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Abstract 
A transitory image sequence is one in which no scene 

element is visible through the entire sequence. This ar- 
ticle deals with some major theoretical and algorithmic 
issues associated with the task of estimating structure 
and motion f rom transitory image sequences. Two rep- 
resentations, world-centered (WC) and camera-centered 
(CC), behave very diferently with a transitory sequence. 
T h e  asymptotical error properties derived in this article 
indicate that one representation is signijicantly superior 
to the other, depending on whether one uses camera- 
centered or world-centered estimates. Rigorous experi- 
ments were conducted with real-image sequences taken 
by  a fully calibrated camera system. The comparison 
of the experimental results with the ground truth has 
demonstrated that a good accuracy can be obtained from 
transitory image sequences. 

1 Introduction 
So far, most works deal with non-transitory im- 

age sequences, and successful improvements have been 
achieved in this type offusion (e.g.,Ayache and Faugeras 
[2], Matthies and Shafer (41, Kumar e t  a1 [3]). Experi- 
ments for scene construction from transitory image se- 
quence only started recently, and we have seen two ef- 
forts by Cui et a1 [l] and Tomasi and Kanade [5], re- 
spectively. In Cui et al [I], some relative accuracy was 
reported from a transitory image sequence. Tomasi and 
Kanade [5] conducted experiments with transitory im- 
age sequences and discussed how to expand the mea- 
surement matrix by filling in “hallucinated” projections. 

The work reported here addresses following new is- 
sues: 

It is shown that from a transitory sequence it is in- 
herently not possible to get better estimates with a 
longer sequence. We establish asymptotic behavior 
of error with respect to the number of frames. 
This article introduces different techniques for two 
different usages of the result: global and local. It is 
demonstrated that different representations result 
in very different stabilities. 
Rigorous experiments have been conducted with a 
fully calibrated camera system. The algorithm is 
fully automatic, including feature selection, stereo 
matching, temporal matching and tracking, 3-D 
structure integration, and motion and pose estima- 
tion. 

We first introduce in the next section some basic con- 
cepts related to transitory and non-transitory sequences 
and analyze the stability and asymptotic error behavior 
for different representations, which motivated our new 
cross-frame methods presented in Section 3. The ex- 
perimental results are presented in Section 4. Section 5 
gives concluding remarks. 

2 Transitory Image Sequence 
We consider a rigid scene and a sensing system, which 

undergo a motion relative to each other. If the system 
of reference is placed on the scene, the representation is 
called world-centered (WC). If the system is placed on 
the camera system, the representation is called camera- 
centered (CC). 

I;= 1 

Figure 1: Transitory and non-transitory sequences. (a) 
non-transitory. (b) simple transitory. (c) general tran- 
sitory. 

A view of a 3-D feature point x is a 2-vector in monoc- 
ular case and a 4-vector in stereo case. The covariance 
matrix of a 3-D point from a monocular view can be 
represented by rZ .  

First, we examine the error from determination of 
the pose m of a camera system in a system of reference, 
where m is a 6-vector. The pose is estimated from x, a 
set of 3-D points, represented in that reference system, 
and the view U of x. We can express the error covariance 
as: 

(1) 
am amT am amT rm = -r+- + -rU- 
a x  ax aU au 

assuming that the correlation between z and U is negli- 
gibly small. 

Next, we investigate the error in determining 3-D po- 
sition of a set of 3-D points y visible from a camera sys- 
tem whose estimated pose is m. Its covariance matrix 
1s 
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where v is the view and we assume that the correlation 
between error in m and v is negligibly small. 

Plug (1) into (2), we have 

I?v = AI’,AT + BI’,BT + CFuCT (3) 

where A,  B and C are the appropriate Jacobians. 
In a simple transitory sequence, each scene point is 

visible in two consecutive frames, as shown in Fig.l(b). 
We can use (3) recursively, we can get the error covari- 
ance of the structure x at frame n 

n 

Estimate 
WC structure 
WC pose 
CC structure (local) 
CC pose 

where, Bt and Ct are the products of the appropriate 
Jacobians. Now, we assume a uniformity in which the 
difference among the terms under the summation is ne- 
glected. Thus, 

r+, = n(Btru,B: + ctrutc3 (4) 

