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ABSTRACT 

The problem of feature correspondences and trajectory 
finding for a long image sequence has received consid- 
erable attention. Most attempts involve small num- 
bers of features and make restrictive assumptions such 
as the visibility of features in all the frames. In this 
paper, a coarse-to-fine algorithm is described to ob- 
tain pixel trajectories through the sequence and to seg- 
ment into subsets corresponding to distinctly moving 
objects. The algorithm uses a coarse scale point fea- 
ture detector to form a 3-D dot pattern in the spatio- 
temporal space. The trajectories are extracted as 3-D 
curves formed by the points using perceptual group- 
ing. Increasingly dense correspondences are obtained 
iteratively from the sparse feature trajectories. At the 
finest level, matching of all pixels is done using inten- 
sity correlation and the finest boundaries of the moving 
objects are obtained. 
Keywords: Motion Estimation, Motion Segmentation, 
Perceptual Grouping, Pixel Matching, Triangulation, 
Feature Matching 

1. INTRODUCTION 

This paper describes work aimed at interpretation of 
image sequences. The goal is to analyze the two-dimen- 
sional motion of objects in the image plane, with at 
most nearer-farther type understanding of their three- 
dimensional characteristics. Given an image sequence 
containing an arbitrary number of rigid objects in mo- 
tion, the objectives are to identify feature points in 
the scene, obtain spatially dense trajectories of those 
points, segment moving objects, compute image flow at 
each pixel, and derive a qualitative description of the 
scene structure and dynamics from the image sequence. 
The qualitative description consists of scene characteri- 
zation such as identifying frames when an object enters 
or exits the scene, detection of occlusion and occluding 
and occluded objects, detection of small objects mov- 
ing at high speeds and counting the number of objects 
ever seen in the scene. Such interpretation of the image 

sequence is useful for a variety of applications such as 
traflFic scene analysis, biological image analysis, aerial 
image understanding, in each of which the differences 
in the depths of moving objects are small. Next sec- 
tion summarizes some related previous work. Section 
3-5 give details of our algorithm. Section 6 presents 
experimental results and section 7 presents concluding 
remarks. 

2. PREVIOUS WORK 

Several researchers have addressed the problem of fea- 
ture correspondence in the past. Sethi and Jain[l] for- 
mulate this problem as an optimization problem and 
propose an iterative algorithm which they call the Greedy 
Exchange algorithm. Sethi et a1.[2] propose a relax- 
ation algorithm for feature point matching where the 
formation of smooth trajectories over space and time is 
favored. This method requires the correct initial cor- 
respondence and was used on very few feature points. 
Rangarajan and Shah [3] have proposed a noniterative 
polynomial time approximation algorithm by minimiz- 
ing a proximal uniformity cost function. Cheng and 
Aggarwal[4] propose a two stage hybrid approach to 
the trajectory finding problem. The first stage extends 
the trajectories and the second one attempts to correct 
any errors. Debrunner[5] uses a two stage method to 
finding trajectories. The first step computes short fea- 
ture paths of constant velocity. The second step deals 
with joining the feature paths into trajectories. 

Grouping of image features is a central operation in 
the work done here. Point features are detected and the 
trajectories are formed by a grouping process. Gestalt 
psychologists were the first to study the grouping phe- 
nomenon in the human vision system [6, 71. They pro- 
posed a set of criteria to form groups of image tokens 
[7]. These include: proximity, similarity, continuity and 
closure. They also studied their relative significance. 
Lowe [SI and Marr [9] have discussed roles of perceptual 
grouping in object recognition and early visual process- 
ing. Ahuja and Tuceryan [lo] have developed a compu- 
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tational approach to extracting perceptual structure in 
dot patterns. A similar approach is used in this work 
for perceptual grouping in 3D dot patterns. 

3. SPARSE FEATURE POINT MATCHING 
AND SEGMENTATION 

This section describes the first two steps of the algo- 
rithm to analyze a single batch of frames. The goal here 
is to find correspondences for sparsely placed feature 
points and segment the moving objects. The correspon- 
dences could also be used by any of a number of mo- 
tion and structure algorithms 111, 12, 131 that require 
point feature correspondences. We have no knowledge 
of number of moving objects or their motions in the 
scene. The only assumptions made here are that they 
are rigid objects and are moving smoothly. A percep- 
tual grouping technique is used to achieve this goal. 
Feature points are detected in each image. The images 
in a batch are stacked to form a 3D dot pattern. The 
batch size must be chosen carefully. If the number of 
frames in the batch is small, then the Voronoi tessella- 
tion may not represent the 3D structure well due to lack 
of data along time axis. A large batch size, on the other 
hand, may contain frames in which a moving object en- 
ters or exits the visual field which results in trajectories 
that last for only p;rt of the batch. This makes their 
detection more difficult. Further it significantly adds 
to the computational load. Since in the algorithm used 
in this work, the batch analysis is used to estimate fi- 
nal correspondences for a central pair of frames, it is 
sufficient to ensure that the Voronoi structure associ- 
ated with the dots in several central frames are cor- 
rect, i.e., are not affected by lack of image frames. We 
have found that a batch of seven to nine frames suffices 
to yield valid Voronoi structure for the central frames. 
The batch size of seven frames is used in the implemen- 
tation as shown in Fig.1. 
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Figure 1: The image sequence is analyzed a batch at 
a time. Here successive overlapping batches of seven 
frames are shown. 

