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Integrated 3-D Analysis and Analysis-Guided 
Synthesis of Flight Image Sequences 
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Abstract-This paper is concerned with three-dimensional (3- 
D) analysis, and analysis-guided syntheses, of images showing 3-D 
motion of an observer relative to a scene. There are two objectives 
of the paper. First, it presents an approach to recovering 3- 
D motion and structure parameters from multiple cues present 
in a monocular image sequence, such as point features, optical 
flow, regions, lines, texture gradient, and vanishing line. Second, 
it introduces the notion that the cues that contribute the most 
to 3-D interpretation are also the ones that would yield the 
most realistic synthesis, thus suggesting an approach to analysis- 
guided 3-D representation. For concreteness, the paper focuses 
on flight image sequences of a planar, textured surface. The 
integration of information in these diverse cues is carried out 
using optimization. For reliable estimation, a sequential batch 
method is used to compute motion and structure. Synthesis is 
done by using i) image attributes extracted from the image 
sequence, and ii) simple, artificial image attributes which are not 
present in the original images. For display, real and/or artificial 
attributes are shown as a monocular or a binocular sequence. 
Performance evaluation is done through experiments with one 
synthetic sequence, and two real image sequences digitized from 
a commercially available video tape and a laserdisc. The attribute 
based representation of these sequences compressed their sizes by 
502 and 367. The visualization sequence appears very similar to 
the original sequence in informal, monocular as well as stereo 
viewing on a workstation monitor. 

Zndex Terms- Integrated segmentation and matching, inte- 
grated motion and structure estimation, consistency of structure 
parameters, sequential-batch processing, analysis-guided synthe- 
ses, flight images, recognition of vanishing line. 

I. INTRODUCTION 

HIS paper is concemed with 3-D analysis and analysis- T guided syntheses of images. Both analysis and synthesis 
are aimed at the characteristics of 3-D motion of an observer 
relative to a scene. There are two objectives of the paper. 
First, it presents an approach to recovering 3-D motion and 
structure parameters from multiple cues present in monocular 
images. Second, it introduces the notion that the cues that 
contribute the most to 3-D interpretation are also the ones 
that would contribute the most to realistic synthesis, thus 
suggesting an approach to analysis-guided compression. It 
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should be noted that 3-D interpretation here is intended to 
communicate to the observer certain chosen 3-D characteristics 
of the scene, such as those that may be useful for navigation. 
Therefore, analysis, synthesis, and compression in this paper 
are with reference to such characteristics. It is not expected 
that, for example, compression and synthesis will retain the 
original photometric appearance of the images pixel by pixel. 
Of course, the algorithms presented could be combined with 
conventional compression techniques to achieve both 3-D and 
visual fidelity. 

A key feature of the approach presented that helps meet 
both objectives is an integrated use of multiple image at- 
tributes or cues. These cues carry the motion and structure 
information of interest to different degrees and have different, 
often complementary, strengths and shortcomings. Thus when 
a given attribute does not contribute significantly to the estima- 
tion process, other, more pertinent cues help achieve reliable 
estimation. The goal is to estimate motion and structure 
parameters such that the estimates best explain the presence of 
all of the observed image cues throughout the image sequence. 

The integrated recovery process gives the estimates of the 
motion and structure parameters as well as simultaneously 
identifies the image cues that are found to contribute to 
these estimates. This amounts to the identification of image 
characteristics that mutually consistently carry information 
about the relative motion and structure. This representation 
power of the image attributes then motivates the introduced 
premise for image synthesis, namely, the above attributes 
cost-effectively communicate to the observer the same motion 
and structure Characteristics perceived from the original image 
sequence. Depictions of the scenes are synthesized using the 
analysis-selected image attributes. These depictions may thus 
also be viewed as a 3-D interpretation-based approach to image 
sequence representation, which obviously should be much 
more compact than the images themselves, i.e., the depictions 
should exhibit very high compression ratios while retaining 
3-D perceptual characteristics. For two real image sequences 
used in this paper, such compression ratios of 502 and 367 per 
frame were achieved. Since object structure does not usually 
change with time, or may change slowly as with many nonrigid 
objects, and object motion characteristics also usually change 
slowly except possibly at some infrequently occurring time 
instants, the effective compression ratios achieved are K times 
the above values, where K is the number of frames over which 
the parameter values can be considered to be constant. 

The identification and analysis of the relative strengths of 
different cues for the problem at hand is a research problem in 
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itself. In general, the available cues, and sometimes even their 
relative merits, depend upon the scene under consideration. 
In this paper we focus on the problem of an observer moving 
above a planar, textured surface such as while in an aircraft that 
is landing or taking off. The goal is to recover the translational 
and rotational motion of the observer and the orientation 
of the plane as a function of time, from multiple attributes 
present in the sequence of images of the plane acquired during 
the motion. The approach we present allows the use of the 
following image cues: point features, optical flow, regions, 
lines, texture gradient, and vanishing line. This list of cues 
could be changed to achieve increased robustness for any given 
scenario while still following the basic approach presented. 

The framework for integration used in this paper is one of 
optimization. The objective function to be minimized is based 
on the differences between the observed image attributes and 
those corresponding to motion and structure parameters. 

Synthesis is performed using the image attributes extracted 
from the image sequence, or by using simple, artificial image 
attributes that are not present in the original images. The 
original attributes are shown by displaying the appropriate 
pixels from the original images. Alternatively, we could sim- 
plify the displays, for example by using average intensities 
over attribute regions. Real and/or artificial attributes are each 
shown in a monocular as well as a binocular (stereo) sequence. 
Binocular display further highlights the recovered motion and 
structure parameters. One outcome of this is that a monocular 
image sequence is converted into a binocular sequence. 

Section I1 discusses the motivation for integration of the use 
of different cues. It also presents an overview of our approach 
to the problem of integrated 3-D recovery and synthesis of 
motion over a planar, textured surface from a monocular 
image sequence. The terms, plane orientation, surface (plane) 
normal, and structure are used interchangeably. Sections I11 
and IV discuss the mathematical formulation and the different 
steps of the algorithm, respectively. The moving objects are 
assumed to be rigid, piecewise planar, undergoing general 3- 
D motion, and viewed under perspective projection. Section V 
presents the performance of the integrated approach, the details 
of implementation and the results obtained in experiments 
with one synthetic sequence and two sequences of 29 and 
33 images, digitized from a commercially available videotape 
and a laserdisc of films taken from flying aircrafts. Estimates 
of image compression achieved are given. The synthesized 
(visualization) sequences appear compellingly similar to the 
originals when the two are played side by side on a SUN 
(monocularly) and SGI workstation monitor (binocularly), 
though we have not performed any rigorous psychophysi- 
cal experiments to test the perceptual similarity. Section VI 
presents conclusions and planned extensions. 

11. MOTIVATION AND APPROACH 

In this section we first discuss motivation behind the two 
major themes of this paper, integrated 3-D analysis and 
analysis-guided syntheses. Then, we present an overview 
of the approach we have developed to perform integrated 
recovery and synthesis of motion above a ground plane. 

A .  The Need for Integrated Estimation 

Three-dimensional image interpretation by an integrated 
analysis of multiple cues has many advantages. Some of these 
are summarized below. 

A feature of any a priori specified type, intended for 3-D 
analysis, may not occur in a given scene. For example, there 
are no line features in the image sequence shown in Fig. 8(a). 
Further, even if the feature is present, the detection process 
may often miss it, For example, it is very difficult to extract 
the same point features between any two consecutive images 
in the sequences used in our experiments. (See Figs. 8(a) and 
10(a).) To reduce such problems, it is desirable to use a large 
variety of features. 

Using multiple features also helps achieve three additional, 
related advantages. First, it increases the likelihood that the 
overall count of the detected features is larger. Second, the 
features are more likely to be spatially well distributed. Each 
of these two properties helps increase the precision of the 
resulting estimates if there is no outlier present, as we will 
see in Scction V-B. Further, the integrated method using 
multiple frames can greatly reduce the effect of the outliers, 
as discussed in Section V-B, without using a computationally 
expensive robust regression method. Third, using a large 
variety of features reduces the probability that the features 
form configurations that are degenerate for 3-D estimation. 
For example, if the detected feature points are on a straight 
line, the motion and structure cannot be computed from them. 
Considering additional types of features at the same time (e.g., 
lines) reduces the probability of encountering only degenerate 
configurations. 

