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Abstract

This paper presents an approach to the analysis of multi-
ple motions in video, which combines frequency and spatial
domain information in a new manner. The tasks of interest
are finding the number of moving objects, velocity estima-
tion, object tracking, and motion segmentation. We propose
a novel, hybrid approach, which avoids problems of spatial
domain methods, like sensitivity to illumination changes or
great computational cost, but also uses spatial information
for precise object localization. Experiments with synthetic
and real sequences, show both the possibilities and limita-
tions of this approach.

1. Introduction

This paper is concerned with object level motion analysis
of video sequences, such as counting the number of moving
objects, motion estimation, and motion based segmentation.
Algorithms for these tasks are useful in many applications
such as tracking, registration, and recognition.

Much of the previous work on motion analysis has used
the spatial domain representation of images [1], [2] [3],
which models motion phenomena in terms that directly cor-
respond to how we ourselves may often describe the motion.
Our ongoing work is aimed at combining multiple represen-
tations to explicitly capture the image characteristics most
pertinent to various motion analysis tasks. In this paper,
we focus on the Fourier Transform (FT) and the joint use
of image and Fourier representations. In Sec. 2 we moti-
vate the use of the FT. Sec. 3 presents the formulation of the
FT method, and algorithms for the motion analysis tasks
are presented in Sec. 4 - 5. In Sec. 6 we propose the in-
tegration of frequency and image-based methods. Sec. 7
presents experimental results and concluding remarks are
given in Sec. 8.

2 Motivation for Frequency-Domain and In-
tegrated Approaches

Since a video sequence depicts the temporal repetition
of the moving objects, the requirements of certain motion
analysis tasks may be well matched to a frequency repre-
sentation. Frequency domain processing has several advan-
tages over spatial domain methods. The motion estimation
is based on the phase changes of the FT, so it is robust to
global illumination changes. Its computational cost is sig-
nificantly lower, making it more useful for practical appli-
cations. The size and shape of the moving objects does not
affect the motion analysis, as the motion estimation and ini-
tial segmentation does not use spatial data.

FT processing alone is not adequate for all motion tasks,
so spatial information is used for more accurate segmen-
tation. Until now, there have been few approaches to the
strongly inter-connected problems of motion estimation and
segmentation that can take advantage of both frequency and
spatial domain information [4]. Current frequency based
methods [4], [5] use the FT only for the motion estima-
tion, and not the segmentation. We propose a new approach,
which estimates the number of moving objects and the in-
dependent motions in the Fourier domain, and fuses spatial
and frequency data for the motion segmentation.

3 Frequency Domain Formulation

Let each frame consist of M moving objects [, 1 <[ <
M, with luminance s;(7) at pixel 7 and velocity 1, initially
considered constant. In Sec. 5.2 we show how non-constant
translations can also be estimated. The FT of object [ is
S)(@) = Aj(@)e? (@), where @ = [27mm/Ny, 2mm /N, 7T,
m,n € Z is the 2-D frequency, N1 x N, the image size,
A;(@) the FT magnitude and ®;(w) the FT phase. Each
object is displaced by 7; = u; for inter-frame time ¢t = 1, so
its FT becomes S} (w) = S (@)e~3®" "1 The background

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 17th International Conference on Pattern Recognition (ICPR’04)
1051-4651/04 $ 20.00 IEEE



has FT Sy(w), the FT of each frame is Xy (w), 1 <k < N,
and the measurement noise is V,,pise. (@), giving!

X1 =8, +51+ S+ .+ Su + Vaoisen- (D

A moving object occludes a part of the background and un-
occludes another. The FT’s of the unoccluded and occluded
parts of the background from frame 1 to k are denoted as

Sk and SLE respectively, so frame N has FT

Xy = Sp+ Sle_j(N_l)wTﬁ + ...+ SMe_j(N_l)@TFM
+ SinN - Sl’N + Vnoise,N- (2)

occ

Stacking the FT’s of the N frames, we get X = 7 +
Vioise + Voek, where Z is the N x (M + 1) data matrix,
Vioise 18 the additive measurement noise, and Vj,j repre-
sents the occluded and unoccluded background areas, with
elements Vier x = ShF — SLE. We can decompose Z as
Z = AS, where S = [Sy, S1, ..., Sar]T, and A is a Van-
dermonde matrix containing the motion information, with
rows:

Ay =1, e dG=D@ R ik D@ R (3

7

Then we have
X = AS + Vnoise + Vbck~ (4)

This is an over-determined system, which can be solved in
a Least Squares (LS) sense to give S.