The general situation with a transitory sequence is 
shown in Fig.l(c), where a point can be visible in any 
number of frames. Because we are interested in asymp- 
totic error behavior, we may make some assumption 
about uniformity. Assume that every feature point is 
visible in 2k frames. Thus, we regard the entire se- 
quence F = {ft 1 i! = 1,2,  ... n} as k subsequences 
Fl = {fp)+l I p > 0 is an integer}, I = 1 ,2 ,  ..., k,  so tha t  
in each Fl each point is visible by two frames. IC is called 
the visibility span. The entire sequence consists of k 
subsequences and each is a simple transitory sequence 
of n/k long. According to the result of simple-transitory 
case with the uniformity assumption, the error covari- 
ance matrix of the linear minimum variance estimate is 
proportional to the length n/k: 

Non Simple General 
l / n  n n/k2 
1 n n/k2 

1/n 1 l / b  
1 n n / k 2  

(5) 

where the term in summation should be that for a simple 
transitory subsequence. On the other hand, we have 
k subsequences, each gives an independent observation 
of structure xt. Thus, we can use the result for ideal 
non-transitory sequence, which says the error covariance 
matrix is reduced by a factor of l /k:  

’ where the order n/k2 is called the asymptotic rate. 
Other cases are similarly derived. The asymptotic 

error rates are shown in Table 1. In the table, n is cur- 
rent time, k the visibility span, and b is the batch size 
b 5 k. The pose is the camera pose with respect to the 
WC system of reference. The CC structure is with re- 
spect to the CC system for the currently visible scene. 
As can be seen from the table, with a general transitory 
sequence, for global structure representation, the WC 
representation is better, but for the camera-centered lo- 
cal structure, the CC representation is superior. 

Table 1: Asymptotic rate for error covariance matrix 
due to integration 

3 Cross-frame Approach with CC and 
WC 

The above analysis motivated our method of keeping 
two representations, WC for global measurements and 
CC for local measurements. To be specific, we assume 
a stereo camera system. The method can be directly 
extended to monocular case without any major modifi- 
cation. 

Let Xp denote the 3-D positional vector of a point 
represented in the CC system at frame p .  Point X, 
represented in the CC system at frame q is moved to X, 
in the CC system at time p :  X, = yC,,,X +Tp,q ,where 
Rp,, and Tp,q are a rotation matrix a n 8  a translation 
vector, respectively. Let yp,q which is a function of RP,, 
and Tp,q, denote the relative pose from q to p .  With a 
batch at frame p ,  the current active cross-frame motion 
set is denoted by 

P- 1 

W(P> = U {mp,i(Rp,i, Tp,i)}. 
i=p- K - 1 

where I< is the batch size. The essence of our new 
cross-frame approach is to estimate cross-frame motion 
set W(p)  as a whole, eliminating error accumulation by 
conventional frame-by-frame methods (e.g., Kalman fil- 
tering). 

Let N be the total number of feature points be- 
ing considered; denote the three dimensional local 
structure of i-th point in s-th camera-centered system; 
~ i , j , ~  be the 2-D image coordinate vector of i-th point 
on the j-th side (left, right) at the s-th frame. Assuming 
that the noise in the observations ( ~ , , j , ~ )  is uncorrelated 
and has the same variance (U: ,  U,”) in the two image co- 
ordinates, the objective function can be written: 

where 

i=l 
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In the above expression, X ( m , , p ,  xi,p) is the transfor- 
mation function to transform the point from cam- 
era coordinate system at frame p to frame s based on 
the motion parameters ms,p. Function ~ ( m , , ~ ,  ~ i , ~ )  is 
the noise-free projection computed from mSBp and xi,p, 
which includes transformation and projection. 

The WC representation follows a similar derivation. 
The difference is that the structure does not move in 
WC system. Thus, the structure integrated in the WC 
system up to any time can be used directly for later WC 
integration. 

4 Experiments 
Experiments with synthetic and real word images 

were conducted in order to experimentally exam the er- 
ror rates listed in Table 1 and compare the WC and CC 
representations. 
4.1 Simulation Results 

3-D feature points were generated randomly for each 
trial, between depth 2000" and depth 3000mm, with 
a uniform distribution. The entire scene is covered by 
31 frames and the distance between consecutive frames 
is roughly 200". Data were obtained through 100 
random trials each with a different set of 3-D points. 