Different detected features may also act as reliability filters 
for each other. For example, the optical flow may be used 
only at those locations where a point feature detector responds. 
This helps in selecting flow information that is reliable (since 
point features are usually detected at locations having high 
intensity gradients), while simultaneously avoiding the loss of 
computation time and accuracy of results due to processing 
less reliable flow. 

Different cues often have complementary strengths and 
shortcomings. For example, region correspondences are easier 
to find because regions have nonzero sizes, but they give 
coarse estimates of motion; on the other hand, points and point 
correspondences are harder to find but have better positional 
accuracy and hence give more accurate estimates. Further, 
certain features may have special significance and utility for 
a specific types of scene. For example, for images taken from 
a flying aircraft, such as those used in Section V-C, the 
vanishing line is an important cue since it canies information 
about aircraft orientation with respect to the ground plane. (The 
vanishing line is defined as the intersection of the image plane 
with a plane that includes the camera center and is parallel to 
the object plane.) 

B .  The Need for Integrated Estimation and Synthesis 

A central theme of this paper is the introduction of the fol- 
lowing notion about image synthesis: Displaying those image 
attributes selected and used for 3-D recovery from an image 
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Fig. 1. A flow diagram summarizing the presented approach. 

sequence communicates to the observer the same motion and 
structure characteristics as perceived by the observer from the 
original image sequence. In other words, the analytical power 
of the attributes is viewed as an indicator of 3-D information 
these attributes contain, and therefore it is expected that their 
presence in a synthesized image sequence would be effective 
in communicating the 3-D scene characteristics. The synthetic 
sequence is in general much simpler than the original sequence 
and hence results in a significant data compression. 

By analyzing and visualizing the images taken from the 
flying airplane, an approach like ours can be used to auto- 
matically build a database with realistic 3-D and photometric 
structure. Integrated analysis and synthesis of the flight irilages 
can also help the pilot navigate by providing enhanced views 
of the scene. For example, the pilot can be presented views 
of a runway (such as that shown in Fig. 6) during takeoff 
and landing, in which artificial features have been added to 
the runway surface to enhance the perceptual salience of the 
images. 

C .  Overview of the Approach 
This section outlines our approach to integrated analysis and 

analysis-guided synthesis, which consists of eight major steps 
as shown in Fig. 1. 

The goal of the first step is to independently detect points, 
lines, and regions in each frame. Optical flow is computed 
between each pair of adjacent frames. 

In the second step, the plane orientation is estimated from 
the detected regions in each frame using texture gradient. 

The third step establishes correspondences between features 
and segments features in each pair of adjacent images using 
a first-order model of the image plane displacement of the 
features described in [ 141. In general, correspondences are not 
found for all features contained in an object; some of them 
remain unmatched. The outliers of the computed flow vectors 
are also removed at this stage. 

In the fourth step, the correspondences found are used to 
merge any distinct first-order segments into the different planes 
if they have compatible motion and structure parameters. In the 
problem at hand, the largest moving plane is selected since we 
are interested in the ground. Then, for this plane segment, the 

motion and structure parameters are linearly computed from 
pairs of adjacent images. This yields dual solutions. One of 
these solutions is selected by using the structure estimates 
from the previous frames. If the solution gives the estimate 
of plane orientation that yields a vanishing line within the 
image, then those outlier features that are on the side of the 
estimated vanishing line away from the ground are excluded 
from the plane segment. 

In the fifth step, the vanishing lines, if they exist, are iden- 
tified from the set of detected lines using two-view estimates 
obtained in the fourth step. 

The objective of the sixth step is to use the established fea- 
ture correspondences to determine robust motion and structure 
parameters by using multiple frames. These parameters were 
computed in a linear fashion from pairs of adjacent images in 
the fourth step. However, when an image is paired with its pre- 
decessor and successor images in the sequence, the resulting 
structure parameters will in general not be identical. Thus, the 
requirement of such consistency of structure parameters must 
be explicitly enforced. This makes the motion and structure 
estimation a nonlinear problem. To enforce this requirement, 
we must consider a batch of frames at a time. We therefore 
perform motion and structure estimation over a sliding win- 
dow of N frames along the image sequence. For each such 
window, the motion and structure Parameters are estimated 
by minimizing an objective function that is proportional to 
the image plane disparity between observed image attributes 
and those corresponding to motion and structure parameters. 
We note here that it is not necessary to track features to 
enforce the structure consistency since all features are on the 
plane and consistency means conservation of the orientation 
determined by the features. The orientation estimates obtained 
from candidate vanishing lines and texture are included in the 
objective function so that any deviation of the result from these 
estimates is penalized in proportion to the support the estimates 
have. The motion and structure estimates obtained from each 
batch are compatible with the attributes of the images in the 
batch. Clearly, the larger the batch, the more compatible the 
estimates will be with the image sequence at the expense 
of computation time and memory. The motion parameters 
derived from batch computations are sequentially updated. The 
result of the above 3-D analysis is a set of estimates of plane 
orientation, rotation, and normalized translation parameters. 
Then, the translation and structure parameters are scaled 
starting from the initial frame at to .  

In the seventh step, the input sequence is synthesized using 
the image attributes and the result of the 3-D analysis. 

Finally, in the eighth step, the result of 3-D analysis is 
evaluated using the estimated vanishing lines, the average 
image error, and the visualization sequence. 

111. MATHEMATICAL FORMULATION 

In this section, we present the mathematical formulation of 
our approach. First, we present the equations that are used 
to represent the displacement field induced by a rigid motion 
of a planar surface. Second, we describe how to noniteratively 
estimate motion and structure parameters from individual cues 
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such as points (or flow), lines, and regions using two frames. 
We also describe the estimation of the plane orientation from 
texture gradient and vanishing line in a single image. Third, 
we describe the methods for integrated estimation of motion 
and structure from multiple cues: noniterative estimation from 
two views, iterative estimation from multiple views, and 
sequential-batch estimation. 

A .  Description of Displacement Field 

Let the right-handed coordinate system ( X ,  Y ,  2)  be fixed 
on the camera with the origin coinciding with the projection 
center of the camera. Without loss of generality, we assume 
that the focal length is unity. Thus, the image plane is located 
at z = 1. Then, the perspective projection (z, y) on the image 
of a point (XI Y ,  2)  is given by 

x = x/z ,  
y = Y / Z .  

Consider a point P on the object in 3-D. Let d = [ X ,  3 21’ 
be the 3-D coordinate vector of P at time t l ,  and let z’ = 
[ X I ,  Y’, 2’1’ be the corresponding vector at time t2. Let T and 
R denote the translation vector and rotation about the unit axis 
& = [n,,ny,nz]’ by an angle w,  respectively. Then, 

where 

and 

T’ = [TxTyTz]’. 

Let (2: y) an$ (d, y’) be the image coordinates corresponding 
to d and X’,  respectively. If the point P is on the plane 
aX + bY + CZ = 1 at time t l ,  then 

(3) 

Here, we represent the plane by using aX + bY + CZ = 1 
rather than Z = p X  + qY + T, which is often used [I], [3], 
since we cannot express the plane when c = 0. This case 
frequently occurs, for example, when the vanishing line is 
seen in the image taken from the aircraft or the navigating 
vehicle. Hence, from (l), ( 2 ) ,  and (3), we get 

X’ 
2‘ 

1 
ax + b y  + c ‘  

Z =  

(4) 
a1z + a2y + a3 

a72 + asy + a9 
5’= - = 

where 

Then, the displacement vector (0,) D,) is defined as 

def 

def 
D, = XI  - 3: 

(7) D, = y‘ - y .  

