining the sign of estimates

In Sec. V-A, we determined partial set of extrinsic and
intrinsic parameters denoted here as U, = {5, t;,%,} and in-
trinsic parameters denoted here as U; = { R} respectively with
sign ambiguity. While the sign ambiguity in determining U,
resulted from not knowing ¢, uniquely in Eq. 17, the ambiguity
in U; was inherent to the gRAC constraint due to many-to-one
projection map from a non-frontal sensor configuration to a
frontal sensor configuration. Next, we present a technique to
retrieve the sign of ¢, uniquely (similar but not same as in
Tsai [4]), thus determining U, uniquely. This is followed by a
method to uniquely determine U;.

We also note that given all sign ambiguities in {U,, U},
there are four possible solution sets for {U.,U;}, corre-
sponding to the combinations: sign(t,) = =+ and either
Sign(pva) = (+a +)/(_’ _) or sign(p, U) = (+7 _)/(_7 +>
This is so as the relative sign of (p, o) is uniquely determined
from sign(L) (Eq. 27). Lets assume the two rotation matrices
obtained from sign ambiguity of (p,o) are R; and Rs.

1) Determining \,t, and the sign of t, by ignoring lens
distortion: Let us redefine

U = 113Cdn s + ro3ydny (31
v=—(rizd,f +ra1yd,y) (32)

Then from Eq. 4, we have xd; = u‘f‘)\ Also, if we ignore lens

distortion, then world point P} and frontal image point Py can
be related as

wdp = —A2L (33)
2

Replacing for zdy we get

VA €

(34)

Z1

where w = s312 + S32Yw + S332, from Eq. 2. This equation
can be simplified to set up the following linear equation

[ 01|,

; } = —ux; — VW 35)



where, (u,v) are functions of R from Eq. 31-32 and (z;, w)
are functions of ¢, from Eq. 2, Eq. 18 and Eq. 23-25.

Now, given multiple world-image point observations,
Eq. 35 can be solved for (), t,) using each of the four possible
values of {U.,U;}. Graphically, the four possible solutions
to {U.,U;, \,t.} can be visualized in Fig. 4, where on the
left we have the ground truth imaging and on the right are
the four imaging hypothesis labeled as A, B, C and D. As
can be seen all four solutions satisfy the perspective (we had
assumed no distortion earlier) imaging of P, to P; but each
correspond to different calibration parameters. Based on this
analysis, solution C and D can be rejected by checking the sign
of \ obtained from Eq. 35 as A cannot be negative. The correct
solution among A and B can be obtained by analyzing model
fitting error for radial distortion coefficients as described next.
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Fig. 4. (Left) Ground truth image formation. (Right) (a) Solution

A: (tz,R1,A1,tz1). (b) Solution B: (tz, Ra,A2,tz2). (¢) Solution C:
(—tz, R2, —A1,tz1). (d) Solution D: (—tz, R1, —A2,t.3). Solution C and
D can be rejected based on A being negative. The better solution between A
and B is selected by analyzing radial distortion model fitting error.

2) Determining R: From Fig. 4(Right,a-b), we observe that
among the two solutions A and B, only solution A coincides
with a rotation which will result in a frontal sensor parallel to
the lens plane. This implies that the projected frontal points
in A will fit the symmetric radial distortion model better than
in B. For each set of calibration parameters in A and B, we
first compute the radial distortion parameters of (k1,k2) by
solving the linear equation Py — Q¢ (1 + k172 + kor?) = 0 for
a set of world-image point observations. Here Q; = (z,yy)
is ideally projected frontal image sensor points, 72 = xfc + yj%
and Py = (xzdy, yds). The radial distortion model fitting error
FE,.,4 can then be obtained as:

Erpg = Pf —Qf(l +k’1’l“2 +I€2T4)

The solution with least F, .4 is selected, e.g. in Fig. 4, solution
A will get selected. Thus, R(p,0),t., A, t. are estimated
uniquely. Furthermore ¢, can then be used to estimate S
uniquely from Eq. 18 and Eq. (23-25). Also, applying ¢,

(36)

to Eq. 26, t, can be estimated uniquely. Thus, we uniquely
determine the calibration parameters {U. = {S,t,,t,},U; =
R\ t,} = {Us2,Us} (from Eq. 8,16). Next, we estimating the
remaining calibration parameters of CoD (I, Jp) in Uj.

C. Iterative determination of CoD

The RAC [4] as well as the proposed gRAC are formu-
lated in sensor coordinate system (metric), while the image
measurements are in the image coordinate system (pixels).
This requires conversion from pixels to metric domain as per
Eq. 3, which is a function of U7 = {Io, Jy, sz, Sy }. Since,
the gRAC has rank seven which is same as the size of Us,
there are no additional analytical constraints to determine Uy
completely. Thus, we first assume (s, s,) are known. s, is
typically known [2], [4] as it defines the reference scale over
which A, s, are defined and s, can be obtained reliably from
the sensor data-sheet.

If the principal point were same as the CoD (I, Jy), [5]
showed that the residual error in RAC (Sec. III) when applied
to measured image points on frontal sensor is quadratic with
respect to error in the assumed location (Iy, Jy). Thus, [5]
proposed to compute (Iy, Jp) by nonlinear minimization of
residual RAC [4] error. But, in our imaging model (Sec. IV),
the measured image points are on a non-frontal sensor plane.
They need to be converted to frontal sensor coordinates re-
quiring knowledge of R (Eq. 4). While R can be computed
from the analytical technique of Sec. V, this technique in turn
requires correct estimates of (Ip, Jy). To solve this “chicken
and egg problem”, we propose an iterative solution similar
to [11] as follows:

1)  Uniformly sample an image region for (I, Jy).

