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Abstract—Joint image filters leverage the guidance image as a prior and transfer the structural details from the guidance image to the
target image for suppressing noise or enhancing spatial resolution. Existing methods either rely on various explicit filter constructions or
hand-designed objective functions, thereby making it difficult to understand, improve, and accelerate these filters in a coherent
framework. In this paper, we propose a learning-based approach for constructing joint filters based on Convolutional Neural Networks.
In contrast to existing methods that consider only the guidance image, the proposed algorithm can selectively transfer salient structures
that are consistent with both guidance and target images. We show that the model trained on a certain type of data, e.g., RGB and
depth images, generalizes well to other modalities, e.g., flash/non-Flash and RGB/NIR images. We validate the effectiveness of the
proposed joint filter through extensive experimental evaluations with state-of-the-art methods.

Index Terms—Joint filtering, deep convolutional neural networks, depth upsampling

1 INTRODUCTION

MAGE filtering with guidance signals, known as joint or

guided filtering, has been successfully applied to numerous
computer vision and computer graphics tasks, such as
depth map enhancement [1], [2], [3], joint upsampling [1],
[4], cross-modality noise reduction [5], [6], [7], and struc-
ture-texture separation [8], [9]. The wide applicability of
joint filters can be attributed to the adaptability in handling
visual signals in various image domains and modalities, as
shown in Fig. 1. For a target image, the guidance image can
either be the target image itself [6], [10], high-resolution
RGB images [2], [3], [6], images from different sensing
modalities [5], [11], [12], or filter outputs from previous iter-
ations [9]. The basic idea behind joint image filtering is that
we can transfer the important structural details contained in
the guidance image to the target image. The main goal of
joint filtering is to enhance the degraded target image due
to noise or low spatial resolution while avoiding transfer-
ring extraneous structures that do not originally exist in the
target image, e.g., texture-copying artifacts.

Several approaches have been developed to transfer struc-
tures in the guidance image to the target image. One category
of algorithms is to construct joint filters for specific tasks. For
example, the bilateral filtering algorithm [10] constructs spa-
tially-varying filters that reflect local image structures (e.g.,
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smooth regions, edges, textures) in the guidance image. Such
filters can then be applied to the target image for edge-aware
smoothing [10] or joint upsampling [4]. On the other hand,
the guided image filter [6] assumes a locally linear model
over the guidance image for filtering. However, these filters
share one common drawback. That is, the filter construction
considers only the information contained in the guidance
image and remains fixed (i.e., static guidance). When the local
structures in the guidance and target images are not consis-
tent, these methods may transfer incorrect or extraneous con-
tents to the target image.

To address this issue, recent efforts focus on considering
the common structures existing in both the target and guid-
ance images [7], [9], [13]. These frameworks typically build
on iterative methods for minimizing global objective func-
tions. The guidance signals are updated at each iteration
(i.e., dynamic guidance) towards preserving the mutually
consistent structures while suppressing contents that are
not commonly shared in both images. However, these
global optimization based methods often use hand-crafted
objective functions that may not reflect natural image priors
well and typically require a heavy computational load.

In this work, we propose a learning-based joint filter based
on Convolutional Neural Networks (CNNs). We propose a
network architecture that consists of three sub-networks and
a skip connection, as shown in Fig. 2. The first two sub-net-
works CNNt and CNNg extract informative features from
both target and guidance images. These feature responses are
then concatenated as inputs for the network CNNy to selec-
tively transfer common structures. As the target input and
output images are largely similar, we introduce a skip con-
nection, together with the output of CNNy to reconstruct the
filtered output. In other words, we enforce the network to
focus on learning the residuals between the degraded target
and the ground truth images. We train the network using
large quantities of RGB/depth data and learn all the network
parameters simultaneously without stage-wise training.
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Fig. 1. Sample applications of joint image filtering. The target/guidance pair (top) can be various types of cross-modality visual data. With the help of
the guidance image, important structures can be transferred to the degraded target image to help enhance the spatial resolution or suppress noises
(bottom). The guidance image can either be high-resolution RGB images, images from different sensing modalities, or the target image itself.

Our algorithm differs from existing methods in that the
proposed joint image filter is purely data-driven. This
allows the network to handle complicated scenarios that
may be difficult to capture through hand-crafted objective
functions. While the network is trained using the RGB/
depth data, the network learns how to selectively transfer
structures by leveraging the prior from the guidance image,
rather than predicting specific values. As a result, the
learned network generalizes well for handling images in
various domains and modalities.

We make the following contributions in this paper:

e We propose a learning-based framework for con-
structing a generic joint image filter. Our network
takes both target and guidance images into con-
sideration and naturally handles the inconsistent
structure problem.

e Using the learned joint image filter for depth upsam-
pling, we demonstrate the state-of-the-art perfor-
mance on the NYU v2 [14] and SUN RGB-D [15]
dataset and achieve competitive performance on the
Middlebury dataset [16], [17].

e We show that the model trained on a certain type
of data (e.g., RGB/depth) generalizes well to handle
image data in a variety of domains.

A preliminary version of this work was presented earlier
in [18]. In this paper, we significantly extend our work and
summarize the main differences as follows. First, we propose
an improved network architecture for joint image filtering.
Instead of directly predicting filtered pixel values (as in [18]),
we predict a residual image by adding a skip connection from
the input target image to the output (Fig. 2). As the residual
learning alleviates the need for restoring specific target image
contents (which complicates the learning process), we show
significant improvement in transferring accurate details from
the guidance to the target image. Second, in [18], we train the
model only using an RGB/depth dataset and then evaluate its
generalization ability on other domains. In this work, we
show that the model trained using an RGB/flow dataset also
generalizes well on other visual domains. This demonstrates
that our network design is insensitive to the modality of the
training data. Third, we evaluate our approach on various
joint image filter applications, compare against several state-
of-the-art joint image filters (including concurrent work [19],
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Fig. 2. Network architecture for joint image filter. The proposed deep joint image filter model consists of three major components. Each component is
a three-layer network. The sub-networks CNNt and CNN aim to extract informative feature responses from the target and guidance images,
respectively. We then concatenate these features responses together and use them as input for the network CNNy. In addition, we introduce a skip
connection so that the network CNNy learns to predict the residuals between the input target image and the desired ground truth output. We train
the network to selectively transfer main structures while suppressing inconsistent structures using an RGB/depth dataset. While we describe these
sub-networks individually, the parameters of all three sub-networks are updated simultaneously during the training stage.
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[20]), and conduct a detailed ablation study by analyzing the
performance of all methods under different hyper-parameter
settings (e.g., filter number, filter size, network depth).

