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Abstract—Convolutional neural networks have recently demonstrated high-quality reconstruction for single image super-resolution.

However, existing methods often require a large number of network parameters and entail heavy computational loads at runtime for

generating high-accuracy super-resolution results. In this paper, we propose the deep Laplacian Pyramid Super-Resolution Network for

fast and accurate image super-resolution. The proposed network progressively reconstructs the sub-band residuals of

high-resolution images at multiple pyramid levels. In contrast to existing methods that involve the bicubic interpolation for

pre-processing (which results in large feature maps), the proposed method directly extracts features from the low-resolution input

space and thereby entails low computational loads. We train the proposed network with deep supervision using the robust Charbonnier

loss functions and achieve high-quality image reconstruction. Furthermore, we utilize the recursive layers to share parameters across

as well as within pyramid levels, and thus drastically reduce the number of parameters. Extensive quantitative and qualitative

evaluations on benchmark datasets show that the proposed algorithm performs favorably against the state-of-the-art methods in terms

of run-time and image quality.

Index Terms—Single-image super-resolution, deep convolutional neural networks, Laplacian pyramid

Ç

1 INTRODUCTION

SINGLE image super-resolution (SR) aims to reconstruct
a high-resolution (HR) image from one single low-

resolution (LR) input image. Example-based SR methods
have demonstrated the state-of-the-art performance by
learning a mapping from LR to HR image patches using
large image datasets. Numerous learning algorithms have
been applied to learn such a mapping function, including
dictionary learning [1], [2], local linear regression [3], [4],
and random forest [5], to name a few.

ConvolutionalNeuralNetworks (CNNs) have beenwidely
used in vision tasks ranging from object recognition [6],
segmentation [7], optical flow [8], to super-resolution. In [9],
Dong et al. propose a Super-Resolution Convolutional Neural
Network (SRCNN) to learn a nonlinear LR-to-HR mapping
function. This network architecture has been extended to
embed a sparse coding model [10], increase network
depth [11], or apply recursive layers [12], [13]. While these
models are able to generate high-quality SR images, there
remain three issues to be addressed. First, these methods

use a pre-defined upsampling operator, e.g., bicubic inte-
rpolation, to upscale an input LR image to the desired spatial
resolution before applying a network for predicting the details
(Fig. 1a). This pre-upsampling step increases unnecessary
computational cost and does not provide additional high-
frequency information for reconstructing HR images. Several
algorithms accelerate the SRCNN by extracting features
directly from the input LR images (Fig. 1b) and replacing the
pre-defined upsampling operator with sub-pixel convolu-
tion [14] or transposed convolution [15] (also named as decon-
volution in some literature). These methods, however, use
relatively small networks and cannot learn complicated map-
pings well due to the limitedmodel capacity. Second, existing
methods optimize the networks with an L2 loss (i.e., mean
squared error loss). Since the same LR patch may have multi-
ple corresponding HR patches and the L2 loss fails to capture
the underlying multi-modal distributions of HR patches, the
reconstructedHR images are often over-smoothed and incon-
sistent to human visual perception on natural images. Third,
existingmethods mainly reconstruct HR images in one upsam-
pling step, which makes learning mapping functions for large
scaling factors (e.g., 8�) more difficult.

To address these issues, we propose the deep Lapla-
cian Pyramid Super-Resolution Network (LapSRN) to
progressively reconstruct HR images in a coarse-to-fine
fashion. As shown in Fig. 1c, our model consists of a fea-
ture extraction branch and an image reconstruction
branch. The feature extraction branch uses a cascade of
convolutional layers to extract non-linear feature maps
from LR input images. We then apply a transposed con-
volutional layer for upsampling the feature maps to a
finer level and use a convolutional layer to predict the
sub-band residuals (i.e., the differences between the
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upsampled image and the ground truth HR image at
the respective pyramid level). The image reconstruction
branch upsamples the LR images and takes the sub-band
residuals from the feature extraction branch to efficiently
reconstruct HR images through element-wise addition.
Our network architecture naturally accommodates deep
supervision (i.e., supervisory signals can be applied
simultaneously at each level of the pyramid) to guide the
reconstruction of HR images. Instead of using the L2 loss
function, we propose to train the network with the robust
Charbonnier loss functions to better handle outliers and
improve the performance. While both feature extraction
and image reconstruction branches have multiple levels,
we train the network in an end-to-end fashion without
stage-wise optimization.

