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This paper discusses detection and matching of arbitrary image features or pat-
terns. The common characteristics of feature extraction and matching are surnma-
rized which show that they can be considered as special cases of a more general
problem—signal detection. However, the existing signal detection theories do not
solve feature extraction and matching problems readily. Therefore, a general formu-
lation of feature extraction and matching as a problem of signal detection is presented.
This formulation unifies feature extraction and matching into a more general frame-
work so that the two can be better integrated to form an automatic system for image
matching or object recognition. Following this formulation, guidelines for designing
algorithms for detection or matching of arbitrary image features or patterns which can
be easily implemented or reconfigurated for many practical applications are derived.
Sample algorithms resulting from this formulation and the associated experimental
results with real image data are provided which demonstrate the performance and
robustness of the methods.

Keywords: Detection, disparity constraint, extraction, feature, geometric constraint,
matching, rigidity constraint, signal detection.

1. INTRODUCTION

This paper presents a general formulation of feature extraction and matching as
a problem of signal detection. We shall consider detection of arbitrary features
and template matching in which a window image or a pattern is to be matched
to another image or pattern. Matching algorithms can be classified into two kinds:
intensity-based matching and feature-based matching. In this paper, intensity based
matching is treated as a waveform matching problem?® and feature-based matching
is considered through chamfer matching®7” as an example.

Traditionally, feature extraction and matching have been considered as two dif-
ferent processes. This causes the problem that the extracted features and their
representations may not be particularly good for matching purposes. However, the
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two processes have similar characteristics and requirements and can be considered
as special cases of a more general process—signal detection: in the case of feature
extraction, idealized features (such as edges, corners, and spots) or image patterns
(such as characters, parts flaws), are to be detected and located in the images; in
the case of image matching, particular image waveforms or patterns in one image
(or in a template) are to be located (or registered) in the other image.

In this paper, a waveform is a piecewise continuous two-dimensional function
f(z,y) (neglecting the digitization effect). For pattern, we focus on edge images. We
discuss the principles for optimal detection which guide the design of a method. An
optimal method often corresponds to a particular combination of these principles.
Detailed discussion on the intuition behind these principles and how to use them in
applications is presented. Then, five kinds of measures for comparing the similarity
of two signals are summarized. Mathematical descriptions of these measures and
a comparison of them are given. In general, different similarity criteria lead to
different feature extraction and matching algorithms. The merits and shortcomings
of these measures are briefly discussed.

We then formulate feature extraction and matching as problems of signal detec-
tion. Schemes for general feature extraction and matching are proposed and sample
algorithms and experimental results are presented. Through examples we show how
to develop robust and efficient algorithms according to the formulation. There are
several useful results of formulating feature extraction and matching as a signal
detection process:

1. Some existing signal detection and estimation concepts and methods such as
signal-to-noise ratio and matched filter can be applied.

2. All algorithms for feature extraction and matching can be developed on the same
basis and hence easily integrated.

3. The formulation yields a family of methods, instead of a single algorithm by most
other formulations, for detecting and matching arbitrary features.

Situations leading to mismatch are first discussed, which are common to all
matching methods. Then constraints and heuristics that can be used to remove
ambiguous matches are developed, including geometric and rigidity constraints and
new disparity constraints. By a geometric argument, it can be shown that the ap-
plication of these constraints can essentially rule out all mismatches except for a
rare situation which occurs with zero probability. An integrated use of these con-
straints and image intensity properties is a key to a successful solution of the general
matching problem. Based on these ideas, robust matching algorithms using inten-
sity images and/or edge images have been developed for matching point features
and edges. Descriptions of the algorithms and experiments with diverse real image
data are provided to show that the matching algorithms yield only correct matches
for a large class of images related by small motions (in this paper, a correct match
is a match within two pixels distance to the true match).

Section 2 discusses general aspects of signal detection such as general principles
and similarity measures. Section 3 presents a general formulation of feature extrac-
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tion and matching as signal detection, which is followed by the resulting edge/spot
detection and matching algorithms and experimental results (Secs. 4-6). Finally,
Sec. 7 summarizes the paper.

2. GENERAL ASPECTS OF SIGNAL DETECTION
2.1. The Traditional and Extended Signal Detection Problem

A typical physical model for the traditional signal detection!?3° problem is that a
waveform which consists of one of two possible signals corrupted by additive noise,
is observed. The objective is to decide which signal is present. This model cannot
be directly applied to feature extraction and matching as will be seen soon.

A more general signal detection model that characterizes the feature detection
and matching problems is as follows. Assume I(x), x € D, is an observed image and
T(x), x € d, is a template to be detected or matched. The problem is to determine
whether for some 6 and u, the window image I(ryx + u) represents the template
T(x) corrupted with some noise n(x), or whether the following equation

Irgx+u)=T(x)+n(x), xe€D, (2.1)

holds for some 6 and u, where

x U cosf —sind
x:[y] ’ u:[vJ ’ ro:[sin@ 0030} ) (22)
Here, in addition to the unknown location parameters u, there is still an orienta-
tion parameter € to be determined. Clearly, if there is no restriction on the noise
n(x), then, for any 6 and u, Eq. (2.1) can be satisfied by some n(x). Thus, some
similarity measure M between I and T has to be used to determine whether I can
be considered as T corrupted with noise n. That is, if M(I(rex + u), T'(x)) is
larger (or smaller) than a threshold, then I represents T'; otherwise, not. The use
of a similarity measure often makes the noise model (2.1) invisible. Therefore, the
extended signal detection problem is to determine whether the signal truly exists in
the observation and if so, where it is truly located.
In this paper, we will only formulate feature extraction and matching as problems
of the extended signal detection. Numerically optimal solutions are not attempted
since optimal solutions depend on the criteria used.

2.2. Principles for Optimal Detection

Before we obtain a general formulation, we need to know the common requirements
for feature extraction and matching. For feature extraction, the three criteria that
Canny® proposed for edge detection can all be applied: good detection principle
(which states that the detector should indicate the presence of the signal when it is
indeed present), good localization principle (which states that the detector should
locate the position of the signal close to the true position), and unique response
principle (which states that the detector should report one and only correct response
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for each presence of a signal). The same criteria also applies to waveform matching.
The only difference is that for matching, a unique and correct match is sought
over the whole image, but not simply over the region containing the signal. This
characteristic makes matching more difficult than feature extraction.

A fourth principle is called the non-mazimum (or non-minimum) suppression
principle which is often used to determine the location of a signal. This principle
considers the local maximum (or minimum) of the responses of the detector in a
region containing the signal as the location of the signal.

Another useful but often ignored principle is the zero-mean principle which states
that if only the shape and not the absolute values of a signal is of interest, then the
model signal used for detection should have a zero-mean. This is very important
when the correlation method is used to determine the similarity of two waveforms,
since large DC components in both waveforms may suppress the shape information
present in the waveform. This can be easily seen from the following example. The
correlation coefficient of signal A + sin(t) and signal A — sin(t) over (0,27) is
(A% —-1)/(A%+1), while the correlation coefficient of sin(t) and —sin(t) over (0, 27)
is —1. When A has a magnitude larger than 1, error may result if the correlation
coefficient of A + sin(t) and A — sin(t) is used to determine if the two signals are
similar.

These principles will be used to guide the development of optimal feature detec-
tion algorithms and matching algorithms. However, the non-maximum suppression
and zero-mean principles are not the objectives in feature extraction and matching,
but rather useful means to attain them.

2.3. Similarity Measures

One common problem for feature extraction and matching is to determine the simi-
larity of two signals: one template, the other input. This raises the need to examine
similarity measures.

There are many well known measures for comparing the similarity of two wave-
forms. The oldest one is probably the distance measure described by the Riemann
integral. Assume W(z,y) and S(z,y) are two two-dimensional signals defined in
the same domain A. Then the squared distance of the two signals is defined by

My(W, S) = /A (W(z,9) - S(z,y))*dzdy, (23)

This measure examines the differences of the shapes and magnitudes of two wave-
forms and is therefore a very stringent one. Another is the correlation coefficient of
the two signals

IA W (2,9)S(z,y)dady
Ja W2(x,y)dzdy,/ [, $*(x,y)dady

My(W,S) = (2.4)

This measure examines only the shapes of two waveforms and ignores the difference
of magnitudes. Sometimes, the normalization terms in the denominator are replaced
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by 1. If we consider W{(z,y) as the sum of S(z,y) with a noise signal n(z,y), i.e.
W(z,y) = S(z,y) + n(z,9), (2.5)
then a third one is the signal-to-noise ratio

[y 8%(z,y)dzdy
- Ja 0?2z, y)dady

This measure examines the relative strengths of the signal and the noise. Therefore,
it can be used not only as a similarity measure but also as a confidence measure.

The above measures give different quantitative assessments of the similarity of
two signals. One problem with these measures is that they do not reflect the spa-
tial structure of deviation. As a result, the noise tends to influence the similarity
measure collectively and uniformly. The fourth and fifth measures, discussed below,
depend on the structure of deviation.