2 RELATED WORK

Joint Image Filters. Joint image filters can be categorized into
two main classes based on explicit filter construction or
global optimization of data fidelity and regularization terms.

Explicit joint filters compute the filtered output as a
weighted average of neighboring pixels in the target image.
The bilateral filters [1], [4], [9], [10], [20], [21] and guided fil-
ters [6] are representative algorithms in this class. The filter
weights, however, depend solely on the local structure of the
guidance image. Therefore, erroneous or extraneous struc-
tures may be transferred to the target image due to the lack of
consistency constraints. In contrast, our model considers the
contents of both images based on feature maps and enforces
consistency implicitly through learning from examples.

Numerous approaches formulate joint filtering based on a
global optimization framework. The objective function typi-
cally consists of two terms: data fidelity and regularization
terms. The data fidelity term ensures that the filtering output
is close to the input target image. These techniques differ
from each other mainly in the regularization term that encour-
ages the output to have a similar structure with the guidance
image. The regularization term can be defined according
to texture derivatives [22], mid-level representations [2] such
as segmentation and saliency, filtering outputs [13], or mutual
structures shared by the target and guidance image [7].
However, global optimization based methods rely on hand-
designed objective functions that may not reflect the com-
plexities of natural images. Furthermore, these approaches
involve iterative optimization are often time-consuming. In
contrast, our method learns how to selectively transfer impor-
tant details directly from the RGB/depth data. Although the
training process is time-consuming, the learned model is
efficient during run-time.

Learning-Based Image Filters. With significant success in
high-level vision tasks [23], substantial efforts have been
made to construct image filters using learning algorithms
and CNNSs. For example, the conventional bilateral filter can
be improved by replacing the predefined filter weights with
those learned from a large amount of data [24], [25], [26]. In
the context of joint depth upsampling, Tai et al. [19] use a
multi-scale guidance strategy to improve upsampling per-
formance. Gu et al. [27] adjust the original guidance dynam-
ically to account for the iterative updates of the filtering
results. However, these methods [19], [27] are limited to the
application of depth map upsampling. In contrast, our goal
is to construct a generic joint filter for various applications
using target/guidance image pairs in different visual
domains.

Deep Models for Low-Level Vision. In addition to filtering,
deep learning models have also been applied to other low-
level vision and computational photography tasks. Examples
include image denoising [28], raindrop removal [29], image
super-resolution [30], image deblurring [31] and optical flow
estimation [32]. Existing deep learning models for low-level
vision use either one input image [28], [29], [30], [33] or two
images in the same domain [32]. In contrast, our network
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can accommodate two streams of inputs by heterogeneous
domains, e.g.,, RGB/NIR, flash/non-flash, RGD/Depth,
intensity/color. Our network architecture bears some resem-
blance to that in Dosovitskiy et al. [32]. The main difference is
that the merging layer used in [32] is a correlation operator
while our model integrates the inputs through concatenating
the feature responses. Furthermore, we adopt the residual
learning by introducing the skip connection.

Another closely related work is by Xu et al. [33], which
learns a CNN to approximate existing edge-aware filters
from example images. Our method differs from [33] in two
aspects. First, the goal of [33] is to use CNN for approximat-
ing existing edge-aware filters. In contrast, our goal is to learn
a new joint image filter. Second, unlike the network in [33]
that takes only one single RGB image, the proposed joint filter
handles two images from different domains and modalities.

Skip Connections. As deeper networks have been devel-
oped for vision tasks, the information contained in the input
or gradients can vanish and wash out by the time it reaches
the end (or beginning) of the network. He et al. [34] address
this problem through bypassing the signals from one layer
to the next via skip connections. This residual learning
method facilitates us to train very deep networks effec-
tively. The work of [35] further strengthens its effectiveness
with dense connections across all the layers. For low-level
vision tasks, skip connection have been shown to be useful
to restore high-frequency details [36], [37] by enforcing the
network to learn the residual signals only.

3 LEARNING JOINT IMAGE FILTERS

In this section, we introduce a learning-based joint image
filter based on CNNSs. We first present the network design
(Section 3.1) and skip connection (Section 3.2). Next, we
describe the network training process (Section 3.3) and visual-
ize the guidance map generated by the network (Section 3.4).
Our CNN model consists of three sub-networks: the target
network CNNr, the guidance network CNNg, and the filter
network CNNp as shown in Fig. 2. First, the sub-network
CNNr takes the target image as input and extracts a feature
map. Second, similar to CNNr, the sub-network CNNg
extracts a feature map from the guidance image. Third, the
sub-network CNNp takes the concatenated feature responses
from the sub-networks CNN1 and CNN as input and gener-
ates the residual, i.e., the difference between the degraded
target image and ground truth. By adding the target input
through the skip connection, we obtain the final joint filtering
result. Here, the main roles of the two sub-networks CNNt
and CNNg are to serve as non-linear feature extractors that
capture the local structural details in the respective target
and guidance images. The sub-network CNNy can be viewed
as a non-linear regression function that maps the feature
responses from both target and guidance images to the
desired residuals. Note that the information from target and
guidance images is simultaneously considered when predict-
ing the final filtered result. Such a design allows us to selec-
tively transfer structures and avoid texture-copying artifacts.