Our algorithm differs from existing CNN-based methods
in the following three aspects:

1) Accuracy. Instead of using a pre-defined upsampling
operation, our network jointly optimizes the deep
convolutional layers and upsampling filters for both
images and feature maps by minimizing the Char-
bonnier loss function. As a result, our model has a
large capacity to learn complicated mappings and
effectively reduces the undesired artifacts caused by
spatial aliasing.

2) Speed. Our LapSRN accommodates both fast pro-
cessing speed and high capacity of deep networks.
Experimental results demonstrate that our method
is faster than several CNN-based super-resolution
models, e.g., VDSR [11], DRCN [12], and DRRN [13].
The proposed model achieves real-time performance
as FSRCNN [15] while generating significantly better
reconstruction accuracy.

3) Progressive reconstruction. Our model generates mul-
tiple intermediate SR predictions in one feed-forward

pass through progressive reconstruction. This char-
acteristic renders our method applicable to a wide
range of tasks that require resource-aware adaptabil-
ity. For example, the same network can be used to
enhance the spatial resolution of videos depending
on the available computational resources. For scenar-
ios with limited computing resources, our 8� model
can still perform 2� or 4� SR by simply bypassing
the computation of residuals at finer levels. Existing
CNN-based methods, however, do not offer such
flexibility.

In this work, we make the following extensions to
improve our early results [16] substantially:

1) Parameter sharing. We re-design our network archi-
tecture to share parameters across pyramid levels
and within the feature extraction sub-network via
recursion. Through parameter sharing, we reduce
73 percent of the network parameters while achi-
eving better reconstruction accuracy on benchmark
datasets.

2) Local skip connections. We systematically analyze
three different approaches for applying local skip
connections in the proposed model. By leveraging
proper skip connections to alleviate the gradient
vanishing and explosion problems, we are able to
train an 84-layer network to achieve the state-of-the-
art performance.

3) Multi-scale training. Unlike in the preliminary work
where we train three different models for handling
2�, 4� and 8� SR, respectively, we train one single
model to handle multiple upsampling scales. The
multi-scale model learns the inter-scale correlation
and improves the reconstruction accuracy against
single-scale models. We refer to our multi-scale
model as MS-LapSRN.

Fig. 1. Comparisons of upsampling strategies in CNN-based SR algorithms. Red arrows indicate convolutional layers. Blue arrows indicate trans-
posed convolutions (upsampling), and green arrows denote element-wise addition operators. (a) Pre-upsampling based approaches (e.g.,
SRCNN [9], VDSR [11], DRCN [12], DRRN [13]) typically use the bicubic interpolation to upscale LR input images to the target spatial resolution
before applying deep networks for prediction and reconstruction. (b) Post-upsampling based methods directly extract features from LR input images
and use sub-pixel convolution [14] or transposed convolution [15] for upsampling. (c) Progressive upsampling approach using the proposed Lapla-
cian pyramid network reconstructs HR images in a coarse-to-fine manner.
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2 RELATED WORK

Single-image super-resolution has been extensively studied
in the literature. Here we focus our discussion on recent
example-based and CNN-based approaches.

2.1 SR Based on Internal Databases

Several methods [18], [19], [20] exploit the self-similarity
property in natural images and construct LR-HR patch pairs
based on the scale-space pyramid of the LR input image.
While internal databases contain more relevant training
patches than external image datasets, the number of LR-HR
patch pairs may not be sufficient to cover large textural
appearance variations in an image. Singh et al. [21] decom-
pose patches into directional frequency sub-bands and
determine better matches in each sub-band pyramid inde-
pendently. In [22], Huang et al. extend the patch search
space to accommodate the affine and perspective deforma-
tion. The SR methods based on internal databases are typi-
cally slow due to the heavy computational cost of patch
searches in the scale-space pyramid. Such drawbacks make
these approaches less feasible for applications that require
computational efficiency.