The fourth one measures the distance of two sets of points (cf. Ref. 32). We need
to first introduce a set distance. Assume W and S are two sets of 2-D points. Let
R be a relation (or property) defined among the points. The distance of a point
a = (u,v) in W to the set S is defined as

M;5(W,S) (2.6)

Dg(e,S) =min(|la - B||: aRB, B € S), (2.7)

where || - || denotes the Euclidean distance, R means that o and 3 are related
by property R, and 8 € S means that 3 is a point of S. The above equation states
that, among all points in S that satisfy relation R with a, if 3 has the shortest
distance with «, then ||a — 3|| is the distance of a to set S. If there is no point in
S that satisfies relation R with «, Dg(a, S) is defined as infinity. Then the fourth
similarity measure is the distance of set W to set S defined as

My(W, S) = Dp(W, S) = \/Nl;; 3" Di(a,5), (2.8)

acW

where Ny is the number of points in W. Dg(.S, W) can be similarly defined, though
Dgr(W,S) # Dgr(S,W) in general. That is, the commutative law does not hold for
Dpr. To obtain a metric of symmetry, one can use the Hausdorff distance measure

HR(W7S)=DR(W55)VDR(57W)5 (29)

where AV B means max(A, B). However, Dy is more efficient and is satisfactory
for general purposes. This fourth measure examines the similarity of two patterns
consisting of points or lines. We call this structure deviation measure.

The fifth one extends the fourth measure to continuous waveforms. In this
measure, the model signal S(z,y) is treated as a three-dimensional surface and
(z,y, W(z,y)), where W(z,y) is the observed signal waveform, is considered as
a three-dimensional point. Then, the sum of the minimum distances of points
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(z,y, W(z,y)) to the surface (z,y, S(z,y)) over the window describes the shape
deviation of the two waveforms S(z,y) and W(z,y). Mathematically, let A be the
domain in which S{z,y) and W(z,y) are defined, and let

D(z,y; $) = min {/{e =P+ (=0 +r(W(ay) - Swo)lPf, (210)

where r is a weighting factor regulating the relative importance of positional differ-
ence and waveform strength difference; then the fifth measure, called shape devia-
tion measure, is defined as follows

M5(W,S)=/AD2(:c,y)dxdy. (2.11)

All measures but the fifth have been used in the previous research in different
forms for either feature detection or matching (e.g. Refs. 3, 8, 16, 31, 32). All of
them can be used for matching, but for feature extraction, Ms has been overwhelm-
ingly used because only M, can adapt to signals of different magnitudes without
introducing a scale parameter. There are many other measures (such as those used
in signal detection) which are defined by probabilities and maximum likelihood.
However, we will not discuss them in this paper.

To simplify the discussion in the rest of this paper, we assume that the similarity
measures have been properly signed (e.g. My, My, and M; are negatively signed)
so that maximum values are to be sought for any similarity measure.

3. FEATURE EXTRACTION AND MATCHING AS SIGNAL DETECTION

In this section we discuss the relationships of feature extraction and matching with
the general signal detection problem. Since there exist no standard solutions for the
general signal detection problem, formulating feature extraction and matching as a
problem of signal detection does not lead to the immediate solution of the existing
problems. However, the formulation provides the guidelines for designing robust
algorithms for feature extraction and matching.

3.1. A Formulation for Feature Extraction

There are two types of feature extraction problems. In the first, feature extraction
itself is the goal (as is the case in parts flaw inspection); in the second, feature
extraction is a means for another higher level task such as matching. In general,
given an image I(x) of size RxC and certain property P (which is often represented

by an idealized signal T),

1. The first type of feature extraction problem is to choose a model signal (or detec-
tor) S(x) of size m x n and o similarity measure M such that a window image
centered at u has the property P when and only when (1) (u,0) is a local mazi-
mum of the following function

M(u,6) = M(S(x), I(rex + u)) (3.1)
for some angle 8 and (2) M(u,8) is above a certain threshold.
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2. The second type of feature extraction problem is to choose a model signal (or
detector) S(x) of size m x n and a similarity measure M such that all local
mazima of the following function

M(u,0) = M(S(u), I(rex + u)) (3.2)

with M(u,8) above a certain threshold have the property P.

That is, in the second type, missing a feature is not a problem but wrong detection
is. In this paper we mainly discuss the second type of feature extraction problem.

The properties or the idealized signals are often given by applications or need
to be determined by a human. The similarity measure can often be determined
in advance by the task or later by choosing the one from a set of measures that
yields the best feature detector. The threshold is determined by the higher level
process (e.g. matching) such that sufficient features are detected. Therefore the
major problem is the design of the model signal or the detector. This problem is a
typical signal detection problem.

For feature extraction, M> has been overwhelmingly used since only M; is adap-
tive to signals of different magnitudes. When M, is used as the sole optimality
criterion, the design of the model signal for a given ideal feature is equivalent to
the design of the optimal filter which, for Gaussian noise model, has a standard
solution known as matched filter.1%3° However, in practice, many other (often con-
flicting) concerns, such as the principles discussed in Sec. 2.2, are to be considered
in the process of feature extraction. Therefore, a particular optimal detector often
corresponds to a particular weighting of these principles. Instead of proposing a par-
ticular optimality criterion (cf. Refs. 8, 38) and obtaining the optimal detector for a
particular feature, here we shall consider only the requirements that each principle
imposes on the model signal. Such an understanding allows fast implementation of
a robust, if not the best, detector for any feature.

Let us use the design of model signals of some symmetric features such as edges
and spots as an example to illustrate the ideas. Many features such as edges have
orientations, for which the model signals should also have orientations. We will
consider only model signals of a particular orientation which can be rotated to yield
model signals of other orientations. For convenient discussion, let us define

M(u) = M(u,v) = mém;(M(u, 9)). (3.3)

M ((u) represents the maximum similarity between the model signal S(x) and the
window image centered at u. We shall call M(u) (between the model signal and a
window image at u) as the similarity function.

The zero-mean principle imposes a restriction that the sum of the model signal
waveform over the window must be zero. That is,

/ S(z,y)dzdy =0, (3.4)
A

where A denotes the signal window.
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The good detection principle requires that if ug is the location of a window image
of property P, the similarity measure M (ug) is larger than the threshold 6, or

M(ug) = mgm(M(S(x),I(rgx +uy))) > 6. (3.5)

The non-maximum suppression principle requires that the derivatives of the sim-
ilarity function M (u) between the model signal and a window image of property P
centered at up have zero values at ug. This requirement can be expressed as follows

oM
du

_om
T v

Uo

=0. (3.6)

up

The good localization principle requires that if ug is the location of a window
image of property P, then the similarity function M (u) has a sharp peak at uo.
The mathematical expression of this requirement is not unique and varies according
to the type of signal to be detected. The following method is based on the Hessian
maitrix of the similarity function, which is defined as

M (u,v) 8*M(u,v)

ou? Oudv
Hy(u,v) = . 3.7
m(u,v) 82M(u,v) 9M(u,v) (37
Judv oudv

Let A; and A2 be the eigenvalues of Hy at up with [A;| > |A2]. If the model
signal is shift-invariant along a direction (e.g. a 2D step edge is shift-invariant along
the edge direction), Hjs is degenerate at up and A, = 0. In this case, the good
localization principle requires that |A1| has a large value so that M (u,v) has a sharp
ridge. If the signal is not shift-invariant along any direction, the good localization
principle requires that both |A;| and |Az| have large values so that M(u,v) has a
sharp peak at ug. In other words, the sharpness of the similarity function M (u,v)
at ug can be evaluated by the eigenvalues of the Hessian matrix of Hys at uo. To
make M(u,v) have a sharp peak or ridge at ug, in general the model signal should
consist of only smoothed edge patterns and should not contain nonzero flat plateaus.

The unique response principle requires that if ug is the location of a window image
of property P, then the similarity function M(u,) have only one maximum within
a certain region around uy. In general, this requires that the model signal have a
smooth waveform. To detect features in unsegmented images, the signal waveform
should also degrade the impact of the peripheral areas of the signal. Otherwise,
random noise and neighboring image content may produce artificial response peaks
in the similarity function. Degrading of the impact of the peripheral areas of a
signal can be performed by convolving the signal with a hat-shape filter.

In practice, it is often convenient to characterize the image property P by an
idealized signal T(x) and consider all other window images of property P as T'(x)
corrupted with additive noise n(x) (cf. Eq. (2.1)). Then, if a noise model is assumed
and a particular weighting of the principles is given, numerical methods can be used
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to obtain an optimal detector for a given feature. However, we will not discuss
further on the effect of noise.

From the above discussion, we conclude that the following steps can be used to
build a general feature detector:

1. Characterize the feature of the desired properties by an ideal signal.

2. Smooth the edges of the ideal feature; degrade the nonzero plateaus; convolve
the resulting waveform with a hat-shaped filter to reduce the influence of the
peripheral areas.

3. Normalize the waveform so that it has a zero mean.

4. Check if the similarity function between the waveform and the ideal feature has
a sharp peak or ridge at the center of the window. If so, the resulting waveform
is the desired feature detector; otherwise other methods have to be used.