Note that the surface structure represented here by (a ,  b, c) 
can only be estimated up to the scale factor if the translation 
is nonzero. In general, for a plane akX + bkY + c k z  = 1 at 
tk, we define 

def scalek = [la; + bz + ~ $ 1 1 .  

Then, scalek simply represents the distance from the camera 
center to the plane. Setting scaler, equal to one, 6 S , k  = 
[ a k ,  b k ,  Ck]’ becomes the unit surface normal that can be 
parametrized by two spherical coordinates (latitude and lon- 
gitude). 

B.  Estimation from Individual Cues 

In this section, we describe how to noniteratively estimate 
motion and structure parameters from individual cues such 
as points (or optical flow), lines, and regions using two 
frames. The basic approach used in two-view estimation 
is as follows: First, we linearly solve for the intermediate 
parameters a l ,  . . . , as ,  and second, from the intermediate 
parameters obtained, we noniteratively compute the dual set of 
parameters for motion and plane orientation using the existing 
methods in [4], [8]. Next, we describe the estimation of the 
orientation of a textured plane in each frame from image 
texture gradient that is based on the method presented in [ 171. 
We also describe the estimation of the orientation of a plane 
from a vanishing line in each frame. 

Estimation from Point Correspondences From (4) and (3, 
we have the two equations for each point correspondence (or 
optical flow vector): 

Using the above two equations, if four or more point corre- 
spondences (or flow vectors) are given, we linearly compute 
the eight coefficients a l l  . . . , as with a9 set to 1 since the 
nine coefficients can only be determined up to a scale factor. 
Then, using the algorithms presented in [4] and [8], we can 
noniteratively solve for the motion and plane normal. 

To evaluate the motion and structure estimates obtained, we 
define the image error of a point correspondence i between 
tk and tk+l as 

where E , , k , i , p  and Ey,k,i ,p are defined by the residual errors 
of (4) and ( 5 ) ,  respectively. E k , i , F  for a flow vector is defined 
in the same way. 
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Estimation from Line Correspondences: Liu and Huang 
[ 161 presented linear and nonlinear motion algorithms based on 
straight line correspondences from three views. They showed 
that motion cannot be determined uniquely from two views. 
When the lines are on the same plane, a linear algorithm can 
be formulated from two views. In this case, if we compute 
the intersections of each pair of lines, we can use the existing 
point-based algorithms for a planar surface [4], [81. However, 
it is desirable to use line features directly if we can develop 
the linear equations from the lines on a plane for the following 
reasons: First, if the point-based equations are used for the 
intersection points from the lines with similar slopes, the 
equations ((9) and (IO)) for those points are effectively given 
unfairly large weights since the intersection points are far 
from the image plane boundary (i.e., large image coordinates). 
Second, even though no intersection point is obtained by the 
two parallel lines in the image plane, the equations obtained 
from those lines can still constrain the range of the motion 
and structure parameters. 

Given a pair (L1, Lz )  of the corresponding lines at t l  and 
t 2 ,  the 2-D equations of L1 and L2 in the image plane are 
given by A l z  + Bly + C1 = 0 and AZZ + B2y + C2 = 0 ,  
respectively.+Considef two end points P and Q on a line at t l  

in 3-D. Let X ,  and X, be the 3-D coordinate vectors of P and 
Q at t l ,  respectively. We define (x,, y p )  and (x,, y , )  as the 
image coordinates of 2, and d,, respectively. Then, the image 
coordinates (?,,Q,) and (Zq1 Qq) at t 2  predicted from the 
current motion and structure estimates (i.e., nine coefficients 
a l l  . . . , ag) are expressed using (4) and (5). Since the corre- 
sponding points on the corresponding lines are not known, 
we cannot use the constraints based on point correspondences. 
Instead, we use the constraint that the corresponding line L2 at 
t 2  and the predicted line from the estimates should be identical 
in the sense that the perpendicular distances from the two end 
points on the predicted line to L2 should be zero. This is 
illustrated in Fig. 2. 

Let I ,  and E, be the perpendicular distances from two 
predicted image coordinates to L2, respectively. Since both 
1, and 1, should be zeroes, we minimize the sum of squares 
of the following two terms for each line correspondence, 

After replacing (2,, Q,) and (?,> Qq) in the above two equa- 

tions with (4) and (3, we eliminate the denominator terms. 
Then, we arrive at the two equations given at the bottom of 
the page for each line correspondence. Using the above two 
equations, if four or more line correspondences are given, we 
linearly compute the eight coefficients al l  . . . a8 with a9 set 
to 1 since the nine coefficients can be determined only up 
to a scale factor. Then, using the algorithms presented in [4] 
and [8], we can noniteratively solve for the motion and plane 
normal. 

To evaluate the motion and structure estimates obtained, we 
define the image error of a line i between t k  and tk+l as 

where E P , k , % , L  and E q , k , z , ~  are defined by the residual errors 
of Eqs. (12) and (13), respectively. 

Using (4), ( 5 ) ,  
and (7), the displacement vector (D,, Dy) can be approxi- 
mated by 

Estimation from Region Correspondences: 

D, = a3 + (a1 - U ~ ) Z  + U ~ Y  - U ~ X Y  - a7x2 (17) 
D, = a6 + a45 + (a5 - a g ) y  - a7Zy - a8Y2, (18) 

if we assume that 1) % << 1, 2) the field of view of the 
camera is small, and 3) the rotation about X and Y axes is 
small [2], [ 121. These assumptions, which are quite common in 
motion analysis are not very restrictive since the field of view 
of a camera is small in practice and the amount of motion 
is small if the time interval between two images is short. 
Note that the second-order polynomials for (D,, Dy) can be 
derived without any approximation by using the instantaneous 
velocity formulation for the optical flow. Let M and N be 
the corresponding regions at two time instants. Then, using 
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Jacobian, we can derive the following two equations for each 
region correspondence [ 121: 

(19) 
Mol Mi1 M20 + a2- - as--- - u7- 
Moo Moo Moo 

where 

Eqations (19) and (20) represent the constraints from which 
the motion and structure parameters are to be estimated 
using a sufficiently large number of region correspondences. 
Therefore, we can linearly compute 8 coefficients a l ,  . . . , a&3 
from four or more region correspondences with a9 set to one 
since the coefficient a9 can have any value in the above two 
equations. Then, using the algorithms presented in [4] and [81, 
we can noniteratively solve for the motion and plane normal. 

To evaluate the motion and structure estimates obtained, we 
define the image error of a region i between t k  and tk+l as 

E k A R  " J- 1 (22) 

where EZ,k , i ,R  and E y , k , i , R  are defined by the residual errors 
of (19) and (20), respectively. 

Consider the problem 
of estimating the orientation of a planar textured field from 
gradients of image texture properties. Blostein and Ahuja [ 171 
extract texture elements while simultaneously recovering the 
orientation. A planar surface is characterized by the triple 
(Ac,  S, T), where A c  is the texel area expected in the image 
center, S is the slant, and T is the tilt. Slant, ranging from 
to 90°, is the angle between the planar surface and the image 
plane. Tilt, ranging from 0" to 360", is the direction in which 
the surface normally projects in the image. Given image 
coordinates (x , y ) , 

Estimation from Texture Gradient: 

0 zf arctan((xcosT + ysinT)FOV), (23) 

where FOV is the field of view of the camera. A;, the area 
of a texel at location (2, y) in the image is related to Ac ,  the 
area of a texel at the image center, by 

(24) 

Here, 6 + S should be less than 90" since for 90" the plane 
becomes parallel to the line from the camera center to the point 
( x ,  y) in the image plane. Then, we have ( l - tan 0 tan S) > 0. 
When S is equal to or greater than go", A c  is not defined. 
In order to estimate the best orientation, they use the gradient 
of texture element areas. For each (Ac,  S, T), (24) gives the 

Ai = A c ( 1  - ta110tanS)~. 

expected texel area at each image location. These expected 
areas are compared to the extracted region areas in the image, 
and a fit-rating is computed for the plane. The plane that 
receives the highest fit-rating is selected as the estimate of 
the textured surface. Then, the candidate texels that support the 
best planar fit are interpreted as true image texels. In this paper, 
we extend the method by allowing multiple texture patterns on 
a planar surface. We first detect regions or candidate texels. 
We make groups of regions such that the minimum distance 
between any region and the others in each group is below 
a threshold. Then, for each (S, T), we compute the support 
for different A c  values using (24). The voting is carried out 
for each group of detected regions where A; is given by the 
area of the region. We can select the set of the highest voted 
values of A c  and then compute the total support for (S ,T) .  
The set of ( S ,  T) that receives the highest support becomes the 
estimate of the planar orientation. Then, the candidate regions 
that support the best planar fit are interpreted as true image 
texels. 