2.2 SR Based on External Databases

Numerous SR methods learn the LR-HR mapping with
image pairs collected from external databases using super-
vised learning algorithms, such as nearest neighbor [23],
manifold embedding [24], [25], kernel ridge regression [26],
and sparse representation [1], [2], [27]. Instead of directly
modeling the complex patch space over the entire database,
recent methods partition the image set by K-means [4],
sparse dictionary [3], [28] or random forest [5], and learn
locally linear regressors for each cluster. While these
approaches are effective and efficient, the extracted features
and mapping functions are hand-designed, which may not
be optimal for generating high-quality SR images.

2.3 Convolutional Neural Networks Based SR

CNN-based SR methods have demonstrated state-of-the-art
results by jointly optimizing the feature extraction, non-
linear mapping, and image reconstruction stages in an end-
to-end manner. The VDSR network [11] shows significant

improvement over the SRCNNmethod [9] by increasing the
network depth from 3 to 20 convolutional layers. To facilitate
training a deeper model with a fast convergence speed, the
VDSR method adopts the global residual learning paradigm
to predict the differences between the ground truth HR
image and the bicubic upsampled LR image instead of the
actual pixel values. Wang et al. [10] combine the domain
knowledge of sparse coding with a deep CNN and train a
cascade network (SCN) to upsample images progressively.
In [12], Kim et al. propose a network with multiple recur-
sive layers (DRCN) with up to 16 recursions. The DRRN
approach [13] further trains a 52-layer network by extending
the local residual learning approach of the ResNet [6] with
deep recursion. We note that the above methods use bicubic
interpolation to pre-upsample input LR images before feed-
ing into the deep networks, which increases the computa-
tional cost and requires a large amount of memory.

To achieve real-time speed, the ESPCN method [14]
extracts feature maps in the LR space and replaces the bicu-
bic upsampling operation with an efficient sub-pixel convo-
lution (i.e., pixel shuffling). The FSRCNN method [15]
adopts a similar idea and uses a hourglass-shaped CNN
with transposed convolutional layers for upsampling. As a
trade-off of speed, both ESPCN [14] and FSRCNN [15] have
limited network capacities for learning complex mappings.
Furthermore, these methods upsample images or features
in one upsampling step and use only one supervisory signal
from the target upsampling scale. Such a design often
causes difficulties in training models for large upsampling
scales (e.g., 4� or 8�). In contrast, our model progressively
upsamples input images on multiple pyramid levels and use
multiple losses to guide the prediction of sub-band residuals
at each level, which leads to accurate reconstruction, partic-
ularly for large upsampling scales.

All the above CNN-based SR methods optimize networks
with the L2 loss function, which often leads to over-smooth
results that do not correlate well with human perception. We
demonstrate that the proposed deep network with the robust
Charbonnier loss function better handles outliers and impro-
ves the SR performance over the L2 loss function. Most
recently, Lim et al. [17] propose a multi-scale deep SRmodel
(MDSR) by extending ESPCN [14] with three branches for
scale-specific upsampling but sharingmost of the parameters

TABLE 1
Feature-by-Feature Comparisons of CNN-based SR Algorithms

Method Input Reconstruction Depth Filters Parameters GRL LRL Multi-scale training Loss function

SRCNN [9] LR + bicubic Direct 3 64 57 k L2

FSRCNN [15] LR Direct 8 56 12 k L2

ESPCN [14] LR Direct 3 64 20 k L2

SCN [10] LR + bicubic Progressive 10 128 42 k L2

VDSR [11] LR + bicubic Direct 20 64 665 k @ @ L2

DRCN [12] LR + bicubic Direct 20 256 1775 k @ L2

DRRN [13] LR + bicubic Direct 52 128 297 k @ @ @ L2

MDSR [17] LR Direct 162 64 8000 k @ @ Charbonnier
LapSRN [16] LR Progressive 24 64 812 k @ Charbonnier
MS-LapSRN (ours) LR Progressive 84 64 222 k @ @ @ Charbonnier

Methods with direct reconstruction performs one-step upsampling from the LR to HR space, while progressive reconstruction predicts HR images in multiple
upsampling steps. Depth represents the number of convolutional and transposed convolutional layers in the longest path from input to output for 4� SR. Global
residual learning (GRL) indicates that the network learns the difference between the ground truth HR image and the upsampled (i.e., using bicubic interpolation
or learned filters) LR images. Local residual learning (LRL) stands for the local skip connections between intermediate convolutional layers.