3.1 Network Architecture Design

To design a joint filter using CNNSs, a straightforward imple-
mentation is to concatenate the target and guidance images
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Fig. 3. Comparison of network design. Joint depth upsampling (8x)
results of using different network architectures. (a) GT depth map (inset:
Guidance image). (b) Bicubic upsampling. (c)-(e) Results from the
straightforward implementation using CNNp and CNNp_R. (f) Our
results. Note the difference on the bed corner and curtain. The numbers
are the RMSE metric based on the GT in (a).

together and directly train a generic CNN similar to the filter
network CNNy. While in theory, we can train a generic CNN
to approximate the desired function for joint filtering, our
empirical results show that such a network generates poor
results. Figs. 3c and 3d shows an example of joint depth
upsampling using the network CNNy and its residual-based
variant CNNp_R. The main structures (e.g., the bed corner)
contained in the guidance image are not well transferred to
the target depth image, thereby resulting in blurry bound-
aries. In addition, inconsistent texture structures in the guid-
ance image (e.g., the stripe pattern of the curtain on the wall)
are also incorrectly copied to the target image. A potential
approach that may improve the results is to adjust the archi-
tecture of CNNy, such as increasing the network depth or
using larger filter sizes. However, as shown in Fig. 3e, these
variants do not show notable improvement. Blurry bound-
aries and the texture-copying problem still occur. We note
that similar observations have also been reported in [38],
which indicate that the effectiveness of deeper structures for
low-level tasks is not as apparent as that shown in high-level
tasks (e.g., image classification).

We attribute the limitation of using a generic network for
joint filtering to the fact that the original RGB guidance
image fails to provide direct and effective guidance as it
mixes a variety of information (e.g., texture, intensity, and
edges). To validate this intuition, we show in Fig. 4 one
example where we replace the original RGB guidance image
with its edge map extracted using [39]. Compared to the
results guided by the RGB image (Fig. 4d), the upsampled
image using the edge map guidance (Fig. 4e) shows sub-
stantial improvement in preserving the sharp edges.
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Fig. 4. Comparison of different types of guidance. Joint depth upsampling
(8x) results using different types of guidance images. Both (d) and (e) are
trained using the CNNy network. Our method generates sharper bound-
ary of the sculpture (left) and the cone (middle).

Based on the above observation, we introduce two sub-
networks CNN7 and CNNg to first construct two separate
processing streams for the two images before concatenation.
With the proposed architecture, we constrain the network
to extract effective features from both images separately first
and then fuse them at a later stage to generate the final filter-
ing output. This differs from conventional joint filters where
the guidance information is mainly computed from the
pixel-level intensity/color differences in the local neighbor-
hoods. As our models are jointly trained in an end-to-end
fashion, our result (Fig. 4f) shows further improvements
over that of using the edge guided filtering (Fig. 4e).

In this work, we adopt a three-layer structure for each
sub-network as shown in Fig. 2. Given M training image
samples {I7,1¢ 1"} we learn the network parameters

1
by minimizing the sum of the squared losses

|1 — (", 193, o)

where ® denotes the joint image filtering operator. In addi-
tion, I7, I¢, and I¥ denote the target image, the guidance
image and the ground truth output, respectively.

3.2 Skip Connection

As the goal of the joint image filter is to leverage the signals
from the guidance image to enhance the degraded target
image, the input target image and the desired output share
the same low-resolution frequency components. We thus
introduce a skip connection to enforce the network to focus
on learning the residuals rather than predicting the actual
pixel values. With the skip connection, the network does
not need to learn the identity mapping function from the
input target image to the desired output in order to preserve
the low-frequency contents. Instead, the network learns to
predict the sparse residuals in important regions (e.g., object
contours). In Fig. 5, we show an example of the predic-
ted residuals, which highlights the estimated difference
between the target input (Fig. 5a) and the ground truth
(Fig. 5d). Quantitative results in Table 1 show that with the
skip connection, the proposed algorithm obtains notable
improvements over [18].
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(a) Target input
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(b) Residual output
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(c) Filtering output

Fig. 5. Residual prediction. Joint depth upsampling results (8x) of
using our network with a skip connection. The filtering output (c) is the
summation of (a) the target input and (b) the predicted output.

3.3 Network Training

Since the target and guidance image pair can be from vari-
ous modalities (e.g., RGB/depth, RGB/NIR), it is infeasible
and costly to collect large datasets and train one network
for each type of data pair separately. The goal of our net-
work training, however, is not predicting specific pixel val-
ues in one particular modality. Instead, we aim to train the
network so that it can selectively transfer structures by
leveraging the prior from the guidance image. Hence, we
only need to train the network with only one type of image
data and then apply the network to other domains.

To demonstrate that the proposed method is insensitive
to the training data modality, we train the network with
either the RGB/depth dataset [14] or RGB/flow dataset [40].
We conduct a cross-dataset evaluation (training with one
type and evaluate on the other) and show the exemplary
results in Fig. 6. Figs. 6a, 6b, 6c, and 6d shows the
upsampled depth maps using models trained with different
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domains of image data. The flow model refers to the one
trained with RGB/flow data for flow map upsampling,
while the depth model is trained with RGB/depth data for
depth map upsampling. In Fig. 6¢, we apply the flow model
to upsample the degraded depth map and show competi-
tive results obtained by the depth model (Fig. 6d). Similar
observations on flow map upsampling are also found in
Figs. 6e, 6f, 6g, and 6h. Both the models trained with the
flow and depth data achieve similar performance. More fil-
tering results are shown in Section 4, where we evaluate the
model with different image data from various domains.
More quantitative results are presented in Table 1.

3.4 What Has the Network Learned?

Selective Transferring. Using the learned guidance model
CNN¢ alone to transfer details may sometimes be errone-
ous. In particular, the structures extracted from the guid-
ance image may not exist in the target image. The top and
middle rows of Fig. 7 show typical responses at the first
layer of CNNt and CNNg. These two sub-networks show
strong responses to edges from the target and guidance
images respectively. Note that there are inconsistent struc-
tures in the guidance and target images, e.g., the window
on the wall. The bottom row of Fig. 7 shows sample
responses at the second layer of CNNp. We observe that the
sub-network CNNp suppresses inconsistent details.

