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Summary 
The University of Illinois at Urbana-Champaign (UIUC), an Association of American Railroads (AAR) 
affiliated lab, and Transportation Technology Center, Inc. (TTCI) are developing improved ballast 
inspection techniques. The investigative and field work described here recommends a novel method for 
automatic inspection of the condition of ballasted track using machine vision, eliminating the need for 
sampling and laboratory sieve analyses. Current results of this investigation include the development of 
the following: 

• Image capture and calibration equipment, provided in a Ballast Imaging Kit (BIK), for 
railroad investigators to acquire the images of ballast cross sections; 

• Field acquisition procedures for determining appropriate parameters, such as view, 
exposure, spatial resolution, etc., are critical for obtaining high quality images; 

• Image preprocessing and enhancement methods for refining images prior to the application 
of machine vision algorithms for analysis; 

• Image segmentation algorithms to extract particles and degraded zones visible in field 
images of ballast;  

• Percentage of Degraded Segments (PDS) scoring system to quantify the level of ballast 
degradation in the field;  

• Validation of PDS results using a field test underway at the Transportation Technology 
Center, Inc., (TTCI). 
 

    Railroad ballast provides stability and drainage for tracks that carry freight and passenger traffic. In-
service ballast, as a granular material, degrades into finer particles resulting from abrasion, breakage and 
polishing. Degraded ballast may lead to poor drainage, settlement and eventually track instability. Ballast 
condition assessment methods usually involve the task of identifying particle size distribution, based on 
subjective expert visual inspection or using ballast sampling and transport for laboratory sieve analysis. 
Human visual inspection is conducted primarily by looking at the surface of the ballast; however, 
underneath the surface, ballast degradation varies based on its three-dimensional location with respect to 
the rail and ties. This phenomenon also makes sampling/sieving efforts subjective as well, based on the 
location where the sample is taken. 
    Ultimately, this automatic inspection approach can provide objective machine vision analysis of ballast 
degradation underneath and in between the ties. This method is envisioned to be applied to a continuous 
longitudinal cross section of the shoulder near the end of the ties, such as that created by a shoulder ballast 
cleaner along the length of the track. This work is being conducted as part of an ongoing AAR 
Technology Outreach Program project to help evaluate the design and deterioration of ballasted track and 
provide predictive service life and failure analysis for improving the safety and network reliability of AAR 
member railroads. 
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INTRODUCTION AND BACKGROUND 
Maintaining ballasted track requires periodic evaluation 
of the ballast condition to detect excessive degradation, 
which can lead to track instability and possible track 
failures. Fouling Index (FI) and Percentage Fouling 
(PF)1 are two commonly used indices for quantifying 
ballast degradation. To estimate these indices, one needs 
to perform ballast sampling and subsequent sieve 
analysis on acquired samples, which are labor intensive 
and time consuming. To counter these difficulties, an 
objective and automated methodology for determining 
levels of degradation is being developed with the aid of a 
machine vision system to be integrated on regularly used 
ballast maintenance equipment. This configuration 
provides a method for capturing and analyzing images of 
the ballast as the maintenance equipment traverses the 
track. The degraded ballast condition results from this 
system can assist in determining proper maintenance 
strategies and prediction of the ballast service life cycle.  

This Technology Digest describes the recent results of 
the machine vision inspection system under 
development. To estimate the degradation levels, the 
system uses an image segmentation algorithm to extract 
particles and degraded zones from high resolution 
images that were captured in the field. 

Initial image data, for early development of the 
segmentation algorithm,2 was acquired in the laboratory 
using ballast samples placed in a transparent Plexiglas 
box. This method allowed the fabrication of mock ballast 
cross sections similar to those observed in the shoulder 
or underneath the track in the field. The clear sides of the 
box allowed images of the ballast to be captured in the 
laboratory under controlled conditions. 

Key requirements for capturing images, in the 
laboratory or the field, include obtaining proper 
exposure, consistent spatial resolution, and minimization 
of distortion across the entire image of the ballast cross 
section. To ensure these requirements are achieved, 
equipment was assembled into a Ballast Imaging Kit 
(BIK) with a multiple-step procedure for allowing 
railroad personnel to acquire images suitable for 
machine vision segmentation algorithms. 

Several trips to both in-service and test track sites were 
made to remove ballast by hand to capture images of 
undisturbed ballast layers in the shoulder. Results of the 
segmentation algorithm in these test cases showed good 
performance by properly segmenting approximately 80 
percent of the particles in the images (Figure 1).  

