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Abstract—In this paper, we propose a new self-similarity based
single image super-resolution (SR) algorithm that is able to better
synthesize fine textural details of the image. Conventional self-
similarity based SR typically uses scaled down version(s) of
the given image to first build a dictionary of low-resolution
(LR) and high-resolution (HR) image patches, which is then
used to predict the HR patches for each LR patch of the
given image. However, metrics like pixelwise sum of squared
differences (L2 distance) make it difficult to find matches for
high frequency textured patches in the dictionary. Textural details
are thus often smoothed out in the final image. In this paper,
we propose a method to compensate for this loss of textural
detail. Our algorithm uses the responses of a bank of orientation
selective bandpass filters to represent texture instead of the spatial
variation of intensity values directly. Specifically, we use the
energies contained in different sub-bands of an image patch to
separate different types of details of a texture, which we then
impose as additional priors on the patches of the super-resolved
image. Our experiments show that for each patch, the low energy
sub-bands (which correspond to fine textural details) get severely
attenuated during conventional L2 distance based SR. We propose
a method to learn this attenuation of sub-band energies in the
patches, using scaled down version(s) of the given image itself
(without requiring external training databases), and thus propose
a way of compensating for the energy loss in these sub-bands.
We demonstrate that as a consequence, our SR results appear
richer in texture and closer to the ground truth as compared to
several other state-of-the-art methods.

I. INTRODUCTION

The single image super-resolution (SR) problem involves
estimating pixels in a high-resolution (HR) image from the
smaller number of pixels available in its given, low-resolution
(LR) version. Being fundamentally ill-posed, priors or regu-
larizers are a key component in addressing this problem.

Over the last few years, learning based priors have demon-
strated considerable success on this problem [5], [13], [4], [6],
[12], [2]. In general, these priors exploit some form of sta-
tistical regularity in properties (such as gradient distributions,
patch recurrence, etc.) of natural images, which is learnt from
training data. A popular class of such methods seeks similar
patches across scales of the given image to build a database of
LR-HR patch pairs. This database or dictionary is then used to
predict the HR patch corresponding to each patch of the given
image [2], [6], [4]. Such self-similarity methods find their roots
in fractal image coding from the 1990s [1]. More recently, such
methods have also been justified as priors by studies on the
internal statistics of natural images which suggest that patches
from natural images tend to recur within and across scales in
the same image [15].

These recent studies have also shown that the likelihood
of finding a good match for a patch falls, as the gradient

content of the image increases [15]. This suggests that textural
details like hair, animal fur etc, often find suboptimal matches,
using a self-similarity approach. This problem can be partly
attributed to the limitation in using distance metrics such as
pixel-wise sum of squared difference (L2 distance) for match-
ing textural patches. The L2 distance between two patches
is largely determined by the high contrast and prominent
structures (macrostructures) in the patch, and is less sensitive
to the fine details (microstructures) of the patch. Indeed, this
problem manifests itself in the final results of patch based
SR reconstruction methods - poor patch matches lead to
inconsistent explanations of pixels in textural regions, and fine
textural details or microstructures are thus averaged out.

In this paper, we propose a solution to the above problem.
We argue that the L2 distance by itself is not a sufficient
criterion to find suitable matches for textural patches. In-
deed, metrics based on pixelwise differences have been rather
unsuccessful in applications such as texture classification or
texture retrieval. On the other hand, texture descriptors based
on responses to a multi-orientation bank of bandpass filters
have been effective for such tasks [8], [14], [11]. In the SR
application at hand, we therefore combine the conventional L2

distance based patch matching procedure with additional prior
constraints on the energies of the different orientation selective
sub-bands of the patch. We observe through experiments in this
paper that for each patch, the low energy sub-bands (which
correspond to fine textural details) get severely attenuated
during conventional L2 distance based SR. Based on this
observation, we propose a method to learn this attenuation of
sub-band energies in the patches, using scaled down version(s)
of the given image itself (without requiring external training
databases), and thus propose a way of compensating for the
energy loss in these sub-bands of each patch. More specifically,
we propose the use of scaling coefficients to boost the sub-
bands of the patch that constitute the fine textural details
(microstructures). As a consequence, our SR results appear
richer in texture and more natural as compared to state-of-the-
art methods, as shown by our experiments.