We present another example in Fig. 8. We note that the
ground truth depth map of the selected region is smooth.
However, due to the high contrast patterns on the mat in
the guidance image, several methods, e.g., [2], [4], incor-
rectly transfer the mat structure to the upsampled depth
map. The reason is that these methods [2], [4] rely only on
structures in the guidance image. The problem, commonly
known as texture-copying artifacts, often occurs when the
texture in the guidance image has strong color contrast.
With the help of the CNNy, our method successfully blocks
the texture structure in the guidance image (Fig. 8f).

Output of CNN¢. In Fig. 9c, we show the learned guid-
ance from CNNg using two examples from the NYU v2
dataset [14]. In general, the learned guidance appears to be

TABLE 1
Quantitative Comparisons on Depth Upsampling

Middlebury [16], [17] NYU v2 [14] SUN RGB-D [15]
4x 8x 16x 4x 8x 16x 4x 8x 16x
Bicubic 444+159 758+269 11.87+4.04 816+437 14224756 2232+11.68 2.09+156 3.45+223 548+321
MREF [22] 426+152 743+263 11.80+4.01 784+420 13984742 2220+11.61 1994157 338+219 545+3.18
GF [6] 401+142 7224255 11.70+397 732+386 1362+720 22.03+11.51 191+143 3314215 541+3.17
JBU [4] 244 +086 3.81 +£1.49 6.13+234 4.07+222 829 +447 13.35+747 1.37+112 201+1.76 3.15+2.58
TGV [3] 339+125 5414+199 1203+4.17 698+3.61 11.23+£546 2813+1047 194+131 3.01+246 5.87+3.46
Park [2] 282+094 4.08+1.43 726 +£241 521+264 9.56 +£4.41 18.10 +8.29 1.78+133 276+1.99 4.77+297
Ham [13] 3.14+124 5.03+2.08 8.83+396 527+286 12.31+6.07 19.24 +£9.64 167 +£141 2604231 4.36+3.32
DMSG [19]  1.79 £0.66  3.39 +1.28 5.87 £2.38 348 +1.96 6.074+326 10.27 £5.79 130 +£1.12 180+1.31 281+1.92
FBS [20] 258 £0.88 4.19 +1.48 730+£249 429+253 894 +4.68 14.59 +8.32 158 +1.41 227+233 3.76+3.01
Ours-flow 231+084 3.95+1.45 6.34+244 4424277 7.32+391 11.62 +6.58 136 £1.14 191+1.37 290+2.04
DJF[18] 214 +£0.69 3.77+1.32 6.12+219 354+1.86 6.204+3.26  10.21 +5.57 1284+1.02 1.81+135 2.78+1.93
Ours 198+0.67 3.61+139  6.07+220 3.38+1.95 5.86 +3.14 10.11 + 5.49 1.27+098 1.77+130 2.75+1.94

Comparisons with the state-of-the-art methods in terms of RMSE. The depth values are scaled to the range [0,255] for the Middlebury [16], [17], and SUN
RGB-D[15] datasets. For the NYU v2 dataset [14], the depth values are measured in centimeter. Note that the depth maps in the SUN RGB-D dataset may con-
tain missing regions due to the limitation of depth sensors. We ignore these pixels in calculating the RMSE. Numbers in bold indicate the best performance and

underscored numbers indicate the second best. The mean and standard deviation

of the RMSE values are shown in each entry.
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(e) Target input flow (f) GT flow

(c) Upsample by the flow model (d) Upsample by the depth model (g) Upsample by the depth model (h) Upsample by the flow model

3.54 3.36

5.63 5.35

Fig. 6. Effect of training data modalities. (a)-(d) Joint depth map upsampling (8x). The model trained with RGB/flow data generates similar results
when compared with the model trained with RGB/depth data. (e)-(h) Joint flow map upsampling (8x). (g) The model trained with RGB/depth data
and (h) The model trained with RGB/flow data. The numbers are the RMSE metric comparing against the GT.

similar to an edge map highlighting the salient structures in
the guidance image. We show edge detection results
from [39] in Fig. 9d. Both results show strong responses to
the main structures, but the guidance map generated by
CNN¢ appears to detect sharper boundaries while sup-
pressing responses to small-scale textures, e.g., the wall in
the first example. The result suggests that using only CNNp
(Fig. 3c) does not perform well due to lack of the salient fea-
ture extraction step from the sub-network CNNg.

To demonstrate the effectiveness of the skip connection,
we compare the learned guidance without and with the
skip connection in Figs. 9b and 9c. Adding the skip connec-
tion helps suppress more inconsistent structures (e.g., edges
on the bed, wall, table) in the target/guidance pair, and con-
sequently the residual-based model effectively alleviates
texture-copying artifacts.

3.5 Relationship to Prior Work

The proposed framework is closely related to weighted-
average, optimization-based, and CNN-based models. In
each layer of the network, the convolutional filters also per-
form the weighted-average process. In this context, our filter
is similar to the weighted-average filters. The key difference
is that the weights in this work are learned from data while
those of the weighted-average filters [4], [10] are pre-
defined based on color or gradient features. The proposed
network plays a similar role in the fidelity and regulariza-
tion terms defined in the optimization-based joint filters.
Specifically, the training objective in (1) corresponds to the
fidelity term of the weighted-average filters [4], [10] as it
encourages the output to be as close to the ground truth as
possible. The skip connection implicitly serves as the regu-
larization term by enforcing adjacent pixels to share similar

Fig. 7. Visualization of feature responses. Sample feature responses of the input in Fig. 9(a) at the first layer of CNN (top) and CNN, (middle), and the
second layer of CNNy. (bottom). For each subnetwork, we select five feature channels and visualize the responses through the colormap. The correspond-
ing colorbar is shown in the rightmost. Note that with the help of CNNp, inconsistent structures (e.g., the window on the wall) are correctly suppressed.
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Fig. 8. Selective transfer. Comparisons of different joint upsampling methods on handling the texture-copying issue. The carpet on the floor contains
grid-like texture structures that may be incorrectly transferred to the target image. The numbers are the RMSE metric comparing against the GT.

values (e.g., depth) as it directly bypasses the low-quality
target input to the output of the network. For CNN-based
models, our network architecture can be viewed as a unified
model for different tasks. For example, if we remove CNNg
and use only CNNt and CNNpy, the resulting network
architecture resembles an image restoration model, e.g.,
SRCNN [30]. On the other hand, in cases of removing
CNNr, the remaining CNN¢ and CNNy can be viewed as
one using CNNs for depth prediction [41].

