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ABSTRACT 

In this paper, we have presented a systematic technique to 
improve throughput of signallimage processing algorithms 
when implemented on flexible precision hardware. Many 
imagelsignal processing algorithms need 8- 16 bit precision 
while the DSPs available are of much higher precision (32- 
bit). Significant performance gain can be obtained if multi- 
ple low precision computations can be performed in one cy- 
cle of a high precision DSP. We have proposed a framework 
based on algorithm transformation techniques of unfolding 
and retiming to systematically map low precision algorithms 
onto high precision DSPs. The improvement in throughput 
obtained by this framework is linearly related to the ratio of 
precision used by the processor and that required by the al- 
gorithm. The efficacy of this technique has been demonstrated 
on a IIR filter. We have also established some theoretical 
bounds on the maximum throughputthat can be achieved us- 
ing the proposed methodology. 

1. INTRODUCTION 

The algorithm transformation techniques (Am) such as un- 
folding and retiming have been known to improve the per- 
formance of the VLSI architectures significantly [ 1,2,3,4]. 
For example, retiming [2, 31 has been employed to redis- 
tribute pipelining latches in an algorithm so that different pro- 
cesses can run concurrently and thus reduce the processing 
time; unfolding [4] is capable of producing more outputs sam- 
ples in fewer cycles. In this paper, we intend to use these 
ideas to speed up algorithm implementations on DSPs. 

The Digital Signal Processors (DSP) are being employed 
to provide efficient solutions to a large number of image and 
signal processing problems. Most imagelsignal processing 
algorithms are computationally intensive and usually the com- 
putations are repetitive, i.e. the same set of operations needs 
to be carried out for all the pixels in the image. A significant 
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computational advantage can be achieved if we can reduce 
the number of cycles required to process one pixel. Usually 
for image processing applications, the precision required is 
8-16 bits. A significant advantage can be achieved if we can 
perform say four 8-bit computations on a single 32-bit pro- 
cessor in one cycle. In this paper, we have employed un- 
folding and retiming to systematically map such IOW preci- 
sion algorithms onto high precision DSPs so as to enhance 
throughput. Some of the new DSPs (e.g. TMS320C80) have 
flexible precision hardware, which allows the programmer 
to treat one DSP as multipleDSP units with correspondingly 
lower precision. Graphically we can represent the scenario 
as shown in Fig. 1.  

Figure 1: Flexible precision DSP: One N bit precision DSP 
can be programmed to behave as M DSPs of (NM) bit pre- 
cision. 

Example 1: Consider an algorithmrepresented as a Directed 
Flow Graph (DFG) in Fig. 2(a). A DFG is a graphic repre- 
sentation of the sequence of computations in an algorithm. 
This DFG computes: y(n) = a * x(n) + b. If we write the 
corresponding assembly code without any pipelining, it will 
take 4 cycles per computation of y(n): one cycle each for 
reading z (n) ,  multiplying by a ,  adding 6 and storing y(n). 
We retime this DFG to obtain a pipelined DFG as shown in 
Fig. 2(b). This graph can be implemented using only one cy- 
cle, since while we are reading x (.), we can perform: Mul- 
tiplicationof x ( n  - 2) with a,  addition of a * x ( n  - 4) with 
b and storing y(n - 6), simultaneously in one cycle. Sim- 
ply by applying retiming we have a performance improve- 
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ment by a factor of 4. Can we improve the throughput of 
this algorithm further? The answer is yes. If the algorithm 
is of lower precision then we can use unfolding to achieve 
a higher throughput. We unfold the DFG by a factor of 2 to 
obtain the DFG in Fig. 2(c). We observe that unfolding in 
this case splits the DFG into two identical sub-DFGs. Now 
if we program the given 32-bit DSP so it behaves as two 16- 
bit DSPs, then we can map the two sub-DFGs onto the two 
16-bit DSPs. Each 16-bit DSP produces one output per cycle 
and there are two 16-bit DSPs working together and hence 
we have two outputs per cycle. Hence unfolding enhances 
the throughput by a factor of 2 in this case. Thus, we achieve 
an improvement by a factor of 8, by applying the retiming [2, 
31 and unfolding [4] techniques. 

