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Abstract

In this paper, we aim at modeling video sequences that ex-
hibit temporal appearance variation. The dynamic texture
model proposed in [7] is effective to model simple dynamic
scenes. However, because of its over-simplified appearance
model and under-constrained dynamics model, the visual
quality of its synthesized video sequences is often not satis-
factory. This leads to our new model. We parameterize the
nonlinear image manifold using mixtures of probabilistic
principal component analyzers. We then align coefficients
from different mixture components in a global coordinate
system, and model the image dynamics in the global coordi-
nate using an autoregressive process. The experimental re-
sults show that our method is capable of capturing complex
temporal appearance variation and offers improved synthe-
sis results over previous works.

1. Introduction

Examples of dynamic textures/scenes include flowing river,
boiling water, waving trees, smoke, etc. There are three
main approaches in literature to model dynamic textures.
First, one can directly extend methods of static 2D texture
synthesis, e.g. [13]. These methods ignore the underlying
texture dynamics. Also, they cannot synthesize dynamic
scenes with more than one texture, or non-texture objects.
Second, one can use a spatio-temporal model at the pixel
level to represent the relationships between a pixel and its
neighborhoods [9]. Such pixel-level dynamical models ex-
perience difficulties in selecting the appropriate neighbor-
hood size and topology. A good model of this approach also
requires a large number of model parameters. Most impor-
tantly, such a model is not capable of synthesizing rotation-
like motion patterns. Third, one can use a dynamical model
at the image level. For example, Soatto et al [7] model
dynamic textures/scenes using a linear dynamical system
(LDS) as Figure 1, which represents each image as a point
in a linear subspace (e.g. PCA) and uses an autoregressive
model to learn the dynamics of the trajectory in the image

subspace as

{
xt = Axt−1 + vt, vt ∼ N (0, Q)
yt = Cxt + wt, wt ∼ N (0, R) (1)

wherey is the observed image,x is the hidden state vari-
able,C is the output matrix mapping observations to state
variables,A is the transition matrix of AR process, andv
andw are zero-mean Guassian noise sources. Compared
to the pixel-level dynamical model, this approach requires
much fewer model parameters and has a greater capabil-
ity of capturing different motion types. Furthermore, Yuan
et al [14] analyze the stability of the LDS through its pole
placement and propose a dynamical model with feedback
control, which improves synthesis results.

Y t-1 Y t+1Y t

X
t+1

X
t-1 X

t

Figure 1: The classic model for dynamic textures as a linear
dynamical system.

However, by using either [7] or [14], the visual quality
of synthesized video sequences is not satisfactory when the
scenes contain large temporal appearance variation and/or
shape variation. In [14], they address the problem of under-
constrained dynamics in [7]. But one key to modeling com-
plex texture motion is a better appearance model. As will
be shown in our experiments, a linear dimensionality reduc-
tion scheme such as PCA is too simple to capture complex
appearance changes.

In this paper, we address problems in both appearance
and dynamics models. In appearance model, we propose
to use a mixture of PCAs to characterize image manifolds
which is usually nonlinear for images with large appearance
variation. Using a mixture model for appearance manifold
seems intuitive, but then deriving a dynamics model could
be very difficult. This is because different mixture com-
ponents have their own coordinate systems based on their
eigenvectors spanning the subspace, but dynamics mod-
els have to be operated on a single coordinate system of
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the manifold1. Therefore, we adopt a global coordination
model, which provides a mapping between coordinates of
different mixture components and the global manifold co-
ordinate, and extend it to a dynamic model.

2. Global Parameterization of Appear-
ance Manifold

There are generally two categories of nonlinear dimension-
ality reduction schemes: (1) locally linear mapping [12] and
(2) nonlinear embedding [4, 11]. A mixture of locally lin-
ear models offers a two-way mapping, but lacks a coher-
ent global coordinate system. Nonlinear embedding offers
a global coordinate, but lacks the mapping for the inference
of an observation from a global coordinate. Therefore, we
map a mixture of locally linear models into a new coordi-
nate system to achieve ideal manifold mapping for model-
ing dynamic textures.
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Figure 2: Mappings of nonlinear dimensionality reduction
schemes.

2.1. Global Coordination Model
Roweis [5] propose a global coordination model that maps
a mixture of locally linear models into a global coordinate
system (Figure 3). Given a local models and its local co-
ordinatezs, the mappings fromzs to observationy and to
global coordinateg are both linear. And sinces andzs are
unknown, mapping betweeny andg is nonlinear through
the inference.
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Figure 3: The global coordination model.

To learn this model, we use a post-coordination method
proposed in [10]. Given a learned mixture ofS PCA mod-
els, for each data pointyn, thes-th PCA has and dimen-
sional internal coordinatezns for yn and an associated re-
sponsibilityrns, whererns = P (yn|s) and

∑
s rns = 1.

1A switching LDS [1] does not operate on a single coordinate system,
but it does not ensure appearance continuity.

We assume there is a linear mapping between local repre-
sentations and global coordinates, with linear projectionLs

and meanl0s . The global coordinatesgn is defined as the
weighted sum of the projections by each local model:

gn =
∑

s

rnsgns =
∑

s

rns(Lszns + l0s)

=
∑

s

d∑

i=0

rnsz
i
nsl

i
s =

∑

j

unj lj ,

(2)

G = UL j = j(i, s), unj = rnsz
i
ns, lj = lis (3)

wherelis is the i-th column ofLs, zi
ns is the i-th entry of

zns, andz0
ns = 1. After vectorizing index pair(i, s) into a

single indexj and defining matrixU asunj andj-th row
of L aslj = lis, we have a linear equation system (3) with
fixedU and unknownL.