4 EXPERIMENTAL RESULTS

In this section, we demonstrate the effectiveness and appli-
cability of our approach through a broad range of joint
image filtering tasks, including joint image upsampling, tex-
ture-structure separation, and cross-modality image restora-
tion. The source code and datasets will be made available to
the public. More results can be found at http://vllabl.
ucmerced.edu/~yli62/DJF _residual/.

Network Training. To train our network, we randomly col-
lect 160,000 training patch pairs of 32 x 32 pixels from 1,000
RGB and depth images in the NYU v2 dataset [14]. Images
in the NYU dataset are absolute depth maps captured in
complicated indoor scenarios. We train two models for two
different tasks: (1) joint image upsampling and (2) noise
reduction. For the upsampling task, we obtain each low-
quality target image from downsampling the ground-truth
image (with scale factors of 4x, 8%, 16x) using the nearest
neighbor interpolation. For the noise reduction task, we
generate the low-quality target image by adding Gaussian

noise to each of the ground-truth depth maps with zero
mean and variance of le-3. We use the MatConvNet tool-
box [42] to train our joint filters.

Testing. Using RGB/depth data for training, our model
takes a 1-channel target image (depth map) and a 3-channel
guidance image (RGB) as inputs. However, the trained
model can be applied to other data types in addition to
RGB/depth images with simple modifications. For the
multi-channel target images, we apply the trained model
independently for each channel. For the single-channel
guidance images, we replicate it three times to create the
3-channel guidance image.

4.1 Depth Map Upsampling

Datasets. We present quantitative performance evaluation
on joint depth upsampling using three benchmark datasets
where the corresponding high-resolution RGB images are
available:

e Middlebury dataset [16], [17]: We collect 30 images
from 2001-2006 datasets with the missing depth val-
ues provided by Lu et al. [43].

e NYU v2 dataset [14]: As we use the 1,000 images in
this dataset for training, we use the rest of 449
images for testing.

e SUN RGB-D [15]: We use a random subset of 2,000
high-quality RGB/depth image pairs from the 3,784
pairs captured by the Kinect v2 sensor. These images
are captured from a variety of complicated indoor
scenes.

(a) Guidance
(inset: GT depth)

(b) Learned guidance
w/o skip connection [18]

(c) Our learned guidance
w/ skip connection

(d) Edge map [39]

Fig. 9. Visualization of the learned guidance map. Comparison between the learned guidance feature maps from CNN and edge maps from [39].
The network CNN(; is capable of extracting informative, salient structures from the guidance image for content transfer. Furthermore, with the skip
connection, the learned guidance maps in (c) are cleaner than that in (b) by suppressing inconsistent structures (edges on the window and wall) in
the target/guidance pair.
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TABLE 2
Run-Time Performance Comparisons
MRF [22] GF[6] JBU[4] TGVI[3] Park[2] Ham][13] DMSGI[19] FBS[20] Ours(CPU) Ours (GPU)
Time (s) 0.76 0.08 5.64 68.21 45.79 8.62 0.71 0.34 1.31 0.07

Average run-time of depth map upsampling algorithms on images of size 640 x 480 pixels.

Note that the data in [14], [15] are absolute depth maps
representing the physical distances in meters to the
observer. However, the data in [16], [17] are relative depth
maps (disparity), which measure the distance between two
corresponding points in a scene under two different views.
Each disparity value denotes the number of shifted pixels.

Evaluated Methods. We compare our model against sev-
eral state-of-the-art joint image filters for depth map upsam-
pling. The JBU [4], GF [6], Ham [13] and FBS [20] methods
are generic joint image upsampling. On the other hand, the
MREF [22], TGV [3], Park [2] and DMSG [19], algorithms are
designed specifically for image-guided depth upsampling.
Using the experimental protocols for evaluating the joint
depth upsampling algorithms [2], [3], [13], we obtain the
low-resolution target image from the ground-truth depth
map using the nearest-neighbor downsampling method.

Quantitative Comparisons. Table 1 shows the quantitative
results in terms of the root mean squared errors (RMSE).
For other methods, we use the default parameters in the
original implementations. The proposed algorithm per-
forms well against the state-of-the-art methods across all
three datasets. The extensive evaluations on absolute depth
datasets [14], [15] demonstrate the effectiveness of our algo-
rithm in handling complicated real-world indoor scenes.
Furthermore, we compare the average run-time of different
methods on the NYU v2 dataset in Table 2. We carry out all
the experiments on the same machine with an Intel i7 3.6
GHz CPU and 16 GB RAM. We report the running time of
our model in either CPU or GPU mode (GTX 745). Among
all the evaluated methods, the proposed algorithm is effi-
cient while delivering high-quality upsampling results.

The concurrent DMSG method by Tai et al. [19] outper-
forms the proposed algorithm on the Middlebury dataset.
This can be attributed to several reasons. First, Tai et al. [19]
leverage multi-scale guidance data while we use only single
scale signals. The multi-scale design requires more network
parameters to learn. For example, the model size of the
upsampling model (8x) in [19] is 1,822 KB compared to our
model size of 526 KB. Second, the model in [19] is trained on a
small collection of relative depth maps (82 images) [16], [17].
In contrast, our model is trained on a large dataset (1,000
images) of absolute depth maps [14]. For fair comparisons
using absolute depth maps, we re-train the model of [19] with
the same dataset [14] based on our own implementation.
Table 1 shows that the performance of both [19] and our previ-
ous work DJF [18] on absolute depth datasets [14], [15] achieve
similar performance. While the method in [19] also uses the
similar strategy of predicting residuals, we demonstrate that
the proposed algorithm achieves improved results with fewer
parameters, suggesting the practical applicability of our
model to real-world applications. Another important differ-
ence is that the model in [19] is designed only for depth
upsampling. Our approach, on the other hand, can be applied
to generic joint image filtering tasks.