DFG3 DFGz 

Figure 2: (a): A DFG corresponding to y(n) = az(n) + b;  
(b) Retimed DFG; (c) Unfolding by a factor of 2. 
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This paper derives the optimal unfolding factor that would 
give the best DSP implementation. The key behind the tech- 
nique is to unfold by a factor such that we get multiple iden- 
tical DFGs which are decoupled. The requirement that sub- 
DFGs should be identical comes from the hardware constraint 
that the low precision DSP units have to perform identical 
operations. We also desire that the sub-DFGs be decoupled 
from each other. Presence of coupling can incur an over- 

~ 
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head in terms of additional cycles; a thorough analysis of 
presencelabsence of coupling and its impact on overhead has 
been discussed in Section 4. It has been found that amount 
of overhead is proportional to the amount of coupling. This 
analysis is important since it is not always possible to find 
an unfolding factor greater than 1, such that DFG splits into 
multiple identical decoupled sub-DFGs. For such cases we 
have proposed a suboptimal technique, which minimizes the 
amount of coupling in the unfolded graph. 

The paper is organized as follows. In Section 2, we de- 
scribe the proposed procedure to optimally map a low pre- 
cision algorithm onto a flexible precision DSP, and demon- 
strate throughput enhancement by two image processing ex- 
amples. Section 3 is devoted to analysis of DFGs where the 
procedure generates coupled sub-DFGs and demonstrates the 
performance of the suboptimal procedure through additional 
image processing examples, 

2. TECHNIQUES FOR THROUGHPUT 
ENHANCEMENT 

In this section, we propose a technique to improve through- 
put of signallimage processing algorithms when implemented 
on flexible precision DSPs. The proposed scheme is a three- 
step procedure as outlined in Fig. 3. 

Figure 3: A three-step procedure for throughput enhance- 
ment. 

The first step involves retiming which can be considered 
as a preprocessing step. The unfolding transformation re- 
quires the DFG to have some desirable properties in order 
that we achieve higher throughput and the preprocessing step 
helps to attain thoseproperties. The last step of post-retiming 
reduces the iteration period of the graph. 

Let us have a closer look at Example 1. We observe that 
we retimed the DFG in Fig. 2(a) such that we had even num- 
ber of delays on each arc. Next, when we unfolded it by 
a factor of 2, the unfolded DFG had two identical decou- 
pled subparts. This allowed us to map each subpart inde- 
pendently onto the two 16-bit split DSPs. This defines the 
problem that we wish to address as follows: 
Problem Definition: To find a transformation technique such 
that the resulting DFG has identical, decoupled subparts. 

Lemma 1 and a theorem below give a general solution to 
the above problem. Theorem 1 shows that if the unfolding 
factor is a common factor of the set of delays in the DFG, 
then there is no coupling between the sub-DFGs produced 
after unfolding. Moreover, the sub-DFGs are same as the 



original DFG except that the delays are scaled down by the 
unfolding factor. 

Lemma 1: Consider a two-node DFG, denoted by GI, con- 
sisting of nodes U and V and an arc connecting them with 
N delays on it. On unfolding GI by J ,  such that J is a factor 
of N ,  we obtain J pairs of uncoupled nodes 
(UO,  h), (UI, VI), . . . (UJ- I  , V J - ~ ) ,  with one arc connect- 
ing each pair and having k delays each, where k = N /  J .  
Proof: The statement of Lemma 1 has been diagrammati- 
cally presented in Fig. 4. 

(gF%J 
Unfold 

Figure 4: Diagrammatic description of Lemma 1. 

It is clear that J < N and J = k N .  We find the unfolded 
graph following the technique outlined in [ 11. The nodes U, 
connects to node V, with number of delays = [VI. The 
subscript p can be evaluated as 

= k J -  J k + q  (2) 
= q .  (3) 

where [ - ID = k D .  This shows that p = q,  i.e node 
V, connects to U, with number of delays = IC, for all q = 0 
to J - 1. This completes the proof of Lemma 1.. 

Using Lemma 1, we can prove the following Theorem. 
We have omitted the proof due to lack of space. 

Theorem I :  Consider a graph G with the following set of 
delays W = {wl,  2 0 2 , .  . . w ~ } ,  where M is the number of 
arcs in the graph G. Let J be a common factor of the ele- 
ments of this set W .  Then, if we unfold G by a factor J ,  we 
get J decoupled sub-DFGs which are identical to G, except 
that the delays in each of the sub-DFGs are scaled down by 
J .  