In the next section, we present a stepwise summary of the
proposed algorithm. The subsequent sections present details of
the steps involved.

II. ALGORITHM OVERVIEW

Notation. We denote the given image to be super-resolved
as I0. By I1 we denote the HR version of I0, whose linear
dimension, or scale, is larger by a factor of s. Similarly, we
denote by I−1, I−2 etc., the smaller versions of I0, by scaling
factors of 1/s, 1/2s etc., respectively. We denote the super-
resolved image(s) obtained using our algorithm using a hat
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Fig. 1. Conventional self-similarity based SR. Given LR image I0 is shown in red.
Each patch of I0 is matched to k = 5 most similar patches in I−1 in step 1. For
simplicity we show only k = 1 most similar patch in this figure. The corresponding
patch (in the same location) in I0 serves as the HR predictor (step 2). This patch is then
pasted in the HR image Ĩ1 (step 3). See Section III for details.

( ˆ ) symbol. Therefore, our objective is to super-resolve I0
to obtain an HR image Î1, that best approximates the true
HR image I1. We use scripted letters to denote sets, we
use boldface lowercase letters to denote image patches, and
lowercase italicized letters to denote scalars and indices.

Algorithm Summary. To obtain Î1, from I0, our proposed
algorithm involves the following steps:

1) Using I0, we first compute an intermediate HR image Ĩ1
that is obtained by the conventional patch-similarity based SR
approach, along the lines proposed earlier [15], [6], [4]. We
present the general framework of such an algorithm in Fig. 1,
and its details in Section III.

2) For each patch p̃ of Ĩ1, we compute the response of bank
of R orientation selective bandpass filters, yielding the sub-
bands {p̃(1), p̃(2), ..., p̃(R)}. To selectively amplify the patch
macrostructure vs. microstructure, we differentially scale the
patch’s energy contents in different sub-bands by using the
coefficients {α(j)}Rj=1, to yield a transformed set of bandpass
patches,

p̂(j) = α(j)p̃(j) j = 1, 2, ..., R. (1)

We discuss our algorithm that learns these coefficients in
Sections IV and V. The scaling coefficients α(j) allow us to
impose sub-band energy constraints on each patch of the super-
resolved image Ĩ1, to minimize the loss of textural detail in
the patch.
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Fig. 2. Schematic summary of proposed algorithm. The left part of the figure depicts
the conventional patch similarity based SR procedure of Fig. 1. Each HR patch obtained
using the conventional SR algorithm is further enhanced by amplifying its sub-bands using
scaling coefficients. These scaling coefficients are obtained by learning the attenuation
caused in the sub-bands of the patches of Ĩ0, compared to those of I0. The image pair I0
and Ĩ0 (green dotted box) therefore serves as a source of training patches. Ĩ0 is obtained
by using the conventional patch-similarity based SR (blue dotted box) with I−1 as input.
See text for details.

3) The rescaled sub-bands {p̂(j)}Rj=1 of each patch are
recombined to yield the texture-enhanced patch p̂, and all
such enhanced patches constitute the super-resolved image Î1.
Finally, we also then run a few iterations of the classical
backprojection constraint [7], to ensure that the blurred and
downsampled version of Î1 matches the given LR image I0.
We elaborate on this step in Section VI.

A schematic summary of our algorithm is presented in Fig.
2. The details of each step follow.

III. PATCH-SIMILARITY BASED SR

The conventional patch-similarity based SR approach that
we adopt to obtain Ĩ1 from I0 follows similar steps as done in
existing work [15], [6], [4], and is summarized in Fig. 1. Given
the LR image I0, we first obtain its downsampled version,

I−1 = (I0 ∗ fpsf ) ↓ (2)

where fpsf is an assumed point spread function. We then create
two sets of image patches L and H, that contain patches from
I−1 and their corresponding (bigger) patches extracted from
I0, respectively. The sets L and H serve as our database of
LR-HR training patches. To super-resolve the given image I0
to Ĩ0, for every patch l of I0, we look for its k = 5 most similar
patches {li}ki=1 in the LR set L, based on L2 distances. Their
corresponding HR patches {hi}ki=1 from the set H serve as
individual predictors for the patch l. We average {hi}ki=1 to
estimate the HR patch h̃ of l as follows,

h̃ =

∑
wi · hi∑
wi

, where, wi = exp

(
−||l− li||22

2σ2

)
. (3)

We repeat the above procedure for every patch l of I0, and
get their corresponding HR patches, which constitute the HR
image Ĩ1.