LAI ETAL.: FASTANDACCURATE IMAGE SUPER-RESOLUTION WITH DEEP LAPLACIAN PYRAMID NETWORKS 2601

Authorized licensed use limited to: University of Illinois. Downloaded on April 15,2020 at 22:18:15 UTC from IEEE Xplore.  Restrictions apply. 



across different scales. The MDSR method is trained on a
high-resolution DIV2K [29] dataset (800 training images of 2k
resolution), and achieves the state-of-the-art performance.
Table 1 shows the main components of the existing CNN-
based SRmethods. The preliminary method of this work, i.e.,
LapSRN [16], and the proposed MS-LapSRN algorithm are
listed in the last two rows.

2.4 Laplacian Pyramid

The Laplacian pyramid has been widely used in several
vision tasks, including image blending [30], texture synthe-
sis [31], edge-aware filtering [32] and semantic segmenta-
tion [33]. Denton et al. [34] propose a generative adversarial
network based on a Laplacian pyramid framework (LAP-
GAN) to generate realistic images, which is the most related
to our work. However, the proposed LapSRN differs from
LAPGAN in two aspects.

First, the objectives of the two models are different. The
LAPGAN is a generative model which is designed to syn-
thesize diverse natural images from random noise and sam-
ple inputs. On the contrary, the proposed LapSRN is a
super-resolution model that predicts a particular HR image
based on the given LR image and upsampling scale factor.
The LAPGAN uses a cross-entropy loss function to encour-
age the output images to respect the data distribution of the
training datasets. In contrast, we use the Charbonnier pen-
alty function to penalize the deviation of the SR prediction
from the ground truth HR images.

Second, the differences in architecture designs result in
disparate inference speed and network capacities. As shown
in Fig. 2, the LAPGAN upsamples input images before apply-
ing convolution at each level, while our LapSRN extracts fea-
tures directly from the LR space and upscales images at the
end of each level. Our network design effectively alleviates
the computational cost and increases the size of receptive
fields. In addition, the convolutional layers at each level in
our LapSRN are connected throughmulti-channel transposed
convolutional layers. The residual images at a higher level
are therefore predicted by a deeper network with shared fea-
ture representations at lower levels. The shared features at

lower levels increase the non-linearity at finer convolutional
layers to learn complexmappings.

2.5 Adversarial Training

The Generative Adversarial Networks (GANs) [35] have
been applied to several image reconstruction and synthesis
problems, including image inpainting [36], face comple-
tion [37], and face super-resolution [38]. Ledig et al. [39]
adopt the GAN framework for learning natural image
super-resolution. The ResNet [6] architecture is used as the
generative network and train the network using the combi-
nation of the L2 loss, perceptual loss [40], and adversarial
loss. The SR results may have lower PSNR but are visually
plausible. Note that our LapSRN can be easily extended to
incorporate adversarial training. We present experimental
results on training with the adversarial loss in Section 5.6.

3 DEEP LAPLACIAN PYRAMID NETWORK FOR SR

In this section,we describe the designmethodology of the pro-
posed LapSRN, including the network architecture, parame-
ter sharing, loss functions, multi-scale training strategy, and
details of implementation aswell as network training.

3.1 Network Architecture

We construct our network based on the Laplacian pyramid
framework. Our model takes an LR image as input (rather
than an upscaled version of the LR image) and progressively
predicts residual images on the log 2S pyramid levels, where
S is the upsampling scale factor. For example, our network
consists of 3 pyramid levels for super-resolving an LR image
at a scale factor of 8. Our model consists of two branches: (1)
feature extraction and (2) image reconstruction.