Corollary I :  The maximum unfolding factor J such that the 
unfolded DFG consists of decoupled sub-DFGs, each iden- 
tical to G is the Highest Common Factor(HCF) of the arc 
delays. 

We note here that in [ 11 the authors employed unfolding 
by the Least Common Multiple (LCM) of the delays in all 

the loops of a graph G to obtain perfect rate DFGs. Perfect 
rate DFGs can be scheduled on multiprocessors with an iter- 
ation period equal to the iteration period bound. In this pa- 
per, we have proposed unfolding by the HCF of all the delays 
in a graph G so as to be able to map low precision algorithms 
on high precision DSPs. 

For the cases when preprocessing by retiming does not 
increase the HCF of the delays, we have also proposed a mod- 
ified unfolding technique in Section 3. 

3. SUBOPTIMAL TECHNIQUE FOR IMPROVING 
THROUGHPUT 

As is clear from Lemma 1, that under the special case where 
the unfolding factor J ,  divides all the delays in the DFG, that 
we get an unfolded DFG where nodes of identical subscripts 
are connected. However, in general this is not true and un- 
folding will connect nodes with different subscripts, result- 
ing in coupling. When coupling occurs, the unfolded DFG 
no longer has identical sub-parts and hence we can’t directly 
map multiple low precision computations onto the split flex- 
ible precision hardware. To exploit the flexible precision na- 
ture of hardware for such DFG we adopt the following pro- 
cedure: 

Divide the DFG into two sections: Section A in which 
the set of delays have HCF greater than 1 and Section B which 
is complement of Section A, and this must have HCF = 1. 
We unfold Section A by J = Common Factor(CF) of the de- 
lays inside Section A, by Theorem l or HCF by Corollary l. 
This results in J copies of the unfolded Section A, in which 
delays are scaled down by factor J .  As we had discussed 
in previous section, if the ratio of the precision of DSP and 
precision of DFG is equal to J ,  then J similar computations 
can be done concurrently, thus a speedup by factor J for that 
section. Now we unfold Section B by J ,  we will get cou- 
pling and hence there is an overhead involved for computa- 
tions belonging to Section B. In effect the total throughput 
gain would be more than factor 1, but less than J .  Though 
the technique does not give factor J improvement we usu- 
ally get improvement close to J provided the computations 
in Section A are relatively more than that in Section B. 
Example7: This example illustrates the efficacy of methods 
discussed above for a recursive structure. Fig. 5(a) shows 
a direct-form I1 implementation of a 3rd order 16-bit preci- 
sion IIR filter. Applying the procedure in Fig. 3, we retime 
this DFG to obtain a structure shown in Fig. 5(b). In this re- 
timed DFG all delays occur in groups of 2, except on one 
arc, where there is only one delay. We divide the retimed 
graph into two sections: Section A and Section B. Section 
B is marked with dotted line and has delays with HCF = 
1. The rest of the DFG is Section A and it has delays with 
HCF = 2. This retimed DFG is unfolded to obtain one shown 
in Fig. 5(c). In the unfolded DFG, two identical decoupled 

307 1 



copies of Section A are present. While on unfolding Section 
B, we introduce one set of couplings, thus incurring a sin- 
gle overhead. We note here that this overhead is the same 
even for higher order IIR filters : This is because increasing 
the order of the IIR filter increases the size of Section A but 
Section B remains the same (i.e. consists of a single arc with 
only one delay in all cases). Since Section B accounts for the 
coupling the overhead does not increase. This procedure en- 
hances the throughput of an 16-bit IIR filter implementation 
by approximately a factor of 2. 

4. CONCLUSION 

We have successfully used this procedure to implement So- 
bel operator, perspective image dewarping with brightness 
correction and spatial image averaging to obtain a perfor- 
mance gains by factor of 2-3 over commercial implementa- 
tions for TMS320C80. Compilers based on these systematic 
techniques can be easily built for such DSPs thus obtaining 
high performance gains. 
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Figure 5: (a) A Block Diagram for a 3rd order IIR filter us- 
ing the direct form I1 structure; (b) A retimed version of the 
DFG in (a). The section marked in dotted lines is Section 
B and the rest of the DFG is Section A; DFG obtained after 
unfolding (b) by a factor of 2. 
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