4 Object Number - Counting of Independent
Motions

The rank of the noiseless data correlation matrix Ry =
ARgA™  where Ry is the correlation matrix of S, is equal
to the rank of A. Due to its Vandermonde structure, A has
M independent columns, so its rank gives the number of
independently moving objects. For noise with Ry = 021
(w.l.0.g.), the singular values of the sample correlation ma-
trix Rx are {0? + o2,...,0%, + 0%,0%,...,0%}, where
0,371 < k < M are the singular values of Rz. In prac-
tice, o7 > 02, so M can still be determined from them.
This estimate is useful for motion estimation, in addition to
being a motion parameter of interest by itself.

5 Retrieval of Harmonics - Motion Estima-
tion

The FT of the frames contains the motion information in
the form of a sum of weighted harmonics. Existing trans-
form domain methods (which assume constant translational

1For simplicity we omit @ from the function arguments in the sequel.

motion) perform spatiotemporal filtering [6], estimate the
3D FFT [7] or use harmonic retrieval methods [5]. We pro-
pose a simpler, computationally less costly method for mo-
tion estimation. Unlike existing FT methods, it has the sig-
nificant advantage of not being restricted to constant trans-
lations.

5.1 Constant Motion

Consider the phase change ®1 j, of frames 1 — &:

Sy + Sie~ih=Da M 4 g e=i(k=1)& Ty

D=
)

Its inverse FT ¢ is a weighted sum of delta functions,
that displays peaks corresponding to the harmonics w’7; =
[wexr, wyyi] for each object I, from which we can extract
the motion (7; = (x,y1)).

In practice, the resolution of the peaks can be degraded
by the aliasing from neighboring side-lobes. Thus, we iden-
tify the motions in a scene sequentially: the stronger motion
components and a set of values close to them are estimated
first and removed [5], so that the weaker harmonics can be
detected more easily. The previously estimated number of
motions helps, since we repeat this process until M/ motions
are extracted.

5.2 Time-Varying Motion

For time-varying translations, the initially estimated 7 j,
gives the average velocity a{"Y = 71 /11, where T}
is the time from frame 1 to k. This can be repeated for
increasingly shorter subsequences, until their velocities be-
come similar. Then, the constant components of the time-
varying motion have been found.

If the velocity of object [ from frame 1 to k is ﬂll o L=

AS, and the rows of A are

Ay =1, e d=D@ A, mik-DaTE) ()
A does not have a Vandermonde structure, so the number of
independent motions cannot be estimated beforehand, but
the displacements between frames 1 and k can still be es-
timated as in Sec. 5.1. From these motion estimates, the
number of motions is found a posteriori, and S can be re-
trieved from the LS solution of (4), with A instead of A.

6 Motion Segmentation - Object Tracking
6.1 Iterative LS for Motion Segmentation
A more accurate solution for S could be obtained from

X' =X — Vier = Z + Vioises if Vier, was known. We ap-
proximate V. using an “object mask” (Sec. 6.1.1- 6.1.3),
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which can be iteratively improved to get to better approxi-
mations Vpei of Vier.

6.1.1 Difference Mask for Each Object from Fre-
quency Domain Solutions

From each LS solution §; and the frame luminance s at each

pixel we get Dy(x,y) = |s(z,y) — 51(z, )|, Dmaz.t =
mazy 4 {Di(z,y)} and:

Dma:ml - Dl(xa y)
Dmar,l ’

Dmask7l($7y) = (7)

which is closer to 1 for pixels belonging to object [, since
Dy (z,y) ~ 0 in those positions. In pixels that don’t belong
to object I, D;(z, y) has higher values, $0 D45k is closer
to 0. Thus, the LS solutions S; lead to a measure of the
probability that pixel (z,y) belongs to object [.

6.1.2 Probability Mask from Velocity Mapping

The frame pixels are tracked by assigning the M object
velocities and the background velocity 0 to each of them.
When a pixel s;(x,y) is tracked with its correct velocity
4y, its luminance remains mostly constant over the frames,
i.e. it displays a small variance 7. If it is tracked with
the wrong velocity g, the variance o7 of the incorrectly
tracked pixels increases. We denote by F; the proba-
bility that the tracked pixel’s distribution fits the small-
variance distribution, i.e. that the pixel belongs to ob-
ject I. This gives a “spatial probability mask” P;(z,y) =
Fi(z,y)/ Zf\il F;(z,y), the probability that (z, y) belongs
toobjectl, 1 <1 < M.