Obtaining an adequate number of images showing 
ballast cross sections under different levels of 

degradation in the field was challenging. To obtain 
further images and alleviate the preparation of cross 
sections by hand, the authors collaborated with the 
Improved Tie and Fastener System Performance 
Strategic Research Initiative (SRI) being conducted at 
the Facility for Accelerated Service Testing (FAST). 
Ballast trench cross-sections were imaged at FAST as a 
field application for initial validation of the ballast 
inspection system. 

 

   
  (a)                                  (b)                             (c) 

Figure 1. (a) Original cross section image (b) Image 
segmented into colored areas, and (c) Individually 

extracted particles for analysis 

LATERAL TRENCHING AND FIELD IMAGING 
The aforementioned SRI project includes evaluation of 
different concrete tie designs and their effects on ballast 
degradation and track geometry.3 As part of scheduled 
research activities, trenches are made laterally across the 
track so the condition of the ballast within and 
underneath the various tie zones can be visually 
observed (Table 1). 
Table 1. Crosstie information for trenches image analyzed 

Trench ID 
(Crosstie 

#) 
Zone 

# 
Type of 

Concrete 
Crosstie 

Under Tie 
Pads 

Crosstie 
Spacing 

(inch) 
1100 1 Half-Frame Yes 24 
1177 1 Half-Frame Yes 24 
1274 2 Conventional No 24 
1388 3 Conventional Yes 24 
1477 4 Conventional Yes 24 

 

These various tie types presented an opportunity for 
imaging trenches with several different levels of 
degradation for testing the machine vision algorithms 
and identifying any correlation between ballast 
degradation and the types of crossties used. Using the 
BIK and imaging procedure developed, seven images 
were captured along five trenches by TTCI personnel 
(Figure 2). 

 
Figure 2. Trench cut underneath tie shows imaging locations 
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FIELD IMAGE ANALYSES OF BALLAST 
PARTICLES AND DEGRADED ZONES 
For identifying and separating individual ballast particles 
and degradation zones, the process of image 
segmentation was used. Segmentation algorithms 
primarily detect the rock particle boundaries to 
determine the locations of distinct particles. The 
Watershed algorithm4 was selected based on its good 
performance for extracting particles that are touching 
each other. This process is still challenging and often 
requires preprocessing of the images to improve the 
performance of the segmentation.  

The first step in the image preprocessing is image 
enhancement. Gamma adjustment5 can be used to 
enhance the image by rebalancing the relative intensities 
of pixels, if the image is predominantly too bright or too 
dark, thus amplifying the visual differences between the 
bright or dark pixels, respectively. Histogram 
equalization5 can also be used to increase the image 
contrast if the intensity of the pixels are concentrated in 
small band of values. Both methods can improve the 
boundary detection. 

Images of ballast provide a challenge for the 
segmentation algorithm due to the excessive amount of 
texture on ballast particles. The segmentation algorithm 
confuses the internal texture on the surfaces of the rocks 
with their true boundaries. Bilateral Filtering6 is 
employed to reduce the internal texture while preserving 
the actual boundaries between touching particles. Once 
the particles are segmented, they can be extracted from 
the image and further analysis involving size, shape, and 
angularity can be performed, see Figure 1c. 

An additional step involves separating out non-rock 
segments, which are either finer particles filling voids or 
rocks from underneath the surface layer. To accomplish 
this, the ballast particles are assumed to be mostly 
convex in shape. Therefore, a convex hull is constructed 
around each segment found, and the ratio of the area of 
the segment and the area of the convex hull is computed 
(Figure 3).  

                      
                                (a)                                     (b) 

Figure 3. (a) Convex hull (boundary) of non-rock  
(area ratio = 0.4803) (b) Convex hull of rock particle  

(area ratio = 0.9718) (Note: axes are pixel locations in  
the image) 

Those segments with high ratio values are considered 
to be normal rock particles, thus reducing the number of 
false positive particle detection.  

SEGMENT ANALYSIS AND CALCULATION OF 
DEGREDATION PERCENTAGE 
The analysis of each segmented image is conducted 
using an area-based approach. The area of a 1-inch 
calibration ball, in pixels, is estimated and then used to 
calibrate the area of each particle segment. According to 
area, these segments are then partitioned into three 
classes, typical, small, and large. The typical category 
represents average size ballast particles, the small 
category represents severely degraded particles, and the 
large category represents oversized regions with 
particles too small to be identified individually, such as 
fine grains. These categories are determined by 
normalizing the areas with respect to the area of the 
calibration ball, setting thresholds at <60 percent for 
small and >300 percent for large. The later categories 
are labelled as Degraded Segments. 