3.1.1 Feature Extraction Branch

As illustrated in Figs. 1c and 3, the feature extraction branch
consists of (1) a feature embedding sub-network for trans-
forming high-dimensional non-linear feature maps, (2) a
transposed convolutional layer for upsampling the extracted
features by a scale of 2, and (3) a convolutional layer
(Convres) for predicting the sub-band residual image. The
first pyramid level has an additional convolutional layer
(Convin) to extract high-dimensional feature maps from the
input LR image. At other levels, the feature embedding sub-
network directly transforms features from the upscaled fea-
ture maps at the previous pyramid level. Unlike the design
of the LAPGAN in Fig. 2, we do not collapse the feature maps
into an image before feeding into the next level. Therefore,
the feature representations at lower levels are connected to
higher levels and thus can increase the non-linearity of the
network to learn complex mappings at the finer levels. Note
that we perform the feature extraction at the coarse resolution
and generate feature maps at the finer resolution with only
one transposed convolutional layer. In contrast to existing
networks (e.g., [11], [13]) that perform all feature extraction
and reconstruction at the finest resolution, our network
design significantly reduces the computational complexity.

3.1.2 Image Reconstruction Branch

At level s, the input image is upsampled by a scale of 2 with
a transposed convolutional layer, which is initialized with a

Fig. 2. Generative network of LAPGAN [34]. The LAPGAN first upsam-
ples the input images before applying convolution for predicting residuals
at each pyramid level.
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4� 4 bilinear kernel. We then combine the upsampled
image (using element-wise summation) with the predicted
residual image to generate a high-resolution output image.
The reconstructed HR image at level s is then used as an
input for the image reconstruction branch at level sþ 1. The
entire network is a cascade of CNNs with the same structure
at each level. We jointly optimize the upsampling layer with
all other layers to learn better a upsampling function.

3.2 Feature Embedding Sub-Network

In our preliminary work [16], we use a stack of multiple con-
volutional layers as our feature embedding sub-network. In
addition, we learn distinct sets of convolutional filters for
feature transforming and upsampling at different pyramid
levels. Consequently, the number of network parameters
increases with the depth of the feature embedding sub-
network and the upsampling scales, e.g., the 4� SR model
has about twice number of parameters than the 2� SRmodel.
In this work, we explore two directions to reduce the net-
work parameters of LapSRN.

3.2.1 Parameter Sharing Across Pyramid Levels

Our first strategy is to share the network parameters across
pyramid levels as the network at each level shares the same
structure and the task (i.e., predicting the residual images at
2� resolution). As shown in Fig. 3, we share the parameters
of the feature embedding sub-network, upsampling layers,
and the residual prediction layers across all the pyramid
levels. As a result, the number of network parameters is
independent of the upsampling scales. We can use a single
set of parameters to construct multi-level LapSRN models
to handle different upsampling scales.

3.2.2 Parameter Sharing within Pyramid Level

Our second strategy is to share the network parameters
within each pyramid level. Specifically, we extend the feature
embedding sub-network using deeply recursive layers to
effectively increase the network depth without increasing
the number of parameters. The design of recursive layers has
been adopted by several recent CNN-based SR approaches.

The DRCN method [12] applies a single convolutional layer
repeatedly up to 16 times. However, with a large number
of filters (i.e., 256 filters), the DRCN is memory-demanding
and slow at runtime. Instead of reusing the weights of a
single convolutional layer, the DRRN [13] method shares the
weights of a block (2 convolutional layers with 128 filters). In
addition, the DRRN introduces a variant of local residual
learning from the ResNet [6]. Specifically, the identity branch
of the ResNet comes from the output of the previous block,
while the identity branch of the DRRN comes from the input
of the first block. Such a local skip connection in the DRRN
creates multiple short paths from input to output and
thereby effectively alleviates the gradient vanishing and
exploding problems. Therefore, DRRN has 52 convolutional
layerswith only 297 k parameters.

In the proposed LapSRN, the feature embedding sub-
network has R recursive blocks. Each recursive block has D
distinct convolutional layers, which controls the number of
parameters in the entire model. The weights of theD convo-
lutional layers are shared among the recursive blocks. Given
an upsampling scale factor S, the depth of the LapSRN can
be computed by

depth ¼ ðD�Rþ 1Þ � Lþ 2; (1)

where L ¼ log 2 S. The 1 within the parentheses represents
the transposed convolutional layers, and the 2 at the end
of (1) represents the first convolutional layer applied on
input images and the last convolutional layer for predicting
residuals. Here we define the depth of a network as the lon-
gest path from input to output.