When this method is applied to the detection of edge, spot, roof, thin bar, or
wide bar using M as the similarity measure, the shapes of the resulting optimal
detectors all comply with either numerically obtained optimal detector (Canny,®
Shen and Castan3®) or impulse responses of biological receptive fields (Marr?6).
Edge and spot detection algorithms resulting from this formulation will be presented
as examples. The elegance of this method is that it results in a family of detectors
for various features with the same simple idea. In principle, this method can be
applied to detect any features that can be defined by a waveform. However, for
some features which cannot be represented by a single waveform, other methods
may be more efficient. For example, a corner has two degrees of freedom: one is the
orientation, the other is the angle of the corner. Therefore, to detect corners of any
angle and any orientation, other methods that do not use templates may be more
efficient.8

3.2. A Formulation for Matching

Matching has been a difficult problem that remains not well-solved. There are many
kinds of matching problems. Let us restrict our discussion to the matching of two
views of a scene containing rigid objects with the motions unknown. The two-view
matching problem can be formally stated as: Given two images of a scene, register
a point in one image to another point in the other image such that the two image
points correspond to the same scene point. Two points are matched if the similarity
measure about them passes a preset threshold. They are correctly matched if they
correspond to the same scene point. Clearly, this problem also falls within the
extended signal detection framework. However, matching is more difficult than
feature extraction, because (1) for matching, a unique and correct correspondence
for a given point is sought in the whole image, while for feature extraction, many
responses can be admitted in different locations of the image; and (2) the number
of waveforms involved in matching is much larger than that involved in feature
extraction.

We shall consider only feature matching which differs from pixelwise matching
(e.g. Refs. 40 and 41), optical-flow-based matching (e.g. Refs. 1, 17 and 30), and
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the (affine) transformation method (e.g. Refs. 4, 11, 24) in that correspondences are
obtained for feature points only. In this sense, our discussion here is closest to the
works of Scott and Longuet-Higgins,34-3% Shapiro and Brady,3” Sethi and Jain,3¢
Salari and Sethi,® and Cheng and Aggarwal.®

For matching, all five similarity measures can be used. The first three examine
the intensity similarities of two images, while the fourth and fifth ones examine the
spatial structure of deviation between two edge or intensity images. Clearly, dif-
ferent measures result in different matching methods. The five principles described
earlier also apply to matching. We now discuss the requirements of these principles
on matching.

The zero-mean principle requires that the two waveforms to be matched have zero
means. Therefore any two window images should be normalized (by subtracting
the window mean) before they are matched. We must emphasize here that the
zero-mean principle has mostly been ignored in the correlation based matching
algorithms, leading to poorer performance. This principle may not apply to feature-
based matching.

The good detection principle requires that the similarity measure must accom-
modate perspective image distortion and noise. This problem is dealt with by
choosing a proper similarity measure. For example, if I'(x) = I(x) + n(x) for a
reasonable amount of noise n(x), then the chosen similarity measure M between I
and I’ should still be high. Much of the research on matching is spent on finding a
similarity measure which uses view-point invariant properties.

The good localization principle suggests that only well-defined features (such
as edges or corners) whose location accuracy is generally high should be used for
matching. The following method can be used to determine the suitability of a
feature for matching. For a given feature S(x), let its auto-similarity be defined as

R(u) = R(u,v) = M(S(x), S(x +u)). (3.8)

If R(u) has a sharp peak (or a sharp ridge when epipolar constraint is available)
at (0,0), then S(x) is good for matching; otherwise, not. Again, the sharpness of
R(u) can be determined using the Hessian matrix of R(u).

The non-maximum suppression principle can be used to select candidate matches
as follows. Assume p;, i = 1,...,V; is the set of detected features in the first
image and p;, j =1,...,N, is the set of detected features in the second images.
Let Q(i,7) = M(p:,P);) be the matching quality matrix defined by the similarity
measures between the two sets of points. If p; and p); are the correct match of
each other, then Q(i,7) should be both a row maximum and a column maximum
in the matrix. A more practical method that uses two thresholds é; and &, and
the non-maximum suppression principle to select potential matches is illustrated in
Fig. 1.

For matching, the unique response principle states that a feature in the first
image can have at most one correct match in the second image and vice versa.
The non-maximum suppression principle can be used to find the potential unique
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Fig. 1. A pair (3, j) is a candidate match if and only if (a) Q(%,7) > 61 (b) Q(3,7) is the maximum
in the ith row and jth column in the matching quality matrix Q (c¢) Q(z,7) is larger than the
second best match Q(%,71) in the ith row by an amount 8, (d) Q(%, 7) is larger than the second
best match Q(¢1,7) in the jth column by an amount é2.

matches. However, these potential matches, though unique, may not be correct.
Mismatch is a serious problem in matching. To overcome this problem, we need
first to examine the common causes of mismatching so that proper methods can be
developed to remove mismatches.

The main causes of mismatching include the presence of similar (e.g. periodic)
patterns, occlusion, image distortion, and inconsistent detection of point features
in two images (e.g. some points are detected in the first image but not detected in
the second image), and noise. The consequence of these causes is that some points
in the first image are wrongly matched to other points in the second image which
have similar local intensity or edge environments. The mismatched points have two
characteristic properties. One property is that if point p in the first image has a
mismatch p’ in the second image, then p’ is dislocated from its true position. This
dislocation causes a distortion in the geometric structures defined by the matched
points in the first and second images, respectively. The other is that if a point p is
mismatched to p’, then, in general, either p, or p’, or both will have a good match
with another point if it were detected. We can therefore use these two properties
to remove all possible mismatches, irrespective of how the mismatches are caused.

The idea is to use the structural information contained in the feature points in
addition to the local intensity or edge image similarities. This information includes
the 2D geometry defined by the feature points and 3D rigidity. A geometrical
relationship of different objects in an image is more fundamental and reliable than
intensity values since intensities are more liable to change. But it is computationally
intractable to use a geometric relationship alone to match a large number of point
features. A more profound invariant property of feature points is 3D rigidity which
requires that the shape and size of a rigid object be invariant from view to view.
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Another efficient constraint for removing mismatches is the disparity constraint to
be discussed later. The methods for using the geometric, rigidity, and disparity
constraint to enforce correct matches are discussed in detail later. Here it suffices
to know that it is more difficult to enforce the unique response principle in matching
than in feature extraction.

From the above discussion, we propose the following method for general feature
matching. The idea is to first obtain a set of unique matches using intensity-
based or edge-based matching methods. Then, geometric consistency and rigidity
are enforced to identify and remove the possible mismatches. However, mismatches
may still survive over the geometric consistency and rigidity examinations for points
detected in only one image. Then all matched points need to be re-examined to
see if they can be rematched and yet preserving the geometrical similarity. This
is a very time-consuming process and an efficient way for doing this is to use the
disparity constraint.

The general matching method can be divided into five stages:

1. Point Feature Detection: detect point features in both images.

2. Wave form or Feature-Based Matching: obtain candidate pairs of matches based
on similarity of local intensities or edges.

3. Geometry-Based Elimination: identify and remove points that do not preserve
2D geometric consistency in the image plane.

4. Rigidity-Based Elimination: apply rigidity constraint to eliminate such points
that do not construct a rigid triangle with their two closest neighbors.

5. Disparity-Based Elimination: apply the disparity constraint to eliminate all point
pairs for which one of the points could be rematched and yield a disparity value
possessed by some other matched pair.

Algorithms resulting from this method are presented in a later section.

3.3. Integration of Feature Extraction and Matching

In this formulation we consider feature extraction and matching as subsequent pro-
cesses and extract features according to the needs of matching. This is implemented
as follows. First, the criteria used for feature extraction are the same as those used
for matching such that the extracted features are suitable for matching. Second,
many parameters such as thresholds used in feature extraction are determined by
the matching algorithms. Third, features are quantized and represented according
to the requirements of matching. Fourth, features are extracted continuously across
images to ensure a high reappearance rate by using thresholding methods insensi-
tive to lighting conditions. In this way, feature extraction and matching have been
combined together to yield an automatic system for a general matching purpose.

4. ALGORITHMS FOR FEATURE EXTRACTION

In this section we apply the general formulation of feature extraction to edge and
spot detections.
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4.1. An Adaptive Edge Detection Scheme

To adapt to edges of different strengths, My (with the normalization terms dropped)
is used as a similarity measure. In the case of edge detection, an ideal one-
dimensional edge is the step edge (Fig. 2(a)) which has been commonly used as
the model signal in the previous research. The unique response principle requires
that the edge should be smoothed as shown in Fig. 2(b), otherwise additional max-
ima may be caused by noise. Coincidently, most real image edges have such a shape
due to the blur effect which is often modelled by a step edge convolved with a
Gaussian kernel.?2:29 A detector represented by Fig. 2(b) may result in two maxima
(of opposite directions) for a slope-shaped edge (similar to the double-edge effect of
zero-crossings in Fig. 12(d)), due to the influence of the surrounding image content.
To ensure a unique response, an effective way is to degrade at the peripheral area
of the model signal so that the faraway image content will not affect local edge
detection. This can be easily performed by convolving the waveform in Fig. 2(b)
with a hat-shaped filter, resulting in a waveform of the shape in Fig. 2(c). The good
localization principle suggests that the similarity function (in this case, the correla-
tion function) between the model waveform and the ideal waveform should have a
sharp peak/ridge at (0,0). The correlation function between a model signal of the
shape in Fig. 2(c) and the step edge indeed has a sharp ridge centered at (0,0).
That means any filter of an impulse response of the shape in Fig. 2(c) should serve
as an edge detector with a reasonably good performance. Such a shape of impulse
response can also be found in biological visual receptive fields.1?:14,15,20,21,23,26,28

D
—_— >
a) (b)

( (c)

Fig. 2. The design process for edge detector. (a) Ideal step edge (b) smoothed edge (c) general
shape of an optimal edge detector.