To determineL, we need to minimize a cost function
that incorporates the topological constraints that governgn.
Hence, the cost function is selected based on LLE’s idea [4]:
preserving the same neighborhood structure between the
high dimensional input space and the low dimensional em-
bedding. For each data pointyn, we denote its nearest
neighbors asym (m ∈ Nn) and minimize

E(Y, W ) =
∑

n

‖ yn −
∑

m∈Nn

wnmym ‖2 (4)

with respect toW subject to
∑

m∈Nn
wnm = 1. The

weightswnm are unique and can be solved by constrained
least squares. These weights represent the locally linear re-
lationships betweenyn and its neighbors. Accordingly, we
define the same cost function

E(G,W ) =
∑

n

‖ gn −
∑

m∈Nn

wnmgm ‖2

= trace(GT (I −WT )(I −W )G)

= trace(LT AL)

(5)

with respect toG, whereA = UT (I − WT )(I − W )U .
SinceE is invariant to translations and rotations ofG, and
E scales asG is scaled, we define the following two con-
straints

1
N

∑
n

gn =
1
N

−→
1 T G =

1
N

−→
1 T UL = 0 (6)

and
1
N

∑
n

gngT
n =

1
N

GT G = LT BL = Id, (7)

whereB = 1
N UT U . Now that the cost function (5) and

the constraint (7) are both quadratic, we can determine
the optimalL, without local minima problems, by solv-
ing generalized eigenvalue systemAυ = λBυ subject to
1
N

−→
1 T UL = 0. The solution forL is the matrix with its

columns formed by the second to(d+1)-th smallest gener-
alized eigenvectors.
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3. Globally Coordinated Dynamic Net-
work

Now that we have the nonlinear mapping between images
and their low dimensional global coordinates, we can then
model the image dynamics in the low dimensional space
(global coordinates). Here we adopt the Markovian assump-
tion, P (gt|gt−1, . . . , g1) = P (gt|gt−1). With this property,
our dynamic texture model is a generative model depicted
in Figure 4.
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Figure 4: Our generative model for dynamic textures.

3.1. Autoregressive Process
We can treat the image dynamics as a realization of a
stochastic process estimated by an autoregressive (AR)
model. The AR model is used based on the assumption
that each term in the time series depends linearly on sev-
eral previous terms [2]. Therefore, the AR model of order
p, denoted as AR(p), for dynamic textures is expressed as

gt =
p∑

i=1

Aigt−i + vt, (8)

where the matricesAi are the coefficient matrices of the
AR(p) model, andvt is an uncorrelated random noise.
To select the optimum order of the AR model, we adopt
Schwarz’s Bayesian Criterion [6] which chooses the order
of the model so as to minimize the forecast mean-squared
error. We estimate the parameters of our AR model using
Neumaier and Schneider’s algorithms [3].

As Yuan et al [14] point out, the LDS based method pro-
duces good-quality dynamic textures only if it is an oscilla-
tory system. That is, for the AR(1) model, for all eigenval-
uesσi of A, |σi| ≤ 1 and there existsj such that|σj | = 1.
Otherwise, the synthesized dynamic textures will gradually
decay or diverge. To overcome this problem, they incor-
porate feedback control that results in a non-causal system.
Therefore, they first need to generate reference states, and
then iteratively smooth out the discontinuity. Although us-
ing this method one will obtain better results, it does not
predict new states on the fly, which is a desirable feature for
many real-world applications (e.g. video games).

To preventgt generated by AR model from drifting
away, we sample a certain number ofvt and pick the one
that pullsgt toward the manifold. Our experimental results
show that this method ensures a stable dynamic texture in a
long synthesized image sequence.

4. Experimental Results
The image sequences used in our experiments are taken
from MIT temporal texture database [8]. Most image se-
quences in the database have resolutions of 170 by 115 and
contain 120 to 150 frames. We train mixture models with
the method proposed by Tipping [12].

4.1. Dynamic Texture Reconstruction
For the application in video compression, our mixture of
PCA method always yields less reconstruction errors than
the single PCA method in different dynamic texture se-
quences. While the difference of reconstruction errors be-
tween two methods are usually about5%, the differences of
the visual quality of reconstructed images are always very
obvious (See Figure 5).

Figure 5: The images on the top row are from the original
sequence. The middle row is reconstructed by single PCA
method. The bottom row is reconstructed by our method
with a mixture of three PCA models.

4.2. Dynamic Texture Synthesis
For the application in synthesis, we demonstrate a river
sequence that would allow temporally continuous and in-
finitely synthesized images. Note that some original se-
quences do not show repeated patterns, so it is impossible
to generate infinite synthesized sequences.

Figure 6 shows the synthesis results by the single PCA
method and our proposed method. The images are corre-
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sponding frames selected from200 synthesized images. As
can be seen, the single PCA method yields a decreasing
quality as the synthesized sequence becomes longer. Our
method generates a much improved result. Our synthesis
process is performed in real-time.

5. Conclusion
In this paper, we model dynamic textures with mixtures of
locally linear subspaces. We adopt a global coordination
model that provides a coherent coordinate mapping between
images and their low-dimensional appearance embedding.
We then model the texture dynamics on the appearance
embedding. Compared to the relevant works, our method
yields less reconstruction error and generates higher-quality
dynamic textures.
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Figure 6: The top four rows are synthesized by single PCA
method. The bottom four rows are synthesized by our
method with a mixture of two PCA models. All PCA mod-
els for both synthesized sequences have a dimensionality of
15. An AR(1) model is used in each case.
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