3.1 Feature Matching using Perceptual Group- 
ing: A feature correspondence represents how a phys- 
ical point located in a given frame has moved to an- 
other location in the next frame. To find these corre- 
spondences using perceptual grouping, it is necessary 
to extract the perceptual segments of dots that group 

together because they belong to a perceived curve. A 
feature detector is used to obtain feature points from a 
set of image frames. These feature points are stacked 
to form a 3-D dot pattern. The Voronoi tessellation 
of the dot pattern is computed. This associates with 
each dot a polyhedral region, or neighborhood, that 
represents the dot’s geometric environment. The ge- 
ometric structure of the dot pattern is represented in 
terms of certain geometric properties of the Voronoi 
neighborhoods of the dots. Then each edge joining two 
neighboring dots in 3-D Voronoi tessellation is labeled 
as a curue or a noncurve edge by applying heuristic 
rules to the geometric properties of the polyhedron of 
each dot. The two vertices of an edge which is labeled 
as a curve, represent the correspondence or match of 
one vertex to another. 

The geometric structure of the dot pattern is rep- 
resented in terms of certain geometric properties of the 
Voronoi neighborhoods of the dots. We consider the 
neighborhood of a point P as the region enclosed by 
the Voronoi polyhedron containing P. This is an intu- 
itively appealing approach because the local environ- 
ment of a point in a given pattern is reflected in the 
geometrical characteristics of its Voronoi polyhedron. 
Most of the perceptually significant characteristics of a 
dot’s environment are captured in the geometric prop- 
erties of the Voronoi neighborhood. Such properties 
have to be specified to complete the representation of 
the geometric structure. They include: volume, eccen- 
tricity and elongation of the polyhedron of a dot, and 
relative distances between dots. The selection of these 
properties is based on intuition. The computation of 
these properties for a given dot pattern gives the basic 
data on which the procedures are applied that extract 
perceptual structure. Volume of a polyhedron is re- 
lated to density of dots. The direction of eccentricity 
indicates the direction in which the density of dots in- 
creases. The elongation carries with it the direction of 
its major and minor axes. 

3.2 Algorithm: The features detected in a batch 
of frames yield a 3D dot pattern when the frames are 
stacked together as spatio-temporal data. First, the 
Voronoi tessellation of the dot pattern is computed. 
Then the geometric properties of the Voronoi tessel- 
lation described above are computed. These parame- 
ters are then combined to obtain evidence in support 
of the different possible perceptual roles of Delaunay 
edges. We analyze the local geometric structure of the 
dot pattern, and compute a probability vector for each 
Delaunay edge such that this vector represents various 
perceptual roles based on local evidence. The compu- 
tation of each vector is done using a probablistic relax- 
ation labeling process which assigns the labels curve 
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and noncurve to Delaunay edges. The initial proba- 
bilities, compatibilities and updating of the above la- 
bels is done by using the various geometric properties 
of Voronoi cells and Delaunay edges. Such details of 
the relaxation formulation [14] will be skipped here for 
brevity. 
3.3 Sparse image point correspondences: Let 
us consider a physical point in the scene which is visible 
in all the seven frames and whose corresponding feature 
point is also detected in all seven frames. The result is 
a curve segment joining the feature points in all frames. 
In general some feature points are missed and some new 
feature points appear from frame to frame. Therefore, 
the length of the curve segments or trajectories for the 
batch is between 1 to 6. For a fully connected tra- 
jectory the length is 6, and a segment between only 
two frames is of length 1. The feature point locations 
along a trajectory in frames 3 and 4 are considered as 
correspondences. 
3.4 Segmentation of moving objects: Once the 
feature point correspondences are known, the feature 
points in each frame are segmented into different mov- 
ing objects based on similarity of motion. Local adja- 
cency among points is made explicit through the Delau- 
nay triangulation whenever a Delaunay edge connects 
a point with its voronoi neighbors. Segmentation is 
then achieved by idkntifying Delaunay edges connect- 
ing points belonging to different objects as well as those 
inside a single object. In general two independently 
moving objects differ in the magnitude and direction 
of their 3D motion. However 2D direction alone is a 
strong basis to discern if two points belong to the same 
or different objects, and in fact is stronger cue for mo- 
tion boundary perception in human vision. Edge iden- 
tification is done by comparing the motion vectors at 
its two vertices. For an intra-object edge, the two end 
motion vectors are similar, i.e. the length and orien- 
tation of the vectors are approximately the same. For 
an inter-object edge the length and orientation of these 
two vectors are independent, and therefore different in 
general. A connected component algorithm is run to 
identify the sets of edges each comprising a different 
moving object. This also identifies the feature points 
belonging to each moving object. 