Effects of Skip Connection. We validate the contribution of
the introduced skip connection by comparing the DJF [18]
method and proposed algorithm (bottom two rows of
Table 1). In Section 5, we show that it is difficult to gain fur-
ther improvement by simply modifying network parame-
ters, such as the filter size, filter number, and network
depth. However, with the skip connection, the proposed
algorithm obtains significant performance improvement.
The performance gain can be explained by that using skip
connection alleviates the issues that the network only learns
the appearance of the target input images, and helps the
network focus on learning the residuals instead.

Effects of Training Modality. To validate the effect of train-
ing with different modalities, we compare our model with a
variant that is trained with RGB/flow data (denoted as Ours-
flow). We randomly select 1,000 RGB/flow image pairs from
the Sintel dataset [40] and collect 80,000 training patch pairs
of 3 2x 32 pixels. We use either x-component or y-component
of the optical flow as our target image. During the testing
phase, we apply the trained model independently for each
channel of the target image. Although the model Ours-flow is
trained with the RGB/flow data for optical flow upsampling,
Ours-flow performs favorably on the task of depth upsam-
pling against our final model (Ours) trained with the
RGB/depth data, as shown in Table 1.

Visual Comparisons. We show four examples for qualita-
tive comparisons in Fig. 10. It is worth noticing that the pro-
posed joint filter selectively transfers salient structures in
the guidance image while avoiding texture-copying artifacts
(see the green boxes). The GF [6] method does not recover
the degraded boundary well under a large upsampling fac-
tor (e.g., 8x). The JBU [4], TGV [3] and Park [2] approaches
are agnostic to structural consistency between the target
and guidance images, and thus transfer erroneous details.
In contrast, the results of our algorithm are smoother,
sharper and more accurate with respect to the ground truth.

4.2 Joint Image Upsampling

Numerous computational photography applications req-
uire obtaining a solution map (e.g., chromaticity, saliency,
disparity, labels) over the pixel grid. However, it is often
time-consuming or memory-intensive to compute the high-
resolution solution maps directly. An alternative is to first
obtain a low-res solution map over the downsampled pixel
grids and then upsample the low-resolution solution map
back to the original resolution with a joint image upsam-
pling algorithm. Such a pipeline requires the upsampling
method to restore well image degradation caused by down-
sampling and avoid the inconsistency issues. In what fol-
lows, we demonstrate the use of the learned joint image
filters for colorization and saliency as examples. Note that
in the following applications we use the same model trained
with RGB/depth data and evaluate on other image modali-
ties without retraining the network using data in the new
domains.
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7.98

(g) Ours
7.74

Fig. 10. Qualitative comparisons on depth upsampling. Comparisons against existing depth upsampling algorithms for a scaling factor of 8x. The
numbers (in centimeter) are the RMSE metric comparing against the GT in (b).

For the colorization task, we first compute the chromaticity
map on the downsampled (4x) image using the user-
specified color scribbles [44]. We then use the original high-
resolution intensity image as the guidance image to jointly
upsample the low-resolution chromaticity map. Fig. 11
shows that our model is able to achieve visually pleasing
results with fewer color bleeding artifacts and efficiently.
Our results are visually similar to the direct solutions on the
high-resolution intensity images (Fig. 11b). The quantitative
comparisons are presented in the first row of Table 3.
We use the direct solution of [44] on the high-resolution image
as ground truth and compute the RMSE over seven test
images in [44]. Table 3 shows that our method performs well
with the lowest error. Note that our pipeline (low-res result +
joint upsampling) is nearly three times faster (2.82 seconds)
than directly running the colorization algorithm [44] on
the original pixel grid to obtain the high-resolution result
(8.20 seconds). Note that for fair comparisons, all run-time
results are obtained based on the CPU mode.

For saliency detection, we first compute the saliency map
on the downsampled (10x) image using the manifold

method by Yang et al. [45]. We then use the original high-
resolution intensity image as guidance to upsample the
low-resolution saliency map. Fig. 12 shows the saliency
detection results by the state-of-the-art methods and pro-
posed algorithm. Overall, the proposed algorithm generates
sharper edges than other alternatives. In addition, we pres-
ent quantitative evaluation using the ASD benchmark
dataset [47] which consists of 1,000 images with manually
labeled ground truth. Table 3 shows the comparison
between different upsampling methods and our approach
in terms of F-measure [48]. The experimental results demon-
strate that the proposed algorithm performs favorably
against the state-of-the-art methods.

4.3 Structure-Texture Separation

We apply our model trained for noise reduction to the task
of structure-texture separation. Here we use the target
image itself as the guidance. We adopt a similar strategy as
in the rolling guidance filter (RGF) [9] to remove small-scale
textures, i.e., using the output of the previous iteration as
the input of the current iteration.
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(a) Scribbles
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i

(d) Ham [13]

(e) DJF [18]
57

(a) Scribbles (b) Levin [44] (c) GF [6]
RMSE 5.94
Time (s) 8.20 1.50

(d) Ham [13] (e) DJF [18] (f) Ours
6.28 5.57 5.38
28.8 2.80 2.82

Fig. 11. Colorization upsampling. Joint image upsampling applied to colorization. We also list the runtime for the colorization upsampling process for
each method. The close-up areas show that our joint upsampling results (f) have fewer color bleeding artifacts when compared with other competing
algorithms (c-e). Our visual results (f) are comparable with the results computed using the full resolution image in (b). The RMSE metric comparing
against the GT in (b) are presented. The average RMSE over all test images are shown in Table 3.