For a 3-D plane equation given by a X  + bY + cZ = 1, we 
can easily convert the values of slant and tilt to (a, b, c) using 
the following equations: 

(25) S = arccosc 

Orientation from Vanishing Line: Consider a 3-D plane 
given by a X  + bY + c Z  = 1. Its surface normal f13 is 
represented by the vector [a,b,c]'. Since the vanishing line 
is defined as the intersection of the image plane (2 = 1) and 
aX + bY + cZ = 0, it is expressed as ax + by + c = 0 in terms 
of the image coordinates x and y. Therefore, if we know the 
surface normal, the vanishing line is determined in the image 
plane. Conversely, if we know the equation of the vanishing 
line in the image plane, the surface normal is determined up 
to a scale factor. 

C .  Integrated Estimation 

This section presents approaches to motion and structure 
estimation that integrate the information from all cues dis- 
cussed in Section III-B. First, we describe linear estimation 
using two frames. Then we present a nonlinear method using 
multiple frames of batch size N for robust estimation. Finally, 
we present a sequential-batch method. 

Integrated Linear Estimation Using Two Frames: For each 
pair of successive frames at t k  and tk+l,  we first solve for the 
intermediate parameters a l ,  . . . , a g .  To solve the six equations 
for points, lines, and regions simultaneously (see (9) and 
(lo), (14) and (15), and (19) and (20)), we linearly compute 
the eight coefficients a l ,  . . . , as with a9 set to 1, since a9 

can have any value. Each equation is multiplied by a factor 
proportional to the significance of the corresponding cue. Then 
we noniteratively compute the parameters for motion and plane 
orientation. 

Integrated Nonlinear Estimation Using Multiple Frames: 
The solution obtained by the method to be presented in this 
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section minimizes an image error between the observed cues 
and those corresponding to the motion and structure estimates. 

To obtain a measure of inconsistency between the motion 
and structure estimates obtained and the different cues used, 
we first define the total image error between t k  and t k + l  

as shown in (27) at the bottom of the page, where E k , , , P ,  

E k , , , F ,  E k , i , L ,  and E k , 2 , R  are defined in (1 I) ,  (16), and (22), 
and n p ( k ) ,  n ~ ( k ) ,  n ~ ( k )  and n ~ ( k )  are the numbers of 
point correspondences, flow vectors, line correspondences, and 
region correspondences between t k  and t k + l  for a planar 
patch, respectively. Note that each error term has the same 
unit (image plane error). Each error term E:,, is multiplied 
by a weight A k , & ,  which reflects the significance of the cor- 
responding cue. Then, we define the average image error for 
one cue between t k ,  and t k 2  as 

where 

For each window of batch size N ,  we define the following 
objective function, which is to be minimized with respect to 
structure and motion parameters: 

(30) 
where E k , I  and A o , L ~ - l , ~  are defined in (27) and (29), respec- 
tively, and E k , r .  and E k , T  are defined below. 

The first term in (30) is normalized by A o , N - ~ , I  so that it 
represents the average image error for one cue. E k , L r ( S k )  is 
the penalty term that makes the orientation parameters stay 
within a certain range of the initial values computed from 
recognized vanishing lines. During the iterative optimization, 
the objective function involves large penalty when the iteration 
variables representing the unit surface normals leave the 
feasible regions. One simple way of defining the penalty terms 
at t k  and thus E k , v  is as follows. The size of the feasible 
region, y, is determined by the support z computed from the 
vanishing line recognition stage as shown in Fig. 3(a), where 

I * I I 

O .r, X 

(Nppot d 4- lh) 

(a) (b) 

Fig. 3. Illustration of the penalty term for vanishing line at t k  . (a) Size of 
feasible region versus support of the recognized vanishing line. (b) Definition 
of d l  and &. 

zt ,  yt. and gnL are the threshold values. Let d l  (d2) be the 
perpendicular distances in pixels from one (the other) end 
point of the recognized vanishing line to the vanishing line 
corresponding to the iteration variable SI, (Fig. 3(b)). If we let 

(3  1) d(z) *f max(y(z), y t ) ,  
ef { o if d l  I d(z) 

d l  otherwise, 

and define 12 in the same way, then the image error E k , l r  is 
defined as 

E k , T  is the penalty term for texture that is defined similar 
to E k , L r .  The size of the feasible region is determined by the 
support obtained from the texture gradient algorithm. 

This objective function combines the contributions of mul- 
tiple features to the scene characteristics to be estimated. Each 
contribution is weighted by a factor A. Let MI, be set of motion 
parameters between t k  and t k + l .  Let SI, = ( a k ,  b k ,  C k )  be the 
unit surface normal n'S,k at t k .  For each overlapping batch of 
size N ,  we iteratively minimize the objective function ((30)) 
with respect to h f k  and s k  where k runs from 0 to N - 2 
and N - 1, respectively, without loss of generality. Since the 
number of the iteration variables is large, we use the motion 
and structure relationships to reduce the number of variables. 
First, we can relate the unit surface normals with the interframe 
rotations: 

< S , k + l  = R k , k + l G S , I , .  (33) 

Secondly, from the six equations ((9) and (lo), (14) and 
(15), and (19) and (20)) with (6), the interframe translational 
velocities are linearly computed when the unit surface normals 
and interframe rotations are given. Therefore, once SO or n 's ,~  
and interframe rotational velocities are given, the other unit 
surface normals and translations are linearly computed. So 
is represented by two spherical angles, and each interframe 



364 lEEE TRANSACTIONS ON PATERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 16, NO. 4, APRIL 1994 

rotation is expressed by three variables for rotation axis and 
angle. We can thus reduce the number of search parameters of 
the objective function from 8(N - 1) to 2 + 3(N - 1): 

min G(Mk,  S k )  
hik ,SI. 

- - minS~,k=O;..,N-l,Ai,,k=O,...,N-2G(~k, s k )  

(34) 

We note that (33)  also enforces the consistency of structure 
parameters explained in Section 11-C. Tracking of each feature 
is not necessary to enforce the structure consistency since all 
features are on the plane, whose structure is given by its 
orientation. 

Since we are concerned with monocular sequences, we have 
the problem of unknown scale for the estimated structure [ 101. 
The scale factor of any two consecutive images depends on the 
scale factor of the first two images. Then, translations cannot 
be linearly computed even though SO and R k , k + l  for each IC 
are given, resulting in an increase of the parameter space of 
iteration. This problem is also avoided by linking multiple 
frames through the unit surface normals in the objective 
function (30). Note that if we consider the pairs of frames 
between t o  - t l . t o  - t2,....t0 - t ~ - 1  in (30) instead of 
pairs of successive frames in order to avoid the unknown scale 
problem, we must track each feature from t o  to t ~ r - 1 .  For a 
given initial surface normal and interframe rotations, the other 
surface normals are determined through ( 3 3 )  (which assumes 
that scalek in (8) is one). Then, the normalized translation 
parameters corresponding to the unit scaleks are computed in 
the iteration process instead of true scaled translation. As we 
can see from the predefined equations, this does not affect the 
average image error given by the first term in the objective 
function G. 

Then, by using the estimates of the initial surface normal 
and interframe rotations, we rescale structure and translation 
parameters sequentially starting from the initial frame by using 
any set of the points which are on the plane. Those points need 
not be the same throughout. We have three sources of initial 
guess for iteration variables (the initial surface normal and the 
interframe rotations). We can use the dual solutions obtained 
in closed form based on two successive frames, the detected 
vanishing lines, and the estimates obtained from the previous 
batch of frames. We try the three initial guesses and then select 
one that gives the minimum value of the objective function. 