4. DENSE CORRESPONDENCES 

This section describes matching of finer level features 
with the help of coarsest level matches already identi- 
fied through perceptual grouping as discussed in section 
3. The finer level features are more densely distributed 
and therefore they improve the accuracy of detected 
moving object shapes relative to those segmented at the 

I .  

Figure 2: Vertices of the triangles are the matched 
coarse level feature points and the other dots are new 
finer level feature points. 

coarsest level. The sequence of coarse-to-fine match- 
ing steps described in the following subsections is it- 
erated to the finest level of detected features, yielding 
the highest density of feature matches. 
4.1 
Consider the finer level features detected in a pair of 
frames. The motions of these denser features are pre- 
dicted based on the known motions of nearby, coarser 
level features. The coarser level features near a de- 
tected fine level feature may belong to one or more 
differently moving objects. Therefore the detected fea- 
ture may have any of these motions. Accordingly all 
different motions are considered and the one that gives 
the blest intensity correlation with the next frame is se- 
lected. Specifically, the Delaunay triangulation defined 
by the coarse level features is superposed on the im- 
age containing the finer level features. Each detected 
feature belongs to a triangle of the above triangulation 
(Fig 2). The detected feature is assumed to have a mo- 
tion which is the same as one of the motion values of the 
vertices of the triangle. The three vertices may belong 
to one, two or three diferent moving objects, thus hav- 
ing one, two or three different motions (Fig 3). Thus, 
these are the following three cases to consider: 

Computing coarse estimates of fine matches: 

0 If all the vertices of a triangle are from the same 
object then the motion of the feature points in- 
side the triangle is estimated from the motion of 
all three vertices, as weighted sum of the three 
vertex motions. In Figure 3 the triangle abc is of 
this type. 

0 For the triangle bcd, two of the vertices b and c 
are from one object and vertex d is from another 
object. A feature point p inside this triangle, may 
belong to either of the objects. Therefore, the 
point is assigned two different possible estimates 
corresponding to the two object motions, one of 
which must then be selected. 
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Figure 3: Triangle abc has all vertices from same ob- 
ject, triangle bcd has its vertices from two objects and 
triangle cdf has its vertices from three objects. 

8 

4.2 
ture. 

Each vertex of the triangle cdf belongs to a dif- 
ferent object. Therefore, a new feature point in- 
side such a triangle is assigned all three vertex 
motions as estimates, one of which must then be 
selected 

Fine match selection: For a new fine level fea- 
each of the available motion estimates predicts 

a different matching location in the next frame. Only 
one of which is correct and to be selected. Around 
each such predicted match, feature points are tested 
to identify those whose neighbors gray levels are well 
correlated with thoge of the fine feature points is be- 
ing examined. Since the estimates derived from coarse 
level are more approximate due to lower feature den- 
sity, the newly identified candidate matches serve as 
more accurate alternative motion estimates. Selection 
among these candidates is now performed by enforcing 
the spatial continuity of motion. In particular, this is 
achieved by employing the constraint that nearby fea- 
tures have similar motion directions. The relaxation 
algorithm is used to select the best candidate for each 
feature point. It may happen that two or more fea- 
ture points may get matched to the same point in the 
next frame. Such matches are discarded and only those 
feature point pairs which are matched uniquely are con- 
sidered for further processing. 
4.3 Segmentation: The unique matched pairs se- 
lected for fine level feature points comprise denser cor- 
respondences than the coarse level correspondences in- 
herited from the coarser level. These finer level cor- 
respondences can again be segmented into distinctly 
moving objects in the same way as done at the coarser 
level, namely, by grouping features having similar mc- 
tion directions as discussed in the previous section. The 
resulting segmentation follows the object boundaries 
more accurately. These fine level features along with 
the segmentation are the final result of the iteration. 
The process reiterates starting with the first step de- 
scribed in Sec. 4.1 using the next finer level of features. 

The coarse to fine motion estimation and segmentation 
is continued at increasingly fine spatial scales until the 
feature detector no longer gives useful new features. 