Canny® obtained his optimal detectors using his optimality criterion, while Shen
and Castan®® obtained optimal detectors of shape shown in Fig. 2(b) using another
optimality criterion. The particular waveform of the optimal detector depends on
the optimality criterion to be used. Although the waveform in Fig. 2(c) and the
biological retina receptive responses can be very well approximated by many low-
pass filters (e.g. the Butterworth filter), these waveforms have been overwhelmingly
modelled by a single Gabor filter,!*?3 DoG (difference of Gaussians,?6:?” or VG
(gradient of Gaussian,?6:27). The elegance of the Gabor filter and Gaussian filter is
that they achieve the lower bound of uncertainty for linear filters.!32%> However, if
we stay in the temporal domain to do edge detection, then this lower bound does
not need to be reached to make the detector optimal.
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We now present a complete algorithm. The algorithm in many aspects is similar
to the Canny edge detector® but is significantly different in some other aspects. We
first transform the original image to an edge strength image and an edge direction
image. The edge directions are quantized for further use. Only local maxima
orthogonal to the edge directions in the edge strength image are considered possible
edges. The reason that we prefer maxima to zero-crossings?® is that for large-
window operators the zero-crossings are shifted from the positions of the maxima
and the locations of the maxima are more robust against noise. Another reason
is that using maxima instead of zero-crossings can threshold off some noisy edges
because noisy edges tend to have smaller edge strengths. Probably the major reason
is that the operator may introduce artificial zero-crossings which do not correspond
to any edges visible in the image.

An automatic thresholding method is used to select the maxima of highest re-
sponses as edges. To do this, an edge/maximum ratio or a total number of edges
needs to be specified by the user or determined by a higher-level process (such as
matching). Then the histogram of the edge strengths of maxima are computed and
used to determine the threshold such that the number of edges whose responses are
above the threshold, is close to the desired number of edges. This method makes
the algorithm adaptive to a wide range of images and eliminates most edges caused
by noise. The combined use of window size, thresholds, and edge directions also
malkes it possible to select edges of different strengths, widths, and directions.

After thresholding, maxima of edge strengths larger than the threshold are clas-
sified as edges. To remove edges caused by random noise, we require that the nearby
points along the edge direction have nearly the same edge strength. After thresh-
olding and removing noise edges, sometimes connective edges become disrupted at
some points due to various causes. To recover those edges at the disruption points,
non-edge maxima that are, e.g. 2 pixels or less distance away from an edge and have
nearly the same edge direction as that of the edge are also classified as edges. This
is done recursively.

The stepwise algorithm below requires that the user or a higher level process
specify several numbers: the edge/maximum ratio or the total number of edges, the
minimum edge strength that is acceptable for edges, and the size of the window (o
of Gaussian filter). The output of the algorithm is an edge image with quantized
values indicating the edgehood of the points and the directions of the edges.

1. For a given o, apply the Gaussian operator

22+ 42
G(z,y) = exp (— 023/ ) (4.1)

to image I(z,y) to find the edge directions
n=V(G * I)/|V(G * I)], (4.2)

where |V(G * I)| is considered as the edge strength. The edge direction n is
quantized into 16 values (16 is sufficient) over a 360° range instead of a 180°
range (two edges of opposite direction means that they have different polarity,
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e.g. a vertical edge is assigned to value 4 or 12 according to whether the left or
right side of the edge is brighter). An easy way to compute V(G x I) is to use
the following formula

V(G x I) = (G, * I)i+ (G, * I)j, (4.3)

where i, j are the unit vectors along the x and y directions, and

8G 2z z? 4 2 oG 2y z? + y?
6= G =T (T5t) G=g = e (-T5).

(4.4)

2. A local (edge strength) maximum (instead of zero-crossing) along the direction
orthogonal to the edge direction is marked as a potential edge.

3. Let V be the variance of the edge strengths traversing a line of 5 points tangent
to a candidate edge point in the edge direction, and let E be the average edge
strength of the 5 points; then if

V <eF, (4.5)

the candidate point is preserved for further consideration, where ¢ is a preset
constant (e.g. 0.1).
4. Compute the histogram of the edge strengths of the surviving edge candidates.
Determine the threshold using the total number of edges or edge/maximum ratio.
5. A candidate of an edge strength larger than the threshold is considered an edge.
6. A maximum connected to a chosen edge is also considered an edge. This is done
recursively.
7. Repeat Steps 1-6 for other size operators if desired.

4.2. Spot Detector

Similarly, the design procedure for a spot detector is shown in Fig. 3 through the
one-dimensional profile of a spot. Figure 3(a) shows the profile of an ideal (disk)
spot with zero-mean within a window. Figure 3(b) shows the shape of the spot with
smoothed edges. Figure 3(c) shows the general shape of a spot detector (for small
size spots) which compromises the good detection, good localization, and unique
response principles. A particular two-dimensional filter of such profile is Laplacian—
Gaussian, V2G(z,y).>® However, this detector is inferior to the spot detector that

follows.
] A A

9 7+ S RN A N e

() (b) (<)
Ideal Spot Typical Spot Spot Detector

Fig. 3. Design process for the spot detector. (a) ideal spot (b) spot with smoothed edges (c) general
shape of spot detector compromising the good detection, good localization and unique response
principles.
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In the above we have derived the general shape of the impulse response of a spot
detector. We now present in detail a detector of analytical form for detecting spots
of various sizes. For a spot of radius rg, the following filter has the desired general
shape of a spot detector shown in Fig. 3(c)

P(r) = c(r) - exp (-(—’"‘—”ﬁ> : (4.6)

202

where r is the distance to the spot center, and ¢(r) is a coefficient evaluated accord-
ing to the following formula

Cp-(ro—r), ifr<mg
cr) =
Cn-(ro—r), ifr>rg

(4.7)

and C, and C, are positive constants to be determined using the zero-mean principle

/ ” P(r)dr = 0. (4.8)

Clearly P(r) is symmetric around the spot center.

The appearance of P(r) is quite different for different ro and o. Figure 4(a)
shows the profile of P(r) for 7¢ = 2.0 and o = 2.0, while Fig. 4(b) shows the profile
of P(r) for 1o = 4.0 and o = 1.0. The general shape of P(r) is inbetween these
two. The first type of waveform (Fig. 4(a)) is suitable for detecting spots of small
size (e.g. 7o < 2) while the second type (Fig. 4(b)) is suitable for detecting spots of
large size (e.g. 7o > 2). To detect spots of various sizes, a number of detectors for
different sizes need to be used simultaneously.

(a) (b)
Fig. 4. Impulse responses of the spot detector: {a) The impulse response of P(r) with 7o = 2.0

and o = 2.0. This type of waveform is suitable for detecting small spots. (b) The impulse response
of P(r) with ro = 4.0 and o = 1.0. This type of waveform is suitable for detecting large spots.

5. ALGORITHMS FOR MATCHING

In this section we consider only the last four stages in the general matching scheme
and assume that point features have been somehow detected in all images. We
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shall discuss waveform and chamfer matching methods and the use of constraints
to ensure a unique and correct match. Then we present a stepwise description of a
matching algorithm.

First, let us discuss the choice of windows. A common practice of matching is
to use window images centered at points of interest to evaluate the similarity of
the points. The matching result would be the best if two corresponding window
images contain the same image content. However, if the point of interest is at depth
discontinuity, then a window centered at the point contains image contents from
different surfaces such that some of the contents will be occluded in another view.
Thus, to match points close to occlusion boundaries, other windows, containing
but not centered at those points, should better be used. In our approach, four
additional types of windows, with the point of interest located at the four corners
of the windows, respectively, are also used. Each of these four windows respond best
to corners of a specific orientation (Fig. 5) if the corners are at depth discontinuity.
For convenience of discussion, these windows are represented by Ay, k =1,...5,
respectively. Thus, a total of five windows, are used at each point and the best
matching quality obtained from the five windows is chosen to represent the quality
of match for each pair. In general more windows give a more robust performance
at the cost of more computation.

Window
Centered at
the Point

1 |
A % ///

7

Interest s »,w‘y///////

Windows
Not Centered
at the Point

Front Surface

Fig. 5. If a corner is at depth discontinuity, the background surrounding the corner changes from
view to view due to occlusion. Assume that the two largest squares in the figure represent two
surfaces at different depths. Then, to match point features of types 1, 2, 3, or 4 shown in the
figure, the windows that give the best matching results are shown in the figure.

5.1. Waveform Matching

The particular waveform matching algorithm to be discussed here is intensity-based
matching. This method requires that the intensity change of the images be small.

Given a similarity measure M (M can be any of M;, 1 =1, 2, 3, 5) and the point
features detected in each of the two images I(x) and I'(x), a matching: quality Q
is computed for all possible feature pairs for each window Aj. Let I;(x) be the
window image at the ith feature point u;, i.e. I;(x) = I(x + u;), and let I,* be the
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average intensity over a window Aj about u;. Let PF(x) denote the intensity of
x € Ay with the window mean subtracted, i.e.