We use the inverse halftoning task as an example. A half-
toned image is generated by the reprographic technique
that simulates continuous tone imagery using various dot
patterns [46], as shown in Fig. 13a. The goal of inverse half-
toning is to remove these dots while preserving the main
structures. We compare our results with those from the
RGF [9], Xu [8], DJF [18] and the method by Kopf [46] for
halftoned images reconstruction. Since there exists no
ground truth data, we use the results from Kopf [46] as the
pseudo ground truth as it is specifically designed for recon-
structing halftoned images and achieves the best visual
quality. For [8], [9], we carefully select the parameters (listed
in Fig. 13) for the optimal results by considering both

TABLE 3
Quantitative Comparisons of Different Upsampling
Methods on Difference Solution Maps

Bicubic GF[6] Ham/[13] DJF[18] Ours
RMSE 6.01 5.74 6.31 5.48 5.40
F-measure 0.759 0.766 0.763 0.778 0.781

removing the dot patterns and keeping the sharp edges
intact. We wuse the same high-resolution test images
from [46] and present two zoomed-in patch examples in
Fig. 13 for illustration, where one (top) is with small-scale
dots and another one (bottom) is with large-scale dots. For
the DJF [18] and proposed method, we show the results of
running two iterations in the first row and three iterations
in the second row of Figs. 13e and 13f. Our model achieves
better results on removing small-scale dots but worse
results on removing large-scale dots compared with the
methods in [8], [9]. However, in order to get the best results,
both [8], [9] require to manually select optimal parameters
for different inputs. Our model (trained on RGB/depth
only) is not expected to consistently achieve the best perfor-
mance but able to generalize well for comparable results on
the inverse halftoning task without tuning parameters.

4.4 Cross-Modality Filtering for Noise Reduction

Here, we demonstrate that our model can handle various
visual domains through two noise reduction applications
using RGB/NIR and flash/non-flash image pairs. Fig. 14
(left) show sample results on joint image denoising with the
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(a) Low-res saliency [45]
F-measure

(b) GF [6]
0.722

(c) Ham [13]
0.716

(d) DJF [18]
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(e) Ours
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(b) GF [6]
0.758
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0.772
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0.779

Fig. 12. Saliency map upsampling. Visual comparisons of saliency map upsampling results (10x). (a) Low-res saliency map obtained from the
downsampled RGB image (inset: guidance image). The numbers are the F-measure metric comparing against the GT. The average F-measure over

all test images are shown in Table 3.

NIR guidance image. The filtering results by our method are
comparable to those of the state-of-the-art technique [5]. For
flash/non-flash image pairs, we aim to merge the ambient
qualities of the no-flash image with the high-frequency
details of the flash image. Guided by a flash image, the fil-
tering result of our method is comparable to that of [5], as
shown in Fig. 14 (right).

5 DISCUSSIONS

In this section, we first analyze the effects of the perfor-
mance under different hyper-parameter settings using the
network architecture in Fig. 2. Then, we discuss several lim-
itations of the proposed algorithm. To validate the design
choices, we vary the filter number n, filter size f, and depth
d of each sub-network. We use the same training process as
described in Section 4 and evaluate different models on the
NYU v2 dataset [14] for 8 x upsampling in terms of RMSE.

5.1 Filter Number

We first analyze the effects of the number of filters (n, n2) in
first two layers of each sub-network. The quantitative
results are shown in Table 4. In the setting of without the
skip connection (top row), we observe that larger filter

number may not always result in performance improve-
ments because it increases the difficulty of training the net-
work. The results suggest that the performance of such
network design is somewhat saturated with the sufficient
number of filters. In order to get further improvements, we
need to adjust the network design or the learning objectives,
rather than simply modifying hyper-parameters.

Such a hypothesis is supported by the setting of with the
skip connection, where we add a skip connection to the
entire network and reformulate the network as learning
residual functions. The bottom row of Table 4 shows that
the filter number do yield progressive improvements when
it is increased. This is in accordance with the observation
n [34], [36] where residual learning is more effective for
training the network with larger capacity. However, a larger
network also slows down the training process and may only
provide marginal performance improvements. Conse-
quently, the selected hyper-parameters of our method
(shown in Fig. 2) strike a good balance between accuracy
and computational efficiency.

Furthermore, we discuss the effects of the output chan-
nels (n3) of CNNt and CNNg and show the results in
Table 5. Intuitively, using multi-dimensional features may
improve the model capacity and therefore its performance.

(c) RGF [9]
7.14

(a) Input (b) Kopf [46]

RMSE

(d) Xu [8]
7.30

(e) DIF [18]
7.07

(f) Ours
6.91

(a) Input (b) Kopf [46] (c) RGF [9] (d) Xu [8] (e) DJF [18] (f) Ours
RMSE 16.88 16.62 17.86 17.24
Fig. 13. Inverse halftoning. For each method, we carefully select the parameter for the optimal results. (c) o, = 2,0, = 0.05,iter = 4.
(d) A = 0.005,0 = 1. (e)-(f) top: iter = 2, bottom: iter = 3. Since there exists no GT result, we regard the result of [46] in (b) as the GT because it is

an algorithm specifically designed for reconstructing halftoned images. The numbers are the RMSE metric comparing against the result in (b).
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Noisy Non-Flash Guided Flash

GF [6], 8.96

Restoration [5]

Ours, 8.22

DJF [18], 8.49

Fig. 14. Cross-modality filtering for noise reduction. Left: Results of noise reduction using RGB/NIR image pairs (Target: RGB, Guidance: NIR). Right:
Results of noise reduction using flash/non-flash image pairs (Target: Non-Flash, Guidance: Flash). The numbers are the RMSE metric comparing

against the result of [5].

However, our experimental results indicate that using
multi-dimensional feature maps only slows down the train-
ing process without clear performance gain, for both with-
out and with the skip connection settings. Therefore, we set
the output feature maps extracted from the target and guid-
ance images as one single channel (n3 = 1).

5.2 Filter Size

We examine the network sensitivity to the spatial support of
the filters. With all the other experimental settings kept the
same, we gradually increase the filter size f; (i =1, 2, 3) in
different layers and show the corresponding performance
in Table 6.

TABLE 4
Quantitative Results (RMSE in Centimeters for 8x) of Using
Different Filter Numbers in Each Sub-Network

ny = 256 ny = 128 ny = 96 ny = 64
Ny = 128, Ny = 64 Ny = 48 Ny = 32
6.40 6.44 6.32 6.35
5.82 5.84 5.90 5.97

We apply the same parameters to three sub-networks. Top: Without the skip
connection, Bottom: With the skip connection.