IV. ANALYSIS OF SUB-BAND ENERGIES

We argue that the patch similarity based SR algorithm
described in Section III tends to smooth out fine textural
details, due to the limitation of the L2 distance in capturing
textural similarity between patches. To quantify this loss of
textural detail, we now perform a simple experiment. We use
the baby image of Fig. 3(a) as our example. We denote I1
to be the ground truth HR version of this image, as shown
in Fig. 3(a). We compute its LR version I0 by blurring and
downsampling. We then use the SR algorithm described in
Section III to super-resolve this LR image I0 to obtain the
image Ĩ1 as shown in Fig. 3(b). We now examine the textural
loss in Ĩ1 when compared to the ground truth image I1.

Let p̃ and p represent corresponding patches from the
super-resolved image Ĩ1 and the ground truth image I1, as
illustrated by the blue box in Fig. 3. Let {p̃(j)}Rj=1 and
{p(j)}Rj=1 denote the decomposition of these patches into R
orientation sub-bands, as illustrated in Figs. 3(d) and 3(c). We
use the steerable pyramid decomposition [9], [10] to obtain
the orientation selective sub-bands. The steerable pyramid
provides jointly-localized (space/frequency) representation of
images using an invertible multi-scale, multi-orientation image
decomposition [9], [10], as shown in Fig. 4. We use R = 16
orientations (and just a single scale) in our algorithm.



(a) Ground-truth I1 (b) Super-resolved image Ĩ1

...

(c) Patch p from I1 and its sub-bands {p(j)}Rj=1.

...

(d) Patch p̃ from Ĩ1 and its sub-bands {p̃(j)}Rj=1.

Fig. 3. (a) Ground truth HR image I1. (b) Image Ĩ1 obtained after super-resolution
using conventional approach of Section III. (c) An example patch from the ground truth
image I1, along with its decomposition into orientation selective sub-bands. (d) Similar
decomposition for the corresponding patch from Ĩ1. We analyze the loss of energy in
the sub-bands of patches from Ĩ1, compared to those from I1. See text for details. The
patches shown here are chosen large for illustration purpose.

Let ẽ(j) and e(j) be the energies of the jth sub-bands p̃(j)

and p(j) respectively.

ẽ(j) = ||p̃(j)||22, and e(j) = ||p||22 (4)

We now sort the sub-band energies {ẽ(j)i }Rj=1 and
{e(j)i }Rj=1 according to decreasing values of ẽ(j)i . The sorted
set of energy values helps us observe the relative energy
distribution between the macrostructure (high energy sub-
bands) and the microstructures (low energy sub-bands) in the
patch, irrespective of their orientations. The sorting helps us
achieve this rotation invariance. Therefore, if an image patch
recurs in the image in a rotated form, both the patches would
yield the same sorted set of sub-band energy values.

We repeat the above procedure for all patch pairs p̃ and
p from the images Ĩ1 and I1, and obtain a sorted array of
sub-band energy values for each patch. We then compute an
average of these sorted arrays or sets, across all the patches.
Fig. 5(a) shows this average set of sorted energy values, for
patches from the super-resolved image Ĩ1 (blue bars) and from
the ground truth I1 (red bars).

We make the following two interesting observations: 1) The
energy in the high energy bands of the super-resolved image
Ĩ1 is much closer to those of the ground truth image I1. This
shows that the patch-similarity based SR algorithm using L2

distances is able to preserve the macrostructures quite well.

Input Image

Fig. 4. An example showing the multi-orientation image decomposition yielded by the
steerable pyramid [9], [10], on a synthetic image.
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Fig. 5. (a) Average sub-band energy value of all patches in the Baby image, sorted
in decreasing order. Clearly, high energy sub-bands (macrostructures) are reasonably
well recovered, whereas low energy sub-bands (microstructures) get severely attenuated
using conventional patch-similarity based SR. (b) Blue plot shows the sub-band scaling
coefficients obtained using the ground truth image I1 (i.e. by comparing patches from
I1 and Ĩ1). Red plot shows the coefficients obtained using the proposed self-learning
scheme (i.e. by comparing patches from I0 and Ĩ0).