Integrated Sequential-Batch Estimation: It is desirable to 
use all the available frames as a batch and the interframe 
rotations and initial orientation as variables, and to iteratively 
minimize the objective function defined in (30). However, 
since the number of frames is very large, the above total batch 
method is impractical due to its enormous memory and com- 
putation requirement. Therefore, motion parameters obtained 
from the overlapping batches are sequentially updated. The 
size N of a batch is typically 3, where the number of iteration 
variables is 8. 

After minimizing the objective function for a batch of 
size N starting at tl, we determine the motion parameters 
m(l) between tl and tl+l as follows, though we can use any 

sequential updating algorithm available in the literature: 

(35) 
m k ( 1 )  

1 

m(1) = 
k = l - ( N - 2 )  

where m k ( l )  consist of the motion estimates between tl and 
t l + l  obtained from the batch that runs from t k  to t k + N - l .  

errork is the square root of the minimum value of the objective 
function ((30)) from the batch computation between t k  and 
t k + ~ - ~ ,  and E represents a small positive number. Note 
that batch computations provide the normalized translation 
parameters with respect to the unit surface normal for each 
frame. Therefore, we do not need to be concerned about scale 
factors here even though we do not know the scales of the 
translation parameters. 

Since vanishing lines are usually visible for flight images, 
it is important to compute the orientation parameters in such a 
way that the reconstructed vanishing lines change consistently 
with the estimated interframe rotation parameters over succes- 
sive frames. Consider two overlapping batches that start at tl 
and tl+l, respectively. At t l ,  the best orientation parameters 
are computed based on the frames from tl to t l + ~ r - 1 .  Then, 
at t l + l ,  new orientation parameters are estimated based on 
the frames from t l + l  to t l + ~ r .  Even though these two sets of 
estimated parameters minimize the objective functions within 
their batches, respectively, the surface normal values for the 
frame t l + l  estimated from two overlapping batch windows 
are not generally equal for noisy images. Further, a small 
difference between two estimated unit surface normal vectors 
for the same frame results in large errors in the image 
plane when they are viewed as vanishing lines. Therefore, 
we avoid using the updated orientation parameters as the 
final estimates for each frame as the new batch computations 
become available. Instead, at tl, the ground orientations from 
t o  to tl are computed using m(O),.. .  :m(l - 1) and the 
reference ground orientation at t,, which is the estimated value 
for the batch from t ,  to t r + ~ - l .  In this paper, this batch is 
simply chosen by the criterion that it has the minimum value 
of the objective function (30) among the batches that start at 
t o  through tl .  Since translation parameters are easily computed 
given rotation and surface orientation parameters, we basically 
need to update rotation parameters only. 

Finally, we rescale translation and structure parameters 
starting from the initial frame by using any set of the points 
on the plane. 

IV. ALGORITHM 

This section describes more precisely the eight steps of the 
algorithm outlined in Section IILC. The algorithm uses points, 
flow, regions, lines, vanishing lines, and texture as the image 
cues. Given an image sequence IO,... ,  I K - ~ ,  the main steps 
of the algorithm are as follows. 

Step I: Detection of Image Cues: Points, lines, and re- 
gions are detected independently in each frame. Optical flow 
is computed between each pair of adjacent frames. 

Step 2 :  Estimation from Te-xture Gradient: Plane orienta- 
tion and its support value are independently estimated from 
the detected regions for each frame using texture gradient. 
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Step 3: Integrated Segmentation and Matching Using the 
First-Order Model: This step groups points, flow, regions, 
and lines in each pair of adjacent images into subsets corre- 
sponding to the local planar surface patches of moving objects 
based on the similarity of six first-order (affine) image plane 
displacement coefficients [ 141. This step also establishes the 
correspondences between points, regions, and lines in each 
pair of adjacent images. 

Step 4: Merging Local Solutions into One Global Solu- 
tion; Since the features corresponding to different cues are 
oversegmented by the first-order model, a merging step is 
performed. For flight images, the largest plane segment cor- 
responding to a ground is identified and is used to linearly 
estimate the dual solutions. One of the dual solutions, the 
one that is closer to the structure estimate from the previous 
frames, is selected. Since there remain the cues which were not 
grouped (and therefore unmatched) in Step 3, they are matched 
and acquired by the plane segment if they are within a distance 
I R  from the plane segment and satisfy the same constraints 
on motion and structure as the plane given by the selected 
solution. After recomputing the solution, the outlier cues that 
are not on the ground are removed if this solution gives the 
estimate of plane orientation, which yields a vanishing line 
within the image. Then, motion and structure parameters are 
recomputed 

Since points, flows, lines, and regions are often overseg- 
mented by the first-order displacement model, a merging step 
is necessary. Any distinct first-order segments are merged 
into the different planes if they have compatible motion 
and structure parameters. Merging decision is based on the 
average image error in (28), which is computed using the nine 
coefficients a l .  . . . , a9 obtained from the two-view integrated 
linear estimation algorithm. We use merging criteria similar to 
those used in [ 2 ] .  

Then, the largest plane segment is identified under the 
assumption that it corresponds to the ground with respect to a 
moving observer. We have dual solutions for the planar case. 
The solution that is closer to the predicted plane orientation 
from the previous frames is selected. 

Next, the remaining unmatched and ungrouped cues are 
matched and added to the largest plane if they are within 
a distance I R  from the plane and satisfy the corresponding 
constraints on motion and structure defined by (4) and (5), 
(12) and (13), or (19) and (20), where a l , .  . . . ay are given by 
the above solution. 

Then, dual solutions are recomputed and one solution is 
selected in the same way. If this solution gives the estimate 
of plane orientation that yields a vanishing line within the 
image, the outlier cues that are not on the ground are removed. 
Note that we can not define outliers if the solution yields no 
vanishing line. In Fig. 4, we show two solutions corresponding 
to the same coefficients a l .  . . . , as. Those coefficients are the 
two-view linear solution between t 4  and t 5  for the second real 
image sequence used. Note that two solutions give the same 
flow, but the flow is not defined for solution (b) in the dark part 
of the image plane, which corresponds to sky. Then, two sets 
of motion and structure parameters are linearly recomputed. 
Again, one solution is selected in the same way. 

(a) (b) 

Fig. 4. Displacement fields of dual solutions for the same set of coefficients: 

n j  = 0.9515,  ne = -0.0133, a7 = -0.1972 ., = 0.0313, 
and o g  = 1 .  (a) First solution:C.5 = [0 .0723. -0 .0758,0 .9945]  ’, 
T‘ = [-0.208S. 0.0048.0 .0696]’ ,  5, = [0.1220,0.9145,0.3858]’, 
d = 13.44deg. (b) Second solution: ~7.7 = [-0.9711,0.1066,0.2135]’, 
T’ = [0.0404. -0.0185.0.2153]’,  r7, = [0 .1303,  -0 .0327,0 .9909]’ ,  
U’ = 4.35de9. 

= 0,9159, (12 = -0.0677 , (13 = 0.0062, (14 = 0.0890, 

Step 5: Recognition of Vanishing Lines: The vanishing line 
is identified from the set of detected lines in each frame by 
using two-view estimates. 

Successive two-view estimates of plane orientation are used 
for the recognition of a vanishing line from a set of detected 
lines in each frame. A simple way of identifying vanishing 
lines from sets of detected lines at tk and t k + l ,  given two- 
view estimates (that is, plane orientations or vanishing lines 
and rotation parameters), is as follows: 

For each frame, compute the support value for each 
detected line based on distance and slope difference in 
the image plane between the predicted vanishing line 
and each detected line. Only those lines whose lengths 
are longer than a threshold T L  are considered. 
For each pair of lines in two frames, compute the total 
support based on support values from step 1 and (33). 
Find the pairs of lines that give the maximum and the 
second maximum of the total support values. The pair 
of lines with the maximum value corresponds to the 
first candidates of recognized vanishing lines for two 
successive frames. The difference in the total support 
values represents the final support that is normalized 
between 0 and 1 .  Here, we get a low value of confidence 
if there are several candidate vanishing lines. 