A score for each image, Percentage of Degraded 
Segments (PDS), is defined as the percentage of the total 
area of the large and small segments compared to the 
total area of the ballast image. Let Si (i = 1, …, n) be the 
areas of the segments 1, …, n  in the image. Let  be the 
area of the calibration ball and  be the area of the 
image. All areas are measured in number of pixels.  

Define: J = {1 < i < n |thresholds < Si/b < thresholdl, 
thresholds = 0.6, thresholdl = 3} 

Then, PDS(%) = 100 x (1 – ∑i ∈JSi /A) 

Figure 4 shows the segmentation result of a typical 
trench image, taken by TTCI, divided into three sub-
images of equal height for processing. The PDS score 
for each sub-image is 55, 41, and 40, respectively. These 
values are averaged to determine an overall PDS score of 
45.3. 

    
                         (a)                                                  (b) 

Figure 4. (a) Original trench image (b) Image segmented 
into colored areas in the three sub-images  

after processing 
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All 35 images taken in the trenches were processed 
and the results are presented in Table 2. To test the 
validity of the PDS values, estimated degradation level 
rankings were made by human visual judgments for each 
trench (1 = low degradation, 5 = high degradation), as 
listed in Table 2.  

Table 2. PDS values and visual rankings for TTCI trench images 

Inside Shoulder Imaging Location 
 Visual Ranking 1 2 3 4 5 
 Trench ID  1477 1177 1274 1100 1388 
 PDS (%)  48.9 52.5 50 65.4 65.4 
 

Inside Rail Imaging Location 
 Visual Ranking 1 2 3 4 5 
 Trench ID  1177 1100 1477 1388 1274 
 PDS (%)  45 73.4 73.9 93.1 63.54 
 

Inside Center Imaging Location 
 Visual Ranking 1 2 3 4 5 
 Trench ID  1177 1100 1388 1274 1477 
 PDS (%)  74.4 63.1 77.94 86.4 87.84 
 

Center Imaging Location 
 Visual Ranking 1 2 3 4 5 
 Trench ID  1177 1100 1388 1477 1274 
 PDS (%)  75.94 42.97 90.27 83.24 89.87 
 

Outside Center Imaging Location 
 Visual Ranking 1 2 3 4 5 
 Trench ID  1177 1100 1274 1477 1388 
 PDS (%)  45.40 53.5 79.76 81.54 79.45 
 

Outside Rail Imaging Location 
 Visual Ranking 1 2 3 4 5 
 Trench ID  1177 1100 1274 1388 1477 
 PDS (%)  58.37 63 67.13 75 77 
 

Outside Shoulder Imaging Location 
 Visual Ranking 1 2 3 4 5 
 Trench ID  1100 1177 1477 1274 1388 
 PDS (%)  62.1 55.94 66.57 66.8 85.17 
 

When compared, the majority of the PDS rankings are 
comparable to the visual rankings. One explanation for 
those not comparable is that direct sunlight, which 
causes shadows and highlights, creates artificial 
discrepancies in pixel intensities in these images. In 
addition, the human visual rankings are of course 
subjective. Note that images with high levels of 
degradation and those with low levels have high and low 
PDS scores, respectively. 

Both the visual and PDS rankings for trenches ID1100 
and ID1177 had the lowest levels of degradation. These 
trenches correspond to locations of the half-frame tie, 
which is a larger concrete tie with greater ballast contact 
area. The half-frame tie appears to be reducing ballast 
degradation compared to a conventional concrete tie.  

Segmentation results for PDS values were presented as 
part of SRI Tie Project at the 2014 International Crosstie 
Fastening System Symposium at UIUC and at the 20th 
AAR Annual Research Review in 2015. 

 

CONCLUSIONS AND RECOMMENDATIONS 
Initial results in generating PDS values show great 
promise in replacing the tedious and time-consuming 
method of sampling and sieving ballast samples. For 
further validation of this method, ballast samples are 
being collected from the area imaged by the camera and 
analyzed (sieved) to obtain the ground truth required to 
correlate the PDS values to the Selig’s FI. Ultimately, 
the system will be installed on Shoulder Ballast Cleaners 
for ballast quality and condition assessments during 
operations and incorporated into a Ballast Maintenance 
System to determine proper maintenance and 
rehabilitation strategies. 
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