PF(x) = Li(x) - I%, x€Ay. (5.1)

k3

Similarly, for a feature point 7 in the second image I,
L(x)=I'(x+u}), PFx)=Ix)-1"*, xeA. (5.2)

Then, the matching quality Q(%,7) for point ¢ in the first image and point 7 in
the second image is defined as

Qi j) = maz {mgwM(Pf(x), Pf(nx’))} : (5.3)

where M(P}(x), Pj*(rox)) is evaluated for x € Ay (P;*(rx) is obtained from the
rotated Ay). Literally, Q(i,7) represents the highest similarity for the i¢th point
in the first image and the jth point in the second image that can be found in
any rotation angle using the five windows. Then the non-maximum suppression
principle is used to select candidate matches according to the method described in
Fig. 1.

Therefore the matching process is divided into two steps: given a point p in the
first image, first search for the orientation and type of window around a candidate
point q in the second image to find the best match between p and q; then search
all candidate points in the second image to.obtain the best overall match for p.

5.2. Chamfer Matching

Intensity is quite liable to change due to lighting conditions and viewpoints. A
more robust matching method is to use less variable features such as edges instead
of intensities. Chamfer matching?7 is a particular feature-based matching technique
that has been used to match images consisting of edges and points. In the past,
chamfer matching has been used mainly in pose estimation and recognition of planar
surfaces,?” where the matching problem can be reduced to the search of a few
transformation parameters. We now extend this method to general image matching.

In chamfer matching, the shapes of two line drawing images (usually represented
by two edge images) are used to register correspondences. To get an idea of what
chamfer matching is, let us consider the problem in Fig. 6. Suppose we want to assess
whether the circle or the triangle is more similar to the rectangle. Then, one criterion
is the average distance from a point on the circle or the triangle to the nearest point
on the rectangle. This distance is called the chamfer distance which is a special form
of the set distance function M4 with R being the property of edgehood. Clearly, the
chamfer distance is a function of the relative scale, orientation, and position of two
image patterns. In the chamfer matching method to be discussed in this subsection,
scale is not optimized.
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The general technique of chamfer matching is to first transform the template
image into a chamfer distance map (CDM), and then use the map to compute the
similarity measure My for a given image to be matched. The CDM of a given feature
image is an image in which the intensity of a pixel represents the distance of the
pixel to the nearest feature point. For example, let E(x) be a binary edge image,
with E(x) = 1 if x is an edge and E(x) = 0 otherwise. Then the CDM C(x) of
E(x) is evaluated as follows

C(x) =min{|lx - y|l: E(y) =1} . (5:4)

If each vertical or horizontal pixel distance is valued 3 and each diagonal pixel
distance is valued 4, then the computation of the CDM, or the so-called 3-4 distance
transform, can be obtained by sequentially executing a fast two-pass algorithm.”

}

Fig. 6. The average distance from a point on the circle/triangle to the nearest point on the
rectangle gives a criterion about the similarity between the circle/triangle and the rectangle.

After the CDM of one window image is obtained, the similarity function M,
between the image and any other window image can be easily computed. To be
specific, consider matching the first view to the second view. Assume the binary
edge image in the first view is F(x) and the CDM of the edge image E’(x) in the
second view is C(x). For a given window A (k = 1,...5), let E¥(x) be the window
edge image at the ith feature point u; in the first view and E;-k (x) be window edge
image at the jth feature point u;- in the second view, i.e.

Ef(x)=E(x+w), Ef(x)=E(x+u}), x€A. (5.5)

Note that feature points here are not restricted to edges. The window CDM C’J’-c (x)
for E’*(x) can be obtained as follows

Ci(x)=C(x+ uj), X€EA. (5.6)

Then, for a given rotation angle 8 and a given window Ay, the chamfer distance,
or the matching quality, of the two window edge images Ef(x) and E}*(x) can be
computed from

) Y. Ci(x)- Ef(rgx)
MBS o), B () = = | 52 30 Cf0) == | * g

N;
EF(rgx)=1 XEAy
xXEA

(5.7)
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where N; is the number of edges in E¥(ryx) and the negative sign is added such
that a larger value represents a better match. Then the matching quality between
the 7th point in the first image and the jth point in the second image is represented
by the optimal chamfer distance over all types of windows and orientations defined
as

Qi,j) = max {mg,x My(EF(rex), E;k(x))} ) (5.8)

Note that chamfer matching is meaningful only when the window image has a
certain number of edge points. Therefore, if the window edge image at a feature
point does not have enough edges, this point is discarded. The minimum number of
points can be conveniently set to the number of pixels on a diameter of the window.
Actually this number is not crucial to the algorithm as long as it is a reasonable
fraction of the number of pixels in the window.

One of the advantages of chamfer matching is that by using the chamfering tech-
nique, the matching process can be much faster than waveform matching. Another
advantage is that the algorithm uses the low-level tokens such as edges and cor-
ners as input and hence adapts widely to changes due to lighting. The method
is especially suitable for abstract object recognition” such as character recognition
and object classification in which objects are best defined by line drawings. The
disadvantage is that more ambiguity exists in chamfer matching than in waveform
matching.

5.3. Constraints for Unique, Correct Matching

A serious problem that exists for all matching methods is mismatch. We now
describe the use of geometric constraint, rigidity constraint, and a newly developed
disparity constraint for removing mismatches.

Geometric Constraint

The geometric constraint states that the projections of the parts of a rigid ob-
ject have similar configurations from image to image. This similarity is measured
through the 2D geometry constructed by the projected points of an object. Given
a set of matched pairs (p;,q;), ¢ = 1,2,...n, across two images, if all pairs are
correctly matched, then any line drawing that connects p;, ¢ ='1,2,...n, in the
first image must be similar to the corresponding line drawing that connects q,
i = 1,2,...n, in the second image. Possible mismatches are identified as those
pairs that do not preserve the geometric relationship with other matched pairs.
In general, mismatches can only accidentally satisfy the geometric constraint, but
correct matches do not necessarily satisfy this constraint. Therefore, applying this
constraint may also result in elimination of some correct matches.

There are many ways for applying the geometric constraint to identify mis-
matches (e.g. Refs. 34, 35 and 37). A simpler and more efficient method is to con-
sider triples of points simultaneously and update the set of matched pairs
recursively.
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Test A (Geometric Test). This test is illustrated in Fig. 7. Each point and its two
closest neighbors in the first image construct a triangle. The correspondences of
the three points in the second image also construct a triangle. When the motion
between the two images is rigid and small, the distortion of the triangle caused by
motion is also small. Therefore, if all three pairs of correspondences are correct, the
two triangles in different images must be similar. If one or more pairs are wrongly
matched, then the similarity can be preserved only accidentally. The method for
choosing valid matches is illustrated in Figs. 7(a) and (b). The particular waveform
and chamfer matching methods are so designed that (even for regular patterns)
the probability with which three nearby points in the first image wrongly match
three points in the second image leading to two similar triangles is zero. However,
it is indeed possible that some correct matches will be eliminated if their nearest
neighbors are wrongly matched. This effect is called the bad neighborhood effect. To
achieve higher reliability, more than 3 points can be considered together, although
more correct matches could also be eliminated and more computation is needed. B

(a) (b)

Fig. 7. (a) A feature point p; is considered as having a valid match p/ if the triangle constructed
by p1 and its two closest neighbor features pz and pg3 is similar to the triangle constructed by
their correspondences p}, ¢ = 1, 2, 3. Point pj provides supports for pz and p3. Or, (b) if p2 and
p3 all have valid matches p}, and p} and p; is among the two closest neighbors of both p2 and
P3, then p; is considered as having a valid match, even if p1 has a bad neighbor p7 which has a
wrong match.

The similarity of two triangles is defined as follows. Let !; and I/ be the side
length of two corresponding triangles, 7+ = 1, 2, 3. Then the side length change is

defined as
Ll | I (5.9)
= maz(l;, 1)’ o )
Let

v = maz(n:), Nm = min(n;). (5.10)

2 2

Then, the similarity measure is

S=(nm —nm) num - (5.11)
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If S is smaller than threshold 7, then the two triangles are considered as similar
and accepted. The threshold v is adaptive in the sense that it can be changed
dynamically. If no correspondences are found for a given ~, then a larger v is
selected and the algorithm restarts. In our experiments, a fixed v was used for all
images.

Test B (Geometric Test). To overcome the bad neighborhood effect in Test A so
that more matches can be found, we can use good neighbors only. In this test,
a point is grouped with its nearest two points that have passed Test A to form a
triangle. Therefore, the bad neighborhood effect in Test A can be eliminated. Two
sets of input data are required for Test B. Let these be denoted by Sw and Sk,
where Sw is the set of points that are to be checked (working set), and Sg is the
set of points that have passed Test A, or the rigid set. For each point p in Sw, we
find its two closest neighbors in Sg. We now determine if the triangles constructed
by the three points and their correspondences are similar. If so, p is retained for
further use; otherwise, p is discarded. B

Test C (Geometric Test). In the above tests, the nearest neighbors are defined in
terms of image plane distances. Perspective distortion could be a serious problem
when the neighboring points in the image plane have large depth differences. This is
called the closest neighborhood effect. To reduce this effect, the closest neighboring
points could be required to have nearly the same disparities. That is, given a point
p of disparity d, the nearest neighbors of p are chosen as two points closest to p
whose disparities are within (d — e, d 4+ e), where d and e are vectors in the image
plane. The choice of the value of e is discussed later in the experiment section.