5. PIXEL CORRESPONDENCES 

Once the finest level features are found and matched, 
the matching of remaining pixels must use raw intensity 
information. This is done using intensity correlation as 
described below. The result is pixel level correspon- 
dence and segmentation. 
5.1 Obtaining the pixel match: Consider a pair of 
frames (framel and frame2) after the finest level feature 
matching. The Delanauy triangulation is computed for 
the matched points in framel. The 2-D motion of every 
pixel in this triangle is computed using a procedure sim- 
ilar to that described in the previous section for feature 
points. The three vertices of a triangle may belong to 
one, two or three different objects in the scene. There- 
fore, all pixels in a triangle will have one, two or three 
motions. To obtain the candidate matches for a pixel 
in framel, gray level correlation is used. A relaxation 
algorithm is used to find the best match for each pixel 
among these candidate matches. The support for a cer- 
tain candidate match for a pixel is computed from the 
four adjacent pixels analogous to the Voronoi neighbors 
in the case of feature points. 

Here two or more pixels may get matched to the 
same pixel in the next frame. Therefore, we find pixel 
matches from frame2 to framel also and discard those 
matches which do not match both ways. Near the 
boundary of moving objects, matches will not be ob- 
tained for those pixels corresponding to the scene points 
which are visible in one frame but not in the other 
frame. This yields thick bands of unmatched pixels 
comprising self occlusion regions of a moving object. 
5.2 Segmentation of moving objects: The bound- 
aries of the moving objects are obtained based on the 
similarity of the motion field, in a manner similar to 
that described in the previous section. However, the 
detected object boundaries will have errors whenever 
the motion estimates of pixels are erroneous. This will 
happen wherever, for example, the number of features 
in an image part is sparse, leading to rather large tri- 
angles. Therefore, the estimates of candidate matches 
of points within the triangle (for finer level features 
or pixels) will contain large errors since the estimates 
are based on linear interpolation of the vertex motions. 
This will propagate errors down to both feature match- 
ing at the finest scale and pixel matching. The intensity 
structure can be used to help overcome some of these 
shortcomings. 

280 



6. EXPERIMENTAL RESULTS 

Experimental results obtained by the algorithm pre- 
sented are shown in this section for three different im- 
age sequences. One of these was obtained in our labo- 
ratory and the other two show outdoor scenes. 

For the first example a sequence was taken by mov- 
ing objects with known motion between successive frames 
as shown in Fig. 4. Only two objects are moving dur- 
ing the first 8 frames, then 3rd object enters in the 
scene in 9th frame. The small conical shape object 
is in front and it occludes the bigger cylindrical ob- 
ject in some frames. Figure 4a is the 3rd frame in 
the sequence. Point correspondences between frame-3 
and frame-4 are shown in Fig. 4b. The segmentation 
of moving objects in frame-3 is shown in Fig. 4c. Seg- 
mentation results in frame-8 and frame-12 are shown in 
figures 4d and 4e respectively. Fig. 4f shows the motion 
field (for every 5th row and 5th column pixel) between 
frame3 and frame-4. 

The second example is a sequence of a natural scene 
with tree Fig. 5a is the third frame in the sequence. 
Fig. 5b shows the motion field (for every 5th row and 
5th column pixel) between frame-3 and frame-4. 

The third example is a sequence of a natural scene 
with cars on a highway obtained from University of 
California, Berkelep Fig. 5c is the third frame in the 
sequence. Fig. 5d shows the motion field (for every 
5th row and 5th column pixel) between frame-3 and 
frame-4. 

7. CONCLUSIONS 

In this paper, an algorithm is proposed to obtain flow 
of image points across a sequence starting from sparse 
point features which yields trajectories, down to pixel 
level flow. Features as well as pixels are segmented into 
different moving objects. Experiments were conducted 
with both laboratory image sequences as well as nat- 
ural sequences. Here, Intensity maxima and minima 
were used as features. Other feature point detector 
may be used to obtain the feature points required for 
this algorithm. 

Perceptual grouping yields reliable correspondences. 
Although they are sparse, most correspondences found 
are correct. Inside homogeneous regions, sometimes 
the pixels are not matched uniquely. When an ob- 
ject also has a motion boundary with little change in 
texture/gray level across it, the boundary may not be 
found accurately. 
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C e f. 

Figure 4: (a) Frame number 3 in the sequence. (b) Feature point matching between frame- 3 and frame-4 (coarsest 
level) The arrows denote the magnitude and direction of motion. (c) Segmentation of moving objects in frame-3 
at the coarsest level. (d,e) Segmentation of moving objects in frames 8 and 12 at the finest level. (f) Display of 
motion field (shown for every 5th row and 5th column) betw een frame-3 and frame-4. 

a d .  

Figure 5: (a) Frame number 3 in the sequence with tree. (b) motion field (for every 5th row and 5th column pixel.) 
(c) Frame number 3 in the sequence with cars. (d)motion field (for every 5th row and 5th column pixel) between 
frame-3 and frame-4. 
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