6.1.3 Final Probability Mask for Motion Regions

The frequency-based and spatial “probability masks” are
combined via pixel-wise multiplication and the result is nor-
malized (so it takes values between 0 and 1). This gives the
best possible “object probability mask™ that helps find Viek
and S.

7 Experiments
7.1 Number of Motions: Synthetic Data

The first sequence consists of two squares with parts of
“Cameraman” translating against a black background with
a1 = [3,7], a2 = [15,25]. From the SVD of Rx, we see
that two harmonics are present, as two of its singular values
are 118,117, i.e. much higher than the rest, which are under
50. The periodogram peaks give the correct velocities and
the moving objects are retrieved accurately from (4).

Table 1. Estimates for varying velocity
| Real @ - Istpart || 41, =[1,3] | G2q = [2,5] |

frames 1 — 16 [3.21, 4.93] [5.29,7.57]
frames 1 — 3 [1.33,3.33] [2,4.67]
Real @ - 2nd part || @1, = [5,7] | G2 = [8,10]
frames 1 — 16 [3.21, 4.93] [5.29,7.57]
frames 4 — 16 [4.18,5.64] [6.18, 8.36]
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Figure 1. (a) Original frame. (a) Initially recov-
ered background from LS solution. (b) Re-
covered object from the initial LS frequency
domain solution.

7.2 Non-constant translational motion

Using the same synthetic data as before, we generate 16
frames: for frames 1 — 5 we have @1, = [1, 3] and @, =
[2,5], and for 6 — 16, @1, = [5, 7] and Ggp, = [8, 10]. Table 1
shows that if we use all the frames we get estimates between
the true values of the two different pairs of velocity vectors.
If we break the sequence into two parts, there are still errors,
but there is a clear separation of the time varying velocities.

7.3 Real-Image Synthetic Sequence

To effectively test the method in a controlled but realis-
tic environment, we perform experiments with the synthetic
20 frame sequence of Fig. 1(a). The motion is accurately
estimated to be @ = [15, 0]. In Fig. 1 there are artifacts be-
cause of Vi, which become black (zero) when X is used
(Fig. 2). There still are vertical stripes outside the “motion
region”, because of the regularization involved in the LS
solution of (4). The MSE also gives an indication of the im-
provement achieved by accounting for V.. The original S,
estimate had M SE;, = 4.8581 x 10™%, but after compen-
sating for Vi, it becomes M SE, = 4.6982 x 10~%, and
the object MSE decreases from M SE; = 7.8937 x 10~ to
6.4361 x 10~%. The results of Fig.2, however, give a better
indication of the improvement achieved.
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(b)

Figure 2. Ideally extracted background and
object with perfect knowledge of V... (a) Re-
covered background. (b) Recovered object.
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Figure 3. (a) First frame. (b) Initially recovered
background: the cars have been “erased”!
(c) Originally extracted first car with artifacts
from V,;.. (d) The second car is more difficult
to extract: its color is similar to the back-
ground.

7.4 Real Sequence with Multiple Objects

We examine a sequence with a dark car moving to the
right, and a white one moving to the left in the other lane
(Fig. 3(a)). In the initial LS solution (Fig. 3(b)-(c)), the
background and the two independently moving objects have
been separated, but the frequency domain results need im-
provement, so the spatial techniques of Sec. 6 are used.
We get separate masks (Fig. 4) for the two objects as in
Sec. 6.1. The iterative approach improves the MSE, which
decreases from M SE;, = 7.5062 x 1074 t0 6.9172 x 10~*
for the background, from MSE; = 10.3238 x 104 to
MSE; = 10.0204 x 10~* for the first object and from
MSE; = 9.8499 x 10~ to MSE, = 9.0504 x 10~ for
the second object.

Best Sogmentation Mask

(a) (b)

Figure 4. The cars after masking. The esti-
mated position and shape are essentially cor-
rect for both cars.

8 Future Directions - Conclusions

The method presented is promising, as it can achieve ob-
ject counting, simultaneous motion estimation and segmen-
tation almost entirely in the frequency domain, and thus
avoid many problems of spatial methods. It is extended
to varying translations, unlike existing frequency-domain
methods. More generalizations, for the estimation of multi-
ple rotations are under current investigation.
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