The simulated camera system has a resolution of 
512 x 480 pixels, just like the real cameras we used. 
Measurement error was simulated by pixel round-off er- 
ror. The camera's global orientation is determined by 
a rotation matrix (Ri , l )  and the position by translation 
vector (Ti 1). The error of a matrix or vector is mea- 
sured as the Euclidean norm of the difference between 
the estimated and true one. In the WC representation, 
the global structure is directly estimated but its local 
structure needs to be computed via the estimated global 
pose of the camera. The situation is just the opposite 
in the CC representation, where the local structure is 
directly estimated while the global structure must be 
computed via camera's global pose. 

Fig. 6 shows the current camera position error (Ri,l, 
Ti,I) for different frames, where i is the index for time. 
It can be seen from the figure that the batch size of our 
cross-frame method has more impact in the CC repre- 
sentation than WC!. This is because in the CC repre- 
sentation, the reference frame moves, which introduces 
more nonlinearity than the WC case when the old obser- 
vation is transformed into the current CC reference sys- 
tem. A larger batch size is more appropriate for such a 
nonlinear transform, because covariance for error mod- 
eling is based on a linear approximation for nonlinear 
systems. Fig. 6 clearly shows that the WC representa- 
tion is a little better for camera pose estimates, which 
is consistent with Table 1. 
4.2 

The setup for our image acquisition consists of a Den- 
ning MRV-3 mobile robot and a pair of stereo cameras, 
mounted on a custom-designed stereo positional setup. 
A stereo image sequence of 151 frames was acquired 
from the moving mobile robot. A temporally subsam- 
pled (one sample every 5 frames) subsequence of 31 
frames was used for motion and structure estimation. 

Experiments with a Real Setup 

Figure 2: A few stereo frames in the 151-frame sequence. 
(a) frame 0; (b) frame 50; (c) frame 100; (d) frame 150; 
a1 left views. 

Trace of Automatic Matching-and-Tracking 

0 100 200 300 400 500 
Point number 

Figure 3: The record of automatic matching and track- 
ing of the feature points through the 151 frames in the 
sequence. If a point k is successfully tracked from frame 
i to frame j ,  a vertical line is shown at point number k 
from frame i to frame j. (Due to the limit of the printer 
resolution, all the individual lines form a black region 
in the plot.) 

A feature point detector has been developed for this 
project to automatically detect feature points from im- 
ages. Stereo matching was done using an image match- 
ing algorithm by Weng et  a1 [6] ,  which provides a dense 
displacement field with a disparity vector for every pixel. 
This temporal matching and tracking method was very 
successful. The trace record of the entire sequence is 
shown in Figure 3. Figure 4 presents an example of 
stereo and temporal matching. 

Figure 4: Stereo matching and temporal matching-and- 
tracking. A white needle is draw from the feature point 
to its position in the target frame. (a) An example of 
stereo matching (frame 0). Note that due to  camera 
vergence, the stereo disparities are not large and not al- 
ways horizontal. (b) An example of temporal matching 
and tracking (frame 24 to  69). 

The measurement of the real setup is similar to the 
simulation. To verify the accuracy of structure esti- 
mates as well as camera pose estimates, the global co- 
ordinates of a set of test points were carefully measured 
to within an error of lmm.  The selection of test points 
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were based on ease of measurement and was not based 
on automatically selected features. 

Fig. 7 shows the camera position error and the global 
error of the test points visible at the current time. As we 
predicted for any transitory image sequence, the error 
increases with the time. But the estimates appear good. 
After traveling about 3000mm, the estimated camera 
global position error is less than 60" in the most un- 
reliable component 2 (less than 2.3%). This seems to 
indicate that reasonable results can be obtained with a 
fully automatic algorithm, even with a difficult transi- 
tory image sequence. 

Fig. 5 shows the reconstructed 3D surface. 

Figure 5: Reconstructed 3D surface shown with original 
intensity viewed from an arbitrary direction. 

5 Conclusions 
In this article, we introduced the concept of transi- 

tory image sequence for structure and motion estima- 
tion from long image sequences. It has been shown that 
integration for transitory sequence has very different 
asymptotic error rates from those for a non-transitory 
image sequence. The analytical results listed in Table 1 
indicates that the WC representation is better for global 
estimates and the CC representation is superior for local 
estimates. 
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Figure 6: Simulation results. Let column: CC; right 
column: WC. (a) and (d) Global pose. (b) and (e) 
Global structure error. (c) and (f) Local structure error. 
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Figure 7: Real setup: camera position and structure 
error. Let column: CC; right column: WC. (a) and (d 
Global pose. (p' and (e) Pose error (2-component). (c] 
and (f) Globa structure error. 
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