Test C differs from Test B only in the choice of closest neighbors. H

Rigidity Constraint

The above geometric tests are based on 2D similarity and may hence result in
error. A more profound constraint is the 3D rigidity constraint which requires that
the object keeps the same size and shape during motion. Equity of the three-
dimensional shapes and sizes of an object viewed at different times can be enforced
to ensure that the matches are correct. This is a very powerful constraint. To apply
this constraint, 3D motion parameters that relate objects in different images or 3D
coordinates of objects in different images are needed. However, to compute depths,
motion parameters are needed, which cannot be estimated without an initial set of
matched points. The geometric tests serve to provide the correspondences needed
for motion estimation. After six or more matches are obtained, the motion can be
computed using the method, e.g. in Ref. 19, and then the 3D rigidity of the points
can be examined. Points that preserve 3D rigidity may not preserve 2D geometric
similarity and vice versa. But only in rare situations does it happen that points
preserving 2D geometric similarity do not preserve 3D rigidity.

Test D (Rigidity Test). This test is essentially the same as Test A (or B if a
rigid set has been already obtained) except that the depth data are used and the
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equality of a pair of 3D triangles instead of the similarity of a pair of planar triangles
is examined each time. When a pair is mismatched, a consistent depth cannot be
found for the pair. In this case, the distance of the correspondence of a point p
to the motion epipolar line defined by p is used to determine whether the pair is
acceptable. If the distance is small and the resulting depth for the pair is positive,
then the pair is retained; otherwise, discarded. B

For two views, Test D fails for mismatches that satisfy the motion epipolar line
equation and yields positive depths. This is called the epipolar effect. However,
when a sequence of images are available, Test D is stronger than the epipolar con-
straint since Test D requires that the 3D structure defined by the points constructed
preserve shape and size from frame to frame while the epipolar constraint applies
only to pairs of images.

Disparity Constraint

For two views or stereo matching, mismatches lying on the motion epipolar line and
yielding positive depths cannot be removed by the rigidity constraint. This occurs
when there are occlusions or periodic patterns in the image. To remove mismatches
that have escaped rigidity constraint, another constraint called disparity constraint
is developed, which aims at identifying those matched points that can be rematched
if assigned with a disparity value. The idea of disparity constraint is illustrated by
Fig. 8. The disparity constraint states that an unambiguous match is a pair of points
both of which cannot be rematched with another legal disparity. If motion is known,
the space of legal disparities for a given point consists of the disparities that lead
to matches on the epipolar line and yield positive depths. If motion is unknown,
the space of legal disparities is unrestricted and intractable. In this case, disparities
of existing matches can be used to approximate the space of legal disparities. This
method works under the assumption that the disparities possessed by the already
matched pairs contain those possessed by other correct, yet unknown matches. In
any case, the disparity test will not worsen the results.

Fig. 8. Disparity constraint: Assume point p; is wrongly matched to point p,. When another
disparity d is assigned to p1 such that p; matches p; + d = p}, ambiguity arises: either (p1, P})
or (p1,p5) is the correct match, To be safe, both matches are removed.
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Test E (Disparity Test). Given a set of pairs of matches p; = (z;,3:) and p} =
(x',9%), Test E examines them for uniqueness and eliminates any nonunique ones as
spurious matches. A set of disparity vectors D is formed by collecting the disparity
vectors d; = p: — p; for all ¢ (if motion is available, D is formed by the disparity
vectors of all possible matches on the epipolar line that yield positive depths). When
the number of matches is small (e.g. when less than 100 matches are available in
a 512 x 512 image), D is enlarged by adding neighboring vectors (e.g. in a 3 x 3
window) of each disparity vector corresponding to the matches. A matched pair p;
and p} is accepted if for each d € D such that [|p; +d — p;|| > ¢, it is true that

Q(pi, ;) — Q(pi, pi +d) > 62, (5.12)

where € is a constant denoting the radius of a forbidden region surrounding p;. The
reason for excluding disparity vectors falling within the forbidden region is that
when p; matches p!, it is very likely that p; also matches points near p,. This
method is shown in Fig. 9. Again, this test is done in both directions: from the
first image to the second and vice versa.

Fig. 9. Disparity test: if p;(#,y) and p}(z',y") is a candidate matched pair, then for each disparity
vector d = (dz, dy) in the disparity vector set D such that p; +d falls out of the forbidden region
of pi(a',y'), we determine if p; has a good intensity-based or feature-based match with p; +d. If
50, p; has more than one match and the pair (pi, ) is removed as a spurious match; if not, pair
(pi, P}) is retained.

Applying the disparity constraint is the last effort to remove possible mismatches.
However, correct matches of periodic patterns could also be removed. There are
only two solutions if ambiguity arises: either remove all the matches temporarily or
resolve the ambiguity by examining the local geometrical situations. When insuf-
ficient information is present, the safest way is to remove all ambiguous matches.
Test E can be used twice, once before the motion is solved for and once after the
motion is solved for. At each time, the disparity space D has different contents as
described above.

The Effect of the Constraints

After the geometric, rigidity, and disparity tests have been applied, only mismatches
in rare situations described by Fig. 10 may survive. Because the method for selecting
potential matches and the constraints complement each other, the probability for
mismatch to occur is essentially zero. If more than three points are tested at a time
in the geometric tests, mismatches may be completely eliminated (along with more
good matches).
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Fig. 10. Only when all of the following five conditions are satisfied, can a mismatched pair p; and
p5, survive the geometric, rigidity, and disparity tests: (a) the correct match p} of p; is undetected
in the second image (b) the correct match p2 of p) is undetected in the first image (c) the local
intensities of p; matches the local intensities of p), (d) the triangle constructed by p; and its
two closest neighbors p3 and p4 pass the geometric and rigidity tests with respect to the triangle
constructed by p}, p}, and p) (e) the disparity p} — p1 is not close to any disparity possessed by
any other matched pair.

5.4. An Integrated Matching Algorithm

The algorithm is developed based on the five principles. However, the essence of
the algorithm consists of the tests which enforce the unique response principle since
other principles, as discussed in Sec. 3.2, are very easy to implement. Here we show
how these principles are integrated to yield a robust matching algorithm.

Before we present the algorithm, let us consider the relationships of the tests.
Test A can be used as an initial test since it does not require valid matches as
references. Tests B and C need good matches as references. Test D needs knowledge
of motion parameters. When Tests B and C are used, generally speaking, more point
correspondences will be found. However, it is possible that some newly obtained
correspondences will not satisfy the local geometrical constraints and are hence
wrong matches. This situation occurs very often near the occlusion boundary,
especially for views involving multiple objects of different motions. Therefore, it is
necessary to apply Tests A or D again to the correspondence data obtained by Test
B and/or Test C.

It should be noted that the acceptance of a point is determined by the neighbors
of the point, which may be different from view to view due to perspective distortion,
mismatching, or occlusion. Therefore, the result of applying a test to the points in
View 1 may not be the same as when the test is applied to the points in View 2.
Also, the decision about whether a point passes the test may change as the working
set or the rigid set is updated.

In the stepwise algorithm below, W; and W5 are the two working sets which are
the input for each test, and R; and R, are the two rigid sets containing points that
are the outcome of each test.

Step I Cross-match the detected feature points first from View 1 to View 2 and
then from View 2 to View 1 using the waveform and/or chamfer matching
method. If a pair of correspondences (p, q) is obtained in both matching
processes, then (p, q) is retained as a unique match for further use. Assume
W1 and Ws are the sets of points of unique matches in View 1 and View 2,
respectively.
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Step 2: Now apply Test A to the matches given by W) and W to select those which
satisfy the local geometric constraint. A pair (p,q) is considered a good
match if either p passes the test in W, or q passes the test in W5. Matched
points in W; and W, are constantly moved into R; and Ry, respectively.
Test A is repeatedly applied to points in W; and W, until no more good
points can be obtained.

Step 3: Test the points in Wi with reference to the points in R; and points in W,
with reference to the points in Ry using Test B. A pair {(p,q) (p € W1, q €
W) will be considered a good match if p passes the test in W, or q passes
the test in W5. Again, good matches in Wi and W, are moved into R; and
R,, respectively.

Step 4: Repeat Step 3 using Test C.

Step 5: Now apply Test D (if the images involve single rigid motion) or Test A (if
the images involve multiple rigid motions) to R; and R;. A pair (p,q) is
removed from (R;, R») if either p fails the test in R; or q fails in R,.

Step 6: Apply the (Disparity) Test E to Ry and Rs. If motion is unknown, the set of
disparity vectors D is obtained from the correspondence data in R; and R;.
If motion is known, for each point p of concern, D consists of all possible
disparities defined by the pixels on the epipolar line of p that yield positive
depths. Then a pair (p, q) is removed from (R;, R2) if one or both of the
following conditions hold: (1)} for any disparity vector d in D such that
p + d falls out of the forbidden region of q, p matches point p + d; (2) for
any disparity vector d in D such that ¢ —d lies on the epipolar line defined
by q and falls out of the forbidden region of p,q matches point g —d. The
remaining pairs in (Ry, Rz) comprise the results of the algorithm.