2) Relatively, the low energy sub-bands suffer from severe
attenuation, confirming our hypothesis stated earlier that fine
textures (microstructures) are much less preserved by such an
SR algorithm.

Can we recover or compensate for this loss? Based on
examining the bar plot of Fig. 5(a), a possible way to ‘op-
timally’ compensate for the sub-band attenuation is to amplify
each sub-band p̃(j) of the patch p̃ by multiplying with scaling
factors α(j), where,

α(j) =
e(j)

ẽ(j)
, j = 1, 2, ..., R. (5)

Using the coefficients α(j), the sub-bands can be amplified
such that their energies match those of the ground truth. The
blue curve in Fig. 5(b) shows the values of these coefficients
computed using Eq. (5) for the baby image. As expected, the
lower energy sub-bands have higher scaling coefficients as they
are more severely attenuated.

An obvious problem in using Eq. (5) is that the ground
truth image I1 is never available in any practical SR problem.
Therefore, the sub-band energies {e(j)}Rj=1 of the ground truth
image patches are never available, and the coefficients α(j) of
(5) cannot be determined. In the next section, we propose a
method to learn these coefficients.

V. SELF-LEARNING OF SUB-BAND CONSTRAINTS

Given an input image I0, our analysis in the previous
section showed that patches of the super-resolved image Ĩ1,
obtained using the conventional patch-similarity approach of
Section III, suffer attenuation of the low energy sub-bands.
We saw that the scaling coefficients αj of Eq. (5) could com-
pensate for this attenuation by appropriately boosting the sub-
bands of each patch. However, computing these coefficients
required knowledge of the ground truth HR image I1, which
is not available in practical scenarios.

A solution to the above problem is to estimate these co-
efficients from training patches extracted from natural images
and treat these learned coefficients as a statistical prior. Such
a prior would indicate the relative amplifications required for
different sub-bands of the super-resolved image patch.



(a) Ground-truth HR (b) Bicubic (0.9167) (c) Conventional self-similarity (0.9360) (d) Ours (0.9378)

Fig. 6. Sunlight (2X): Best viewed when zoomed in. Our result shows much richer texture in the hair, facial features and the blue shoulder strap etc., as compared to the conventional
patch-similarity based SR. Our result appears almost indistinguishable from the ground truth. Numbers in brackets denote SSIM [16] values.

(a) Ground-truth HR (b) Bicubic (0.6183) (c) Conventional self-similarity (0.6467) (d) Ours (0.6546)

Fig. 7. Fur (4X): The fur is reconstructed better in our result, and it appears sharper and richer in texture. Numbers in brackets denote SSIM [16] values.

In this paper, instead of resorting to an external database
of image patches for learning such a prior, we propose a self-
learning scheme, that operates as follows: We utilize scaled
down versions of the given image I0, to generate training data
for learning the scaling coefficients. More specifically, we first
obtain I−1 from I0 by a blurring and downsampling operation.
We then compute a super-resolved image Ĩ0, by using the
patch-similarity based SR algorithm of Section III with I−1
as the input image. The computation of Ĩ0 is schematically
illustrated in the blue dotted box of Fig. 2.

Our training image pair consists of the super-resolved
image Ĩ0, and its corresponding ‘ground-truth’ I0, which is
available to us. Our objective is now to learn the attenuation
in the sub-bands of the patches of Ĩ0, when compared to those
from I0. We extract around 1000 randomly sampled patches
from Ĩ0 along with their corresponding ground-truth patches
from I0. Using these two sets of patches, we repeat the analysis
presented in Section IV to obtain the scaling coefficients α(j)

using Eq. (5).

The red plot in Fig. 5(b) shows the coefficients thus
obtained using the proposed self-learning scheme (using Ĩ0
and I0) for the Baby image. We can see that these coef-
ficients closely approximate the ‘optimal’ coefficients learnt
with knowledge of the ground truth image I1 (blue plot), as
described in the previous section.