The confidence in the recognized vanishing lines improves 
if the results from the successive pairs of frames are consistent. 
We also note that vanishing lines are not always recognized. 

Step 6: Integrated Nonlinear Batch Estimation and Sequen- 
r i d  Update: Multiple frames in a batch are used to iteratively 
estimate motion and structure parameters. This step also 
updates motion parameters derived from each overlapping 
batch. Then, these motion parameters are used to compute 
the globally compatible structure parameters. 

This step minimizes iteratively the objective function (30) 
with respect to iteration variables, So, and the interframe 
rotation parameters for each overlapping batch of frames. Two- 
view linear solutions, the recognized vanishing lines, and the 
estimates from the previous batch are used as initial guesses 
for this nonlinear minimization. The solution which gives the 
minimum value of the objective function is selected. 

After minimizing the objective function for each batch, we 
update the motion parameters using (35). 
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At t i ,  the ground orientations from t o  to tl are easily 
computed by using m(O), . . .  ,m(l - 1) and the reference 
ground orientation at t,, which is the estimated value of 
the batch from t, to f , + ~ - l .  This batch is chosen using 
the criterion that it has the minimum value of the objective 
function given in (30) among the batches which start at t o  
through tl. Since translation parameters are easily computed 
given rotations and surface orientations, we need to update 
rotation parameters only. 

Then we rescale translation and structure parameters starting 
from the initial frame using any set of the points on the plane. 

Step 7: Synthesis: This step synthesizes the input sequence 
from the image attributes used to obtain the motion and struc- 
ture estimates as well as from the artificial image attributes 
that are consistent with the motion and structure estimates but 
not present in the original image. 

Two methods are used in this paper, as described below: 
1) The visualization sequence is synthesized by displaying 

a) those image attributes whose correspondences are used for 
motion and structure estimation, and b) the vanishing line de- 
rived from the estimated surface orientation. Now an attribute 
may not be present throughout an image sequence because, 
for example, it may not be detected in each image. Each such 
attribute is introduced in each image where it is missing. This 
is done by extrapolating from the nearest frame where it is 
detected, using the estimated motion and structure values. 

2) We use artificial features not present in the scene such 
as a homogeneous disc pattern. The depiction at tl, shows 
how the ground will look if it had a unform disc pattern on 
it and it  were viewed at the orientation estimated at t k  during 
recovery. The sequence of these depictions then comprises a 
visualization sequence that artificially depicts the estimated 
motion and structure parameters. 

For display, real and/or artificial attributes are shown as 
a monocular as well as a binocular (stereo) sequence, thus 
further highlighting the recovered motion and structure pa- 
rameters. 

Step 8: Evaluation of 3 - 0  Analysis: For performance eval- 
uation, we compute alignment error between estimated vanish- 
ing lines and the actual vanishing lines, compute image plane 
differences between observed and 3-D predicted image cues, 
and perceptually compare the visualization sequence with the 
original sequence. 

First, since the vanishing lines are usually visible for flight 
images, we compare estimated vanishing lines (surface orien- 
tations) with the actual vanishing lines and then measure the 
image errors defined in (32). Second, we check the average 
image error of the multiple cues defined in (28). Third, we 
visually compare the visualization sequence with the original 
sequence side by side using SUN or SGI monitors. The closer 
the two sequences are perceived to be, the better the estimates 
are judged to be. 

V. EXPERIMENTAL RESULTS 

We conducted experiments to test the performance of the 
integrated analysis as well as synthesis. Two types of experi- 
ments were conducted. First, we evaluated the impact of inte- 
gration on estimation by applying the algorithms to synthetic 

images showing known motion and structure and computing 
estimation errors. Second, we applied the algorithms to real 
image sequences with unknown ground truth. The performance 
was evaluated by comparison of the perceived motion and 
structure from the original and the synthesized image se- 
quences. Sections V-B and V-C describe these experiments. 
Section V-A first presents some implementation details for 
the algorithm described in the previous section. 

A. Implementation Details 

In all the experiments, we use a region detection algorithm 
based on multiple intensity thresholds. The images are first 
segmented using multiple thresholds. We experimentally chose 
three threshold values. This is followed by connected compo- 
nent labeling, small region elimination, and region merging. 
Then, regions that border on the boundary of the image plane 
are removed. We detect lines using a modified version of the 
method described in [15]. To compute the optical flow, we 
use a method based on grey level correlation values. For each 
pixel at t k .  we move the window around its neighborhood in 
the image at t k + l  and compute the sum of absolute difference 
of intensity values. Then, we select the location where the 
correlation value is at its maximum. We use the flow obtained 
at the pixels where the image variation is high. In the two real 
image sequences used in our experiments, it is very difficult to 
extract the same point features between any two consecutive 
images. Therefore, we do not use point features for estimation. 
Then, the matching and segmentation algorithm presented in 
[I41 is applied to the successive pairs of the images. 

In the recognition of vanishing line, only lines whose lengths 
are longer than 170 pixels (TL) are considered. To iteratively 
minimize (30), we use a modified Levenberg-Marquardt al- 
gorithm (IMSL routine dunlsf). The batch size N used in our 
experiments is 3. The values of X k , z , F ,  X k . i , ~ ,  X k . i . L ,  Xk.li, 

and X ~ , T  are 1, 4, 25, 1, and 1, respectively. The values of 
xt. y t ,  and ynl used in the penalty term for the vanishing lines 
are set to 0.014, 7 and SIZEV/2 pixels, respectively, where 
SIZEV is the vertical size of the image plane. 

The compression ratio is defined as the ratio of the memory 
size for the original data to the size for compressed data. 
(Recall from Section I that compression is with respect to 
retention of 3-D characteristics, not the usual photometric 
properties). Based on the premise that the display of the 
attributes used during analysis will be the most cost effective 
way of communicating to the observer the same motion 
and structure characteristics as perceived from the original 
image sequence, we compute the compression ratio below. 
We consider only such 3-D scenes as can be approximated 
by piecewise planar surfaces. Since the amount of data for the 
camera parameters are negligible, we ignore the camera param- 
eters in computing compression. Assume that one coordinate 
of a pixel can be represented by 10 b. A region is represented 
by the average intensity value ( 1  byte) and its boundary. 
The boundary is encoded by the Freeman chain code [6] and 
the coordinates of the starting pixel, where 0.5 bytes and 3 
bytes are necessary for one chain code and the coordinates 
of one pixel, respectively. A line is represented by the pixel 
coordinates of two end points, and 5 bytes are necessary for 
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Fig. 5. Performance comparison. Resolutions are varied from 64 x 64 to 2024 x 2024 for a set of actual parameters 
(cu = 10.5774.0.5774,0.5774]', UJ = a0 and ? = [0.3,0.3.0.3]'!: (a) Error of surface normal (65). (b) Error of rotation 
axis (L). (c) Error of rotation angle ( U ) .  (d) Error of translation ( T ) .  

a line. Rotation, translation, and orientation parameters are 
given by 3, 3, and 2 real numbers (4 bytes per real number), 
respectively. The optical flow vectors used during analysis are 
not included since they only describe motion of other points 
and the flow field can be reconstructed if motion and structure 
parameters are given. Consider a sequence of K frames where 
the size of each frame is SIZEV by SIZEH and each pixel is 
represented by 256 grey levels. Then, we have the following 
formula for compression ratio: 

compression ratio = 
SIZEV x SIZEH x K 

TOL ~5 + TOR ~4 + LORB ~ 0 . 5  + 24 x ( K  - 1) f 8  
(36) 

where TOL and TOR are the total numbers of lines and 
regions, respectively, and LORB are total length of the chain 
codes for regions. If a 3-D model for lines and regions is used, 
the compression ratio can be further reduced. 

B.  Quantitative Evaluation from Synthetic Images 

Experiments were conducted to compare the estimation 
errors obtained using different cues individually as well as 
together. 