6. EXPERIMENTAL RESULTS

The feature extraction and matching methods in this paper have been implemented
as part of a system for automatic understanding of shape and motion from image
sequences. The methods have been applied to over a hundred image pairs and
sequences and produced no mismatches of an error above three pixels for feature
matching and only a few mismatches for edge matching. In this section we present a
few of the experiments related to feature extraction and matching. More examples
can be found in Ref. 18.

Example 1: The first example shows the performance of the spot detector. Fig-
ure 11(a) is the original image of a wooden texture. Figure 11(b) shows the result
of the spot detector with o = 2.0, from which we observe that almost all spots have
been successfully detected. Therefore, the spot detector works well for well-defined
spots. However, since spots are less abundant than corners and inflection points of
curves, in the matching examples provided below the point features are detected by
other detectors.'®
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(2) (b)

Fig. 11. Example 1. (a) A wooden texture image with artificial dots scattered in the image.
(b) The result of the spot detector showing that most spots are detected.

Example 2: The second example uses synthetic images to show the performance
of the edge detector. Results on real images appear in the matching examples.
Figure 12(a) is a synthetic image containing a square, a disc, and a triangle lying
on the background. The image is corrupted with a Gaussian noise with the vari-
ance ¢ = 5. The resulting signal-to-noise ratios (SNRs) for edges computed from
Eq. (2.6) (with S being a step edge and n the noise) are as follows: 9 dB for the
edges of the square, 12.6 dB for the edges of the circle, and 15 dB for the edges
of the triangle. Figure 12(b) shows the edges detected with 6 = 1. The edges are

(2) (b)

Fig. 12. Example 2. (a) A synthetic image corrupted with Gaussian noise. (b) The edges detected
with ¢ = 1.0. The threshold is set as the strength of the edges of the square. (c) The edges
detected with o = 4.0. Edge/maximum ratio is set at 0.25. (d) Edges detected with V2G(z,y) at
o =2.0.
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Fig. 12. (Continued).

overlapped on the original image to show the location errors. The threshold is set
as the edge strength of the square edges. This shows that the noise edges cannot
be removed by thresholding. When the SNR is low, the locations of the edges may
be shifted one or two pixels away from the original positions, as is the case with
the edges of the square (9 dB) and disc (12.6 dB). However, when the signal noise
ratio increases to 15 dB, the locations of the edges are almost intact, even for sharp
corners, as is the case with the edges of the triangle. Figure 12(c) shows that the
noise edges can be removed by using an operator of a larger size. However, the
locations of the edges are shifted for edges near the corners. The edge/maximum
ratio is set to 0.25. Figure 12(d) shows the result of the zero-crossing method with
the Laplacian—-Gaussian operator V2G(z,y) at size ¢ = 2.0. There we see several
problems with the zero-crossing method. First, the locations of the edges at corners
are severely shifted from their original positions. Second, artificial zero-crossings
are added to the edge image. Third, the quantization effect causes double edges all
of which are zero-crossings.

Example 3: The third example shows the performance of the matching algorithm
for images containing several objects undergoing different motions. Figure 13(a)
shows the two images of an indoor scene and the detected feature points. The left
image is significantly brighter since more lamps were turned on when this image
was taken. Three different motions are involved in the images: the human moves
nonrigidly, the chair turns around, the camera tilts and translates along the optical
axis, making the background nonstationary. The feature points are detected by an
improved Moravec interest operator.!® Figure 13(b) shows the points matched using
the waveform matching method after Step 1 is executed. Figure 13(c) shows the
final results. The points on the background are matched very well, but no points
on the human body and the chair are matched. Two reasons account for this:
(1) most feature points on the chair and the human body are near the occlusion
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Fig. 13. Example 3. (a) Point features detected. (b) The result of intensity-based matching.
(c) The final result after applying the tests.
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boundary so that the neighborhood triangle rigidity is not preserved for them;
(2) the feature points detected within the chair and the human body change drasti-
cally from image to image due to a large image distortion. Therefore, an insufficient
number of common feature points is detected in both images. However, this exam-
ple shows that even if the scene contains multiple objects, the matching algorithm
still yields matches for points in the areas in which image distortion is small, no
occlusion occurs, and there are enough points from within a single surface.

Example 4: The last example serves four purposes: first, it presents intermediate
results of each step of the algorithm; second, it illustrates the use of 3-D rigidity,
Test D or motion epipolar line constraint; third, it shows the effect of the disparity
Test E; and fourth, it shows the performance when the method is extended for edge
matching and surface reconstruction.

Figure 14(a) shows about 600 points detected by the improved Moravec interest
operator'® for two images. The boxes in the scene are at different depths, around
which significant occlusions occur. The left image is related to the right image by a
single motion involving a tilting rotation and a horizontal translation. Figure 14(b)
shows the matched pairs obtained using intensity which contain some mismatches
in the background and near the boundaries of the boxes. However, after applying
the geometric tests, only a few very good correspondences survive, as shown in
Fig. 14(c). There are two mismatches in Fig. 14(c), one in the upper left corner, the
other between the two boxes. These two mismatches escape the geometric tests since
they preserve the geometrical relations with their nearest neighboring feature points
so well. However, they are eliminated by the disparity test, as shown in Fig. 14(d),
along with some other matches. We then estimate the motion parameters between
the two views (cf. Ref. 19). After the motion is estimated, the rigidity constraint
is first applied to the existing matches to identify mismatches and then the motion
epipolar constraint is applied to the remaining unmatched points to obtain more
matches. The final results of all matched points (200 out of 600) are shown in
Fig. 14(e).

As an example of chamfer matching, Fig. 14(f) shows the edge images detected
by the edge detector described in this paper and the point features detected by
a corner and end point detector'®; Fig. 14(g) shows the initial matches of point
features obtained by the chamfer matching algorithm and Fig. 14(h) is the final
matched points of applying the tests.

Finally, we show some results obtained by extending the same methods to edge
matching and surface reconstruction. The discussion of the details of these exten-
sions is beyond the scope of this paper and the reader is hence referred to Ref. 18.
Figure 14(i) shows the matched edges using the extended methods for edge match-
ing. Almost all edges are correctly matched except a small block of edges inbetween
two boxes are mismatched. The mismatches correspond to the rare situations dis-
cussed in Sec. 4 and can be corrected with additional information or constraints.!®
Figure 14(j) shows the reconstructed surface based on the matched edges, where we
see that the depth discontinuities and surface shapes are recovered very accurately.
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Fig. 14. Example 4. (a) Point features detected. (b) The feature points matched based on intensi-
ties after Step 1 of the matching algorithm. (c) The result after Step 5. (d) The result after Test E
in Step 6. (e) The result after using the motion epipolar line constraint. (f) The edges and points
used for chamfer matching. (g) The candidate matches obtained by chamfer matching. (h) The
final matches of point features passing geometric tests. (i) The edges matched using the edge
matching algorithm resulting from the formulation. (j) The reconstructed depth map as intensity
based on the matched edges. The bright areas are closer to the viewer.
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6)

Fig. 14. (Continued).

Typically, on a SUN Sparc 10 station, the intensity-based matching algorithm
takes a few minutes to 20 minutes to match two 512 x 512 images containing 1,000
points, while the chamfer matching algorithm takes less than a minute. The rigidity
tests take negligible time and the disparity test takes a few minutes. Therefore,
most of the computation is spent on intensity-based matching. The computational
complexity is proportional to the number of feature points.

Other parameters used in the algorithm are as follows. In the matching examples,
M, is used as the similarity measure. The window size for evaluating the similarity
measure is arbitrarily chosen in a range from 15 X 15 to 21 x 21 and the performance
of the algorithm does not change significantly. The vector e in Test C is chosen as
(5,5) (pixels). The thresholds é; and &, in the intensity-based matching part are
set to 20 and 1, respectively. These choices are based on the assumption that the
average intensity change per pixel between the two images is below 20 (gray levels)
and that for most points, the similarity measure of the true match is 1 (gray level)
better than a spurious match (otherwise, the true match is indistinguishable from
the spurious one). In the geometric and rigidity tests, a neighbor is required to be
at a minimum distance of 5 pixels in order to be considered as a closest neighbor.
This allows up to a 20% relative error in side length distortion of a triangle when
an absolute error of 1 pixel is present in one side of the triangle. The threshold ~
is chosen as 0.33. In the disparity test, the forbidden region is chosen as a circle of
radius 5 pixels.
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7. SUMMARY

In this paper, a general formulation of feature extraction and matching as signal
detection has been presented. General principles and methods have been proposed
and sample algorithms resulting from these methods have been presented. Good ex-
perimental results with real images have been obtained using these methods which
demonstrate the validity and usefulness of the formulation. The formulation has
several advantages. First, it provides a systematic method for solving feature ex-
traction and matching problems. Second, it unifies feature extraction and matching
into a more general framework so that the two can be combined more closely in con-
structing an automatic vision system. Third, it builds a bridge between low level
vision processing and signal detection theory. The methods of this paper apply to
detection and matching of point features as well as edge matching.'®

REFERENCES

1. G. Adiv. “Determining three-dimensional motion and structure from optical flow gen-
erated by several moving objects”, IEEE Trans. Pattern Anal. Mach. Intell. 7,4 (1985)
384-401.