TABLE 5
Quantitative Results (RMSE in Centimeters for 8 x) of Using
Different Filter Numbers in the 3rd Layer of CNNt and CNNg

ng =1 ng = 16 ng = 32 n3 = 64
6.20 6.40 6.24 6.34
5.86 6.11 5.93 6.02

Top: Without the skip connection, Bottom: With the skip connection.

Starting from using small filter sizes (f; =5, fo =1,
f3 = 3), we observe a steady trend of improvements when
increasing the filter sizes. This is because smaller filters will
restrict the network to focus on detailed local smooth
regions that provide little information for restoration. In
contrast, a reasonably large filter size can cover richer struc-
tural cues that lead to better results. However, when we fur-
ther enlarge the filter size (e.g., upto f; =11, fo =3, fs =1,
we do not see additional performance gain. We attribute
this to the increasing difficulty of network training because
larger filter sizes indicate more number of parameters to be
learned. Consequently, we choose the filter size f; =9,
fo=1,and f3 = 5 as a good trade-off between the efficiency
and performance.

5.3 Network Depth

As suggested in [38] that the number of layers does not play
a significant role in non-residual based models for low-level
tasks, we focus on evaluating the residual-based model
(with the skip connection) with different network depth.
First, we analyze whether using one generic but deeper

TABLE 6
Quantitative Results (RMSE in Centimeters for 8x) of Using
Different Filter Sizes in Each Sub-Network

=11 fi=9 fi=9 fi=7 fi=5
fo=3 fo=3 fo=1 fo= fo=1
fa=17 fa=7 f3=5 fz=5 f3=3
6.28 6.40 6.20 6.47 6.62
5.93 6.05 5.86 6.06 6.24

Top: Without the skip connection, Bottom: wj the skip connection.
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TABLE 7
Quantitative Evaluation (RMSE in Centimeters for 8 x) When
Using Residual-Based CNNr_R Only Under
Different Network Depth d

d=3 =4 d=5 d=26 d="17 d=28 Ours
6.31 6.25 6.22 6.20 6.17 6.16 5.86
TABLE 8

Quantitative Evaluation of Our Model by Increasing the Number
of Layers (the Depth d) Used in Each Subnetwork

d=2 d=3 d=4 d=5

RMSE/cm 5.99 5.86 5.77 5.73

Model size/MB 0.48 0.53 5.0 114
TABLE 9

Quantitative Evaluation of Different Combinations of
Network Depth of CNNt (CNNg) and CNNg

CNNp/CNNg — CNNp
RMSE/cm

0/0-6
6.13

2/2-4
5.95

3/3-3
5.86

4/4-2
6.03

(a) Input

(b) Georg et al. [12] (c) Ours

Fig. 15. Failure cases. Detailed small-scale textures (yellow rectangle) in
the guidance image are over-smoothed by our filter.

residual-based CNNr_R network can improve the perfor-
mance. We gradually increase the depth from 3 to 8 and
show the results in Table 7. Overall, the performance of the
CNNp_R network improves with a deeper network. How-
ever, the performance quickly reaches the point of diminish-
ing returns after d is larger than 4.

Next, we evaluate our model (three subnetworks) by
increasing the network depth. We simultaneously increase the
depth d of each subnetwork from 2 to 5 and show the corre-
sponding results in Table 8. We observe that equipped with
the skip connection a deeper network generally leads to better
performance. This is in accordance with the observation in [36]
where a 20-layer deep residual net is used for image super-
resolution. However, in our case with three subnetworks, the
deeper network also induces fast growth of model size as well
as longer training time. We find the performance improvement
is incremental when d is varied from 3 to 5. Thus, we set d to 3
as a trade-off between model size and performance.

5.4 Merging Layer

As shown in Fig. 2, the CNNt and CNN¢ are merged at the
output (third) layer. Here we further analyze the effect of
merging CNNt and CNNg at different layers. We fix the
whole network depth as 6 and analyze different combinations
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of network depth of CNNt, CNNg and CNNy. We gradually
increase the depth of CNNt and CNNg while decreasing the
depth of CNNp (in order to maintain the overall network
depth). For example, 0/0 — 6 (Table 9) indicates that we
directly stack the target and guidance image and applying a
6-layer CNNy only. The evaluation results of different models
are shown in Table 9. Overall, deeper target/guidance net-
works (CNNt and CNNg) result in sizable performance
improvement resulting from effective feature extractions.
However, as the CNNp becomes shallower, the performance
degrades again. This indicates that neither the CNNt (CNN)
nor the CNNy should be too shallow. Therefore, we chose the
combination of 3/3 — 3 for best performance.

5.5 Limitations

We note that in some images, our model fails to transfer
small-scale details from the guidance map. In such cases,
our model incorrectly treats certain small-scale details as
noise. This can be explained by the fact that our training
data is based on depth images that are mostly smooth and
does not contain many spatial details.

Fig. 15 shows two examples of a flash/non-flash pair for
noise reduction. There are several spotty textures on the
porcelain in the guided flash image that should have been
preserved when filtering the noisy non-flash image. Simi-
larly, our method is not able to effectively transfer the
small-scale strip textures on the carpet to the target image.
Compared with the method by Georg et al. [12] (Figs. 15b
and 15d) that is designed specifically for flash/non-flash
images, our filter treats these small-scale details as noise
and tends to over-smooth the contents. We will collect more
training data from other domains (e.g., flash/non-flash) to
address the over-smoothing problem in our future work.

6 CONCLUSIONS

In this paper, we present a learning-based approach for joint
filtering based on convolutional neural networks. Instead of
relying only on the guidance image, we design two sub-
networks CNNt and CNNg to extract informative features
from both the target and guidance images. These feature
maps are then concatenated as inputs for the network
CNNr to selectively transfer salient structures from the
guidance image to the target image while suppressing struc-
tures that are not consistent in both images. While we train
our network on one type of data (RGB/depth or RGB/
flow), our model generalizes well on handling images in
various modalities, e.g.,, RGB/NIR and flash/non-Flash
image pairs. We show that the proposed algorithm is
computationally efficient and performs favorably against
the state-of-the-art techniques on a wide variety of com-
puter vision and computational photography applications,
including cross-modal denoising, joint image upsampling,
and texture-structure separation.
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