Average Estimation Error from Two Views: Performance 
of the integrated estimation method using multiple cues (point, 
line, and region) was compared with the methods that use 
single cues such as point (Section 111-B), line (Section 111-B), 
and region (Section 111-B), respectively. In the simulations, 
the integrated linear two-view estimation method described in 
Section 111-C was used for motion and structure estimation. 

The size of the simulated image plane is 1 x 1. Twelve 
feature correspondences are used for each type of feature 
(points, lines, and regions). At each trial, a plane passing 
through the point at (0, 0, 10) is randomly generated. Then, 
3-D coordinates of points on the given plane are randomly 
generated. A line is obtained by a pair of randomly chosen end 
points, where we consider only those lines whose projected 
length into the image plane is longer than 0.03. A region 
boundary is generated by four random variables: two for 
the center point, one for radius (from 0.01 to 0.08), and 
one for the number of points (from 16 to 64) on a region 
boundary. To demonstrate the improvement obtained by using 
multiple features, points, lines, and regions are generated only 
in the first, second, and third quadrants of the image plane, 
respectively. Only features that are within the visual field in 
both frames are generated. The image coordinates of the points 
are quantized to the nearest integer for each resolution. The 
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Fig. 6. Synthetic image sequence (a) t o ,  (b) ti, (c) t 2 .  

TABLE I 
TRUE VALUESOF SURFACE NORMAL ( G 5 , k )  AT f k ,  ROTATION AXIS (c,), 

ROTATION ANGLE (d), AND TRANSLATION ( F )  BETWEEN f k  AND t k + l  
~~ 

[ t k .  t A + l ]  [O,lI  [ 1.21 
[-0.91~0,0.3C24.0.1772] [-O.SS36.O.~i3l,0.1775] 

I / ,  [0.1222, -0.03GS,0.9918] [0.1197. -0.0340,0.9922] < 

(deg) 7.2000 5.4000 
F [0.0160, -0.0160.0.2300] [0.0470, -0.0150,0.2000] 

relative error of a vector is defined by the Euclidean norm of 
the error vector divided by the Euclidean norm of the correct 
vector. The surface normal fis is scaled to the unit vector. All 
errors represent average errors over 50 random trials. 

Fig. 5 shows the average relative errors of surface 
normal f is, rotation axis f iu,  rotation angle w ,  and trans- 
lation T ,  for a set of known motion parameters (fiu = 
[0.5774,0.5774.0.5774]', w = 4", and T = [0.3,0.3,0.3]'). 
First, we see that the use of multiple features gives robust 
estimates at all resolutions. For points and lines, the estimates 
become more accurate as the resolution increases. Regions 
give more reliable estimates from low to mid resolutions, 
though the accuracy of the estimates does not improve at 
higher resolutions. This is expected, since the approximations 
are made under the three assumptions when the region-based 
equations are derived. (It is not difficult to derive the exact 
nonlinear method for regions.) The good performance of 
regions at lower resolutions is due to the robustness of 
lower order moments used in (19) and (20) with respect to 
quantization of region boundaries. (Stable detection of region 
boundaries may be difficult in some images.) Increasing the 
number of features gives better estimates. We note here that 
estimation of translation is the most noise-sensitive, which is 
also observed for the nonplanar case in [9]. 

From these simulations, we see that integrated estimation 
can increase the accuracy of the resulting estimates because 
the detected features are large in number and spatially better 
distributed, if there are no outliers present. Note that these 
simulations are based on the assumption of perfect extraction 
and matching of features up to the quantization errors. 

Estimation Errors front Multiple Views: These simulations 
use three frames of a synthetic sequence as shown in Fig. 6. 
The first and second frames are synthesized from the third 
frame using bilinear interpolation. The focal length is 8 mm. 
The field of view of the camera is 40" by 34.4', corresponding 
to the image resolution of 560 by 480. The true values of 
motion and structure parameters are shown in Table I.  

We first detect points, lines, and regions. Then the matching 
and segmentation algorithm is applied to two pairs of consecu- 

+ 

TABLE I1 
ESTIMATES OF SURFACE NORMAL, ROTATION AXIS, ROTATION ANGLE, AND 

TRANSLATION FROM THE INTEGRATED NONLINEAR BATCH ALGORITHM 

[ t k . t k + l ]  10, 11 [ I ,  21 
I? s ,  k [ -0.9 2 9 2.0.3 2 74.0.17 161 [- 0.96.3'2.0.20~3.0.1~ 1 11 
E, [0.1218. -0.0385.0.9918] [0.1230. -0.0356,0.9918] 

U' id%) 7.1638 5.3217 
F [0.0476. -0.0160.0.2243] [0.0495, -0.01639,0.1953] 

tive images. The numbers of matched features for points, lines, 
and regions in the ground segment are 63, 59, and 38 between 
t o  and t l ,  and 64, 78, and 33 between tl and tz, respectively. 

In Table 11, we show the estimates that result from the in- 
tegrated nonlinear batch algorithm using multiple cues (point, 
line, and region) described in Section 111-C. The estimates can 
be seen to be good. 

In Tables I11 and IV we show percentage errors in the 
estimates derived using the integrated approach against those 
derived using individual cues, for both linear two-view esti- 
mation and nonlinear batch estimation. 

The following observations can be made from these results. 
First, the nonlinear batch method using multiple features and 
frames in Section 111-C yields satisfactory estimates despite 
the fact that outliers are present (in this case, points between 
t o  and t l) .  The point outliers are caused by the difficulty of 
extracting and matching the same point features between t o  
and t l .  This experiment shows clearly the nonlinear integrated 
method's capability of reducing the effect of outliers by 
using the large number of available features and the structure 
consistency constraint. If the ultimate accuracy is important, 
an existing robust regression method [18] can be used for 
minimization of the image errors in (30) at the expense of 
increased computational cost. Further, the results demonstrate 
that while the estimates derived by integration are not always 
more accurate than those based on the best features, there are 
features that lead to large errors because the features have 
outliers. Since it is not known a priori which features are the 
most reliable or error prone in a given scenario, integration 
gives robust results without using scene-specific information. 
Individual features may happen to be configured so as to yield 
better estimates than integrated analysis, but it is not known 
that this is the case and, if so, from which features. Integration 
therefore provides estimates whose variance computed over 
many scenes is smaller than if individual features were used 
separately. 

Second, the nonlinear batch methods usually give more ro- 
bust estimates than the linear two-view solutions, especially for 
noisy images (for example, t o  and t l ) .  Third, the penalty term 
E~,J,- in (30) for the candidates of a vanishing line increases 
the robustness of the estimates. This term is useful especially 
for the noisy images if the candidates of the vanishing line are 
available. The term Ek,V is better constrained by d l  and dz 
(see Fig. 3) than by the error of the surface normal vector. For 
example, the nonlinear estimation error for GS,O in Table I11 is 
3.82%, which is relatively low. However, d l  and dz are 4.74 
and 18.31 pixels, respectively. This shows that the reliable 
estimation of a vanishing line in the image plane is difficult. 
Fourth, in general, the image error decreases if the accuracy of 
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TABLE 111 
PERCENTAGE ESTIMATION ERRORS IN S~RFACE NORMAL ( C S . ~ ) ,  ROTATION Axis (?Ty), 

ROTATION ANGLE ( U ) ,  TRANSLATION ( T )  BEWEEN t o  AND f l  FOR VARIOUS METHODS 
Linear two-view Nonlinear Batch 

Error in 0 iis.0 n', Ld i: li.s.0 ii, U' T' 
Point 57.13 2.30 8.14 23.39 0.41 3.75 23.51 88.41 
Line 3.00 0.18 0.27 1.29 0.24 0.13 0.14 0.98 
Region 4.39 0.56 2.09 10.48 0.94 0.52 3.08 9.10 
Integrated 41.26 1.34 6.23 23.65 3.82 0.18 0.50 2.5 1 

TABLE 1V 
PERCENTAGE ESTIMATION ERRORS IN SYRFACE NORMAL ( i i . S . 1  ), ROTATION AXIS ( C A  ), 

ROTATION ANGLE (d), TRANSLATION (T) BETWEEN t l  AND t z  FOR VARIOUS METHODS 
Linear two-view Nonlinear Batch 

Error in % n's.1 13, d T' 17,s. 1 11, w' T' 
Point 1.73 0.47 0.46 2.40 3.05 0.67 0.49 1.70 
Line 1.80 0.38 0.72 1.95 0.23 0.30 0.36 1.26 
Region 3.99 0.48 2.29 9.60 1.19 0.30 2.59 8.63 
Integrated 0.34 0.07 0.34 3.19 3.76 0.37 1.45 2.65 

the estimates increases. Therefore, the image error is a good 
quantitative criterion for evaluating the estimates when the 
actual values are not available. (Experiments with real images 
demonstrate this.) The average image error Eo,z,i in (28) is 
1.09, which is acceptable. If we do not use point features, we 
could obtain lower average image error. 