2. H. G. Barrow, J. M. Tenenbaum, R. C. Bolles, and H. C. Wolf, “Parametric corre-
spondence and chamfer matching: Two new techniques for image matching”, Proc.
Int. Jomnt Conf. on Artificial Intelligence, vol. 2, 1977, pp. 659-663.

3. J. Ben-Arie and K. Rao, “Image expansion by non-orthogonal wavelets for optimal
template matching”, Proc. 11th Int. Conf. on Pattern Recognition, 1992, 650-654.

4. J. R. Beveridge, R. Weiss, and E. M. Riseman, “Combinatorial optimization applied
to variable scale 2D model matching”, Proc. Int. Joint Conf. on Pattern Recognition,
1990, pp. 18-22.

5. D. Blostein and N.Ahuja, “Recovering the orientation of textured surfaces in natural
scenes”, Tech. Rep. UILU-ENG-87-2219, Coord. Sci. Lab., University of Illinois at
Urbana-Champaign, 1987.

6. D. Blostein and N. Ahuja, “Shape from texture: Integrating texture-element extrac-
tion and surface estimation”, IEEE Trans. Pattern Anal. Mach Intell. 11, 12 (1989)
1233-1251.

7. G. Borgefors, “Hierarchical chamfer matching: A parametric edge matching algo-
rithm”, IEEE Trans. Pattern Anal. Mach. Intell. 10, 6 (1988) 849-865.

8. J. Canny, “A computational approach to edge detection”, IEEE Trans. Pattern Anal.
Mach. Intell. 8, 6 (1986) 679-698.

9. C.-L. Cheng and J. K. Aggarwal, “A two-stage hybrid approach to the correspondence
problem via forward-searching and backward-correcting”, Proc. Int. Joint Conf. on
Pattern Recognition, 1990, 173-179.

10. G. R. Cooper and C. D. McGillem, Modern Communications and Spread Spectrum,
McGraw-Hill, New York, 1986.

11. M. S. Costa, R. M. Haralick, and L. Shapiro, “Optimal affine-invariant point match-
ing”, Proc. Int. Joint Conf. on Pattern Recognition, 1990, pp. 233-236.

12. J. Daugman, “Two-dimensional spectral analysis of cortical receptive field profiles”,
Vis. Res. 20 (1980) 847-856.

13. J. Daugman, “Uncertainty relation for resolution in space, spatial frequency, and ori-
entation optimized by two-dimensional visual cortical filters”, J. Opt. Soc. Amer. 2,
7 (1985) 1160-1169.

109



Int. J. Patt. Recogn. Artif. Intell. 1994.08:1343-1379. Downloaded from www.worldscientific.com
by UNIVERSITY OF ILLINOISAT URBANA CHAMPAIGN on 09/20/13. For personal use only.

_ 1378

14

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.
25.
26.
27.
28.

29.

30.

31.

32.

33.

34.

35.

36.

X.HU & N. AHUJA

. J. Daugman, “Complete discrete 2D Gabor transforms by neural networks for image
analysis and compression”, IEEE Trans. Acoust. Speech Signal Process 36, 7 (1988)
1169-1179.

B. Dreher and K. Sanderson, “Receptive field analysis: Responses to moving visual
contours by single lateral geniculate neurons in the cat”, J. Physiol. 284 (1973) 95-118.
R. G. Gonzalez and P. Wintz, Digital Image Processing, Addison-Wesley, New York,
1977.

B. K. P. Horn and B. G. Schunk, “Determining optical flow”, Artif. Intell. 17 (1981)
185-203.

X. Hu, “Perception of shape and motion”, Ph.D. dissertation, Department of Electrical
and Computer Engineering, University of Illinois, Urbana, IL, 1993.

X. Hu and N. Ahuja, “Estimating motion of constant acceleration from image se-
quences”, Proc. 11th Int. Conf. on Pattern Recognition, Hague, The Netherlands,
1992.

D. Hubel and T. Wiesel, “Receptive fields, binocular interaction, and functional ar-
chitecture in the cat’s visual cortex”, J. Physiol. 160 (1962) 106—154.

D. Hubel and T. Wiesel, “Receptive fields and functional architecture of monkey striate
cortex”, J. Physiol. 195 (1968) 215-243.

R. Hummel, B. Kimia, and S. Zucker, “Gaussian blur and the heat equation: Forward
and inverse solutions”, Proc. IEEE Conf. on Computer Vision and Pattern Recogni-
tion, 1985, pp. 668—671.

J. Jones and L. Palmer, “An evaluation of the two-dimensional Gabor filter model of
simpler receptive fields in cat striate cortex”, J. Neurophys. 58 (1987) 1233-1258.

Y. Lamdan, J. T. Schwartz, and H. J. Wolfson, “Object recognition by affine invariant
matching”, Proc. Int. Joint Conf. on Pattern Recognition, 1988, pp. 335-344.

R. Leipnik, “The extended entropy uncertainty principle”, Inf. Conirol 3 (1960) 18-25.
D. Marr, Vision, W. H. Freeman and Company, New York, 1982.

D. Marr and E. Hildreth, “Theory of edge detection”, Proc. R. Soc. London B, 207
(1980) 187-217.

D. Marr and S. Ullman, “Directional selectivity and its use in early visual processing”,
Phil. Trans. R. Soc. B, 275 (1979) 483-524.

T. Nguyen and T. Huang, “Image blurring effects due to depth discontinuities: Blurring
that creates emergent image details”, Proc. 2nd European Conf. on Computer Vision,
1992, pp. 347-362.

K. Prazdny, “Egomotion and relative depth map from optical flow”, Biol. Cyber. 36
(1980) 87-102.

K. Rao and J. Ben-Arie, “Restoration wit equivalence to nonorthogonal image expan-
sion for feature extraction and edge detection”, Proc. SPIE Conf. on Visual Commu-
nication and Image Processing, 1992, pp. 187-197.

A. Rosenfeld and J. L. Pflatz, “Distance functions on digital pictures”, Pattern Recogn.
1,1 (1968) 33-62.

V. Salari and I. K. Sethi, “Feature point correspondence in the presence of occlusion”,
IEEE Trans. Pattern Anal. Mach. Intell. 12, 1 (1990) 87-91.

G. Scott and H. Longue-Higgins, “An algorithm for associating the features of two
patterns”, Proc. Roy. Soc. London B244 (1991) 21-26.

G. Scott and H. Longue-Higgins, “Feature grouping by “relocalization of eigenvectors
of the proximity matrix”, Proc. 1st British Machine Vision Conf., Oxford, UK, 1990,
pp. 103-108.

I. K. Sethi and R. Jain, “Finding trajectories of feature points in a monocular image

sequence”, Pattern Anal. Mach. Intell. 9, 1 (1987) 56-73.

110



Int. J. Patt. Recogn. Artif. Intell. 1994.08:1343-1379. Downloaded from www.worldscientific.com
by UNIVERSITY OF ILLINOISAT URBANA CHAMPAIGN on 09/20/13. For persona use only.

FEATURE EXTRACTION AND MATCHING AS SIGNAL DETECTION 1379

37

38

39.

40.

41.

. L. Shapiro and J. Brady, “Feature-based correspondence: An eigenvector approach”,
J. Image Vision Comput. 10, 5 (1992) 283-288.

. J. Shen and S. Castan, “An optimal linear operator for step edge detection”, CVGIP:

Graph. Models Image Process. 54, 2 (1992) 112-133.

H. L. Van Trees, Detection, Estimation, and Modulation Theory, Wiley, New York,

pp. 1968-1971.

J. Weng, “A theory of image matching”, Proc. Int. Joint Conf. on Computer Vision,

1990, pp. 200-209.

J. Weng, N. Ahuja, and T. S. Huang, “Two-view matching”, Proc. Int. Joint Conf.

on Computer Vision, 1988, pp. 64-73.

Received 18 January 1993; revised 31 July 1993.

graphics group of Sun Microsystems, Inc.

Xiaoping Hu received
his Ph.D. in Electrical
Engineering from the
University of Illinois at
Urbana-Champaign in
1993. His research in-
terests are in image pro-
cessing, computer vision

Narendra Ahuja re-
ceived the B.E. degree
with honors in electron-
ics engineering from the
Birla Institute of Tech-
nology and Science, Pi-
lani, India, in 1972, the
M.E. degree with dis-

and video applications. !
He is now with the

“ tinction in electrical
21 communication engi-
neering from the Indian Institute of Science,
Bangalore, India, in 1974, and the Ph.D. de-
gree in computer science from the University
of Maryland, College Park, USA, in 1979.
Since 1979 he has been with the Uni-
versty of Illinois at Urban-Champaign where
he is currently a Professor in the Depart-
ment of Electrical and Computer Engineer-
ing, the Coordinated Science Laboratory, and
the Beckman Institute. His interests are in
computer vision, robotics, image processing,
image synthesis, and parallel algorithms. His
current research emphasizes integrated use of
multiple image sources of scene information
to construct three-dimensional descriptions of
scenes, the use of integrated image analysis for
realistic image synthesis, the use of the ac-
quired three-dimensional information for nav-
igation, and multiprocessor architectures for
computer vision.

111