VI. BACKPROJECTION CONSTRAINT

Once the coefficients {α(j)}Rj=1 have been determined, we
use it to amplify or boost the respective sub-bands of each
patch from the image Ĩ1, using Eq. (1). The enhanced patches
thus obtained form the super-resolved image Î1 that we set out
to achieve. However, we must also ensure that the image Î1
on blurring and downsampling, yields the LR image I0. We
therefore need to minimize the cost function,

J(Î1) = ||
(
Î1 ∗ fpsf

)
↓ −I0||22 (6)

To satisfy this constraint, we run around 10 iterations of the
following gradient based update rule,

Î+1 = Î1 − µ∇J(Î1) (7)
where we choose the stepsize µ = 1. The above procedure is
called the iterative backprojection algorithm [7].

VII. RESULTS

Implementation Details. We use the proposed algorithm for
upscaling images with a relatively small scaling factor, not
exceeding s = 2. Therefore, for super-resolving images to
4X resolution, we apply the proposed algorithm twice, each
time with scaling factor s = 2. Similarly, for an overall super-
resolution of 3X , we apply our algorithm twice with scaling
factor s =

√
3 each time. For super-resolving color images, we

use our algorithm only on the luminance channel. The chroma
channels are upscaled using simpler methods such as bicubic
interpolation, and then recombined to obtain the color image.



(a) Glasner et. al. [6] (b) Freedman et. al. [4] (c) Ours
Fig. 8. Koala (3X): Best viewed if zoomed in. Textural details of the fur and the tree trunk are better recovered in our result as compared to competing methods.

(a) Glasner et. al. [6] (b) Freedman et. al. [4] (c) Ours
Fig. 9. Girl (3X): Textural details of the hair are more enhanced in our result. The freckles on the face also are clearer if seen while zoomed in.

We first run our algorithm on images that have known
ground truth HR versions. We compare our approach with the
conventional patch similarity based method as described in
Section III and see the improvement in results our algorithm
brings. Fig. 6 shows our result on the Sunlight image. Clearly,
our result shows much richer texture in the hair, facial features,
the blue shoulder strap etc. Visually, our result appears almost
indistinguishable from the ground truth in this example. We
report the structural similarity measure (SSIM) [16] below
each result, although the correlation of numerical metrics with
human perception of image quality is debatable.

Fig. 7 shows our result on the Fur image. In this case as
well, our result looks visually more appealing and bears closer
visual resemblance to the ground truth.

We now compare our results to those obtained in the past
work. Specifically, we compare our results to those of two
state-of-the-art methods, the self-similarity based methods of
Glasner et. al. [6] and Freedman et. al [4], taken from the
respective authors’ websites. Fig. 8 shows the results on the
Koala image. We can see that our result better shows the fine
details in the animal fur and the tree trunk than the other two
methods. Fig. 9 shows another set of results on the Girl image,
where fine details of the hair are more clearly visible in our
result. These images do not have ground truth HR available.

Finally, in Fig. 10, we also compare against two more
methods, that are based on learning from external databases
- the dictionary learning based method of Yang et. al [13] and
the edge statistics based method of Fattal [3]. Yang et. al. [13]
is not able to produce sufficiently sharp edges (e.g. the lips).



(a) Ground-truth HR (b) Yang et. al [13] (c) Fattal [3]

(d) Glasner et. al. [6] (e) Freedman et. al. [4] (f) Ours
Fig. 10. Baby (4X): Textures in the woolen cap appear richer in our result as compared to other methods. Our edges are also sharp. Details in the eyes are slightly better.

The textures produced by the edge based method of Fattal [3]
tend to appear un-natural, e.g., as in the green box. Our result
appears richer in texture, and also yields sharper edges.

VIII. CONCLUSION

We have presented an SR algorithm that delivers better
super-resolved texture. Our algorithm is based on an ob-
servation we have made, that the conventional L2 distance
based patch-matching does not sufficiently characterize fine
textures. Additional criteria are needed to ensure that the subtle
textural elements are super-resolved better. To take advantage
of oriented bandpass filters in characterizing textures, we have
presented an algorithm that additionally constrains the energies
of the sub-bands of the super-resolved patches. We have
proposed a self-learning scheme that determines an optimal
set of scaling coefficients, to balance the energies in the sub-
bands to mimic their distributions in the natural images. Our
algorithm does not use any external training database.
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