C .  Perceptual Evaluation from Real Images 

We conducted experiments with two real image sequences. 
Desert Sequence: We derived a sequence of 29 frames 

from a commercially available VHS videotape of a film shot 
from a flying aircraft. The focal length was assumed to be 1 
mm. The digitization was done with a resolution of 600 by 
464. In Fig. 7(a) and (b), we show two frames at t 5  and t 6 .  

Since the commercial VHS tape is far from having the quality 
of the master tape, digitized images are very noisy. There is 
also blurring of images since they were taken from a camera 
mounted on a flying aircraft. 

Next, we extract regions, lines, and flow as image cues. 
Examples of these detected features at t 5  and t 6  are shown 
in Fig. 7(c) through (g). Flow vectors are used only at those 
locations where a point feature detector responds. 

The result of segmentation, matching, and merging for two 
frames are shown in Fig. 7(h) and (i). This is the result 
of integrated interpretation. The attributes shown here are 
diverse but mutually compatible cues. Note that the parts 
corresponding to the sky and bottom of the aircraft were 
successfully segmented out. Vanishing lines were successfully 
recognized at all frames. 

The estimated values of motion parameters shows that the 
camera on the aircraft moves in the direction of the optical 
axis over the ground. For this image sequence, the vanishing 
line was an important cue for reliable estimates of the ground 
orientation. Estimated vanishing lines (surface orientations) 
are in good agreement with the actual vanishing lines in the 
image plane. The average image error E0,28,1 computed by 
(28) is 1.7709 pixels. Although the error is larger than one 

pixel, it is not bad if we consider the poor image quality. 
The original sequence and the resulting visualization sequence 
by using the first method of Step 7 of the algorithm are 
presented in Fig. 8(a) and (b) for t o ,  t14 .  and t 2 8 .  In Fig. 
8(c), synthetic discs are used to enhance the perception of 
motion and structure, as explained in the second method. If we 
watch the two visualization sequences as they are played on a 
SUN workstation monitor, we perceive the same motion and 
structure from them in an informal viewing as from the original 
image sequence.' We also display the synthesized sequence in 
stereo on a SGI monitor. The compression ratio achieved by 
using (36) is 502. 

We derived a sequence of 34 frames 
from a commercially available CAV laserdisc of a film shot 
from a flying aircraft. The focal length was assumed to be 8 
mm. The digitization was done with a resolution of 640 x 
480. This is a challenging sequence to our algorithm since 
the images contain partially or completely occluded vanishing 
lines and there is reflection of the ground on the bottom of 
the airplane. The quality of the images is a little better than 
the desert sequence images obtained from a VHS tape. In Fig. 
9(a), we show two frames at t 4  and t 5 .  

Next, we extract regions, lines, and flow as image cues. 
Examples of these detected features at t 4  and t 5  are shown 
in Fig. 9(c) through (g). Flow vectors are used at only those 
locations where a point feature detector responds. 

The result of segmentation, matching and merging for two 
frames are shown in Fig. 9(h) and (i). We can see the parts 
corresponding to the bottom of the airplane are successfully 
segmented out. Vanishing lines were not identified at t = 
(4,6,10,11,12,14.15.18.22.23,24,26,27) due to occlusion 
and several candidates from the actual vanishing line and the 
bottom parts of the airplane, as we can see in Fig. 10(a). 

The estimated motion parameters show the camera on the 
aircraft moves in the direction of the optical axis over the 

Runway Sequence: 

' A videotape showing the original image sequence and the visualization 
sequences is available. 
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(0 (g) (h) (i) 

Fig. 7. 
at t 6 .  (c) Computed flow between t s  and t 6 .  (d) Extracted regions at t s .  (e) Extracted regions at t 6 .  (f) Extracted lines at t s .  (g) 
Extracted lines at t 6 .  (h) Segmentation result at t s .  (i) Segmentation result at t 6 .  

Extracted features and segmentation results at t s  and t 6  for the desert sequence. (a) Input image at t s .  (b) Input image ' 

(a) (b) (C ) 

Fig. 8. 
image sequence with synthetic pattem. 

Experiments with the desert sequence: (a) Input image sequence. (b) Visualization image sequence, (c) Visualization 

ground. For this image sequence, lines were an important cue VI. CONCLUSION AND EXTENSIONS 
for reliable estimation since several good line features exist 
in the image sequence. Estimated vanishing lines are in a 
good agreement with the actual vanishing lines in the image 
plane. The average image error E o , ~ ~ , J  computed by (28) is 
0.858679 pixels. The error is less than one pixel, which is 
satisfactory. This value is lower compared to what we achieved 
for the desert sequence since are used during 
analysis. The original sequence and the resulting visualization 
sequence using the first method of Step 7 of the algorithm 
are presented in Fig. IO(') and (b) for to, tI6, and ts2. If 
we watch the visualization sequences as they are played on a 
SUN workstation monitor, we perceive the Same motion and 
structure from them in an informal viewing as in the original 
image sequence'. We also display the synthesized sequence in 
stereo on a SGI monitor. The compression ratio achieved by 
using (36) is 367. 

we have presented an approach for motion and strut- 
ture estimation from a monocular sequence of images that 
makes integrated use of multiple image cues such as points, 
lines, regions, and optical flow for piecewise planar surface. 
To increase the reliability of the result further, we used a 
sequential-batch method to compute motion and plane orien- 
tation. In a batch minimization, the objective function links 
multiple frames though the unit ~ r f a c e  normal, yielding 
two results SimUltaneOUSly: First, it enforces the Structure 
consistency, and second, it avoids the Problem of u ~ n o w n  
Scale, thus reducing the iteration space. The iteration space 
is further reduced using motion and structure relationships. 
Note that tracking of the features is not necessary to enforce 
the structure consistency for planar surface. According to 
the experiments we conducted, the integrated approach using 
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(f) 

Fig. 9. Extracted features and segmentation results at t 4  andt5 for the runway sequence. (a) Input image at t 4 .  (b) Input image at t 5 .  (c) Computed 
flow between t 4  and t j .  (d) Extracted regions at t 4 .  (e) Extracted regions at t 5 .  (f) Extracted lines at t 4 .  (g) Extracted lines at t 5 .  (h) Segmentation 
result at t 4 .  (i) Segmentation result at t 5 .  

Fig. 10. 
(b) Visualization image sequence. 

Experiments with the runway sequence: (a) Input image sequence. 

multiple frames gives satisfactory results even with outliers 
present. If precision is important, we can use one of the 
existing robust regression methods [l8] at the expense of 
increased computational cost while still following the basic 
approach presented. 

We used the intermediate results of the estimation process 
to synthesize the original image sequence in two ways. We 
also used the vanishing line, which can be seen in real 
flight images. Performance evaluation was done by conducting 
experiments with one synthetic and two real image sequences 
to demonstrate the feasibility of our approach. 

Texture gradient was not present as a useful cue in the 
two image sequences we used in our experiments. We plan 
to experiment with images that have textures. We also plan 
to extend this integrated approach to image sequences that 
contain both planar and nonplanar surfaces. 
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