2)  For each hypothesized (I, Jo) obtain gRAC (Eq. 7).

3)  Solve gRAC for R (Sec. V) and obtain frontal coor-
dinates (Eq. 4).

4)  Nonlinearly minimize residual RAC [4] obtained
from frontal coordinates to get optimal (I, J3).

5) Compute the difference error E = abs(ly — I§) +
abs(Jy — J3), giving an estimate of how good the
initial assumed (Iy, Jo) was. Select the point with
minimum error F. Stop if F is less then a threshold,
otherwise goto Step 6.

6) Refine the sampling around the selected point in Step
5 and repeat Steps 2,3,4,5.

Finally, the initial estimates obtained from gRAC are used
as initialization for non-linear refinement of parameters to
obtain U* . This process incorporates radial lens distortion
and minimizes the re-projection error over all observed scene
and image points [2], [10].

VI. EXPERIMENTS

Wee present and compare the results of proposed analytical
solution to gRAC on synthetic distorted and real data with
traditional RAC [4].

A. Synthetic Data

A camera was simulated with intrinsic parameters A = 8.4
mm, p = 0,0 = 4 degrees, s, = 0.01,sy = 0.01 mm, [ =
240, Jy = 320 pixels, k; = 0.0021966, ks = —1.3001e — 05



and extrinsic parameters 0 = 0.10,¢ = 43.31,¢ = 0.02 de-
grees, t; = —65.09,t, = —41.04,t, = 102.2 mm. Synthetic
world points P, are generated and projected (Sec. IV) using
simulated camera parameters to obtain image points. Then,
Gaussian noise with standard deviation {0.05,0.1,---,1.0}
pixels is added to the synthesized image points to simulate
measurement error. The gRAC constraint (Eq. 7) is applied and
analytical calibration estimates are computed. This procedure
is repeated 100 times and the mean of all the trials is taken
and compared with the ground truth data. Fig. 5(a-d) shows the
relative error(%) in estimation of R(p, o), S(6, ¢, 1), tz, ty, 1,
and ) respectively. The error bars in Fig. 5 indicates the std.
dev. in the estimation of respective calibration parameters. The
relative error in parameter estimates increases with increasing
noise. For lower noise levels, this error as well as the std. dev.
is low for all calibration parameters. As, the measurement error
in our real data is close to 0.11 pixels, the simulation gives
confidence that for real data, gRAC based analytical solution
should be robust to image noise.

Intrinsic Sensor Rotation: R(p,,0) Extrinsic Rotation: $(0.6,)

Relative error (%)
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Noise (pixels)

Fig. 5. Relative error vs noise(in pixels) using gRAC on synthetic data.

B. Real Data

The camera used for calibration is a custom made AVT
Marlin F-033C camera with sensor tilted ~ 3-4 degrees and
acquiring 640 x 480 resolution images. The corners of a
checkerboard (CB) calibration pattern with 20 x 20 squares
of length 5 mm and positional accuracy of .001 mm are used
as known 3D scene points. A 2.5D image data is captured
by moving the CB along its surface normal and imaging
each discrete CB position. A set of 11 such 2.5D datasets
are captured by placing the camera at different locations in-
front of the CB. The corners in the acquired calibration images
are computed using [12]. We compute calibration parameters
by using RAC and gRAC and then refine them via non-
linear minimization. The results obtained are shown in Tab. L.
Comparing the re-projection errors in the last row of Tab. I,
we observe that calibration based on the analytical estimates
obtained from gRAC leads to smaller re-projection error as
compared to traditional RAC. The image center (Io, Jp) from
analytical gRAC has been obtained using the technique pro-
posed in Sec. V-C. It can be seen that it is quite different
from the one obtained by RAC [5] indicating that the optic
axis is indeed not orthogonal to the lens and thus the sensor
is tilted. The analytical tilt estimate from gRAC is 3.81°
and after refinement it is 4.23°. The small difference arises
since analytical solution ignores noise and is thus sensitive to
measurement errors.

TABLE 1. CALIBRATION ESTIMATES USING THE TWO TECHNIQUES.

Method RAC [4] gRAC(proposed) |
analytical non-linear [analyticallnon-linear

Ay = % 829.57 | 823.64 || 855.25 | 854.56

Ay = %y 833.63 | 827.67 || 855.25 | 855.19

Principal Ip  1225.845| 226.15 || 239.30 | 238.91

Point Jo |331.632| 330.53 || 330.59 | 330.83
Radial k1 — —0.0021 — —0.0022
ko —  [2.33e — 05 —  13.37e — 05

) - - 049 | 0.13

o - - 3.81 4.23
IRe-projection Error — 0.082064 — 0.057119

VII. CONCLUSIONS

In this paper, we have proposed a generalized radial
alignment constraint (gRAC) which takes possible misalign-
ment between lens and sensor planes into account. We have
developed an analytical solution to solve the gRAC constraint
for a subset of calibration parameters. Then, we have shown
that the center of radial distortion can also be computed
based on the analytical solution using an iterative approach.
Finally, we have shown that non-linear calibration with gRAC
initialization leads to lower re-projection error than RAC [4]
based initialization.
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