3.2.3 Local Residual Learning

As the gradient vanishing and exploding problem are com-
mon issues when training deep models, we explore three
different methods of local residual learning in our feature
embedding sub-network to stabilize our training process:

1) No skip connection: A plain network without any local
skip connection. We denote our LapSRN without
skip connections as LapSRNNS.

Fig. 3. Detailed network architecture of the proposed LapSRN. At each pyramid level, our model consists of a feature embedding sub-network for
extracting non-linear features, transposed convolutional layers for upsampling feature maps and images, and a convolutional layer for predicting the
sub-band residuals. As the network structure at each level is highly similar, we share the weights of those components across pyramid levels to
reduce the number of network parameters.
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2) Distinct-source skip connection: The ResNet-style local
skip connection. We denote our LapSRN with such
skip connections as LapSRNDS.

3) Shared-source skip connection: The local skip connec-
tion introduced by DRRN [13]. We denote our
LapSRN with such skip connections as LapSRNSS.

We illustrate the three local residual learning methods
in Fig. 4 and the detailed structure of our recursive block
in Fig. 5. We use the pre-activation structure [41] without
the batch normalization layer in our recursive block.

3.3 Loss Function

Let x be the input LR image and u be the set of network
parameters to be optimized. Our goal is to learn a mapping
function f for generating an HR image ŷ ¼ fðx; uÞ that is as
similar to the ground truth HR image y as possible. We
denote the residual image at level l by r̂l, the upscaled LR
image by xl and the corresponding HR images by ŷl. The
desired output HR images at level l is modeled by
ŷl ¼ xl þ r̂l. We use the bicubic downsampling to resize the
ground truth HR image y to yl at each level. Instead of mini-
mizing the mean square errors between ŷl and yl, we pro-
pose to use a robust loss function to handle outliers. The
overall loss function is defined as

LSðy; ŷ; uÞ ¼ 1

N

XN

i¼1

XL

l¼1

r y
ðiÞ
l � ŷ

ðiÞ
l

� �

¼ 1

N

XN

i¼1

XL

l¼1

r ðyðiÞl � x
ðiÞ
l Þ � r̂

ðiÞ
l

� �
;

(2)

where rðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ �2

p
is the Charbonnier penalty function

(a differentiable variant of L1 norm) [42], N is the number
of training samples in each batch, S is the target upsampling
scale factor, and L ¼ log 2 S is the number of pyramid levels
in our model. We empirically set � to 1e� 3.

In the proposed LapSRN, each level s has its own loss
function and the corresponding ground truth HR image ys.
This multi-loss structure resembles the deeply-supervised
networks for classification [43] and edge detection [44].
The deep multi-scale supervision guides the network to

reconstruct HR images in a coarse-to-fine fashion and
reduce spatial aliasing artifacts.

3.4 Multi-Scale Training

The multi-scales SR models (i.e., trained with samples from
multiple upsampling scales simultaneously) have been
shown more effective than single-scale models as SR tasks
have inter-scale correlations. For pre-upsampling based SR
methods (e.g., VDSR [11] and DRRN [13]), the input and out-
put of the network have the same spatial resolution, and the
outputs of different upsampling scales are generated from
the same layer of the network. In the proposed LapSRN,
samples of different upsampling scales are generated from
different layers and have different spatial resolutions. In this
work, we use 2�, 4�, and 8� SR samples to train a multi-
scale LapSRN model. We construct a 3-level LapSRN model
and minimize the combination of loss functions from three
different scales

Lðy; ŷ; uÞ ¼
X

S2f2;4;8g
LSðy; ŷ; uÞ: (3)

We note that the pre-upsampling based SR methods could
apply scale augmentation for arbitrary upsampling scales,
while in our LapSRN, the upsampling scales for training are
limited to 2n� SR where n is an integer.

3.5 Implementation and Training Details

In the proposed LapSRN, we use 64 filters in all convolu-
tional layers except the first layer applied on the input LR
image, the layers for predicting residuals, and the image
upsampling layer. The filter size of the convolutional and
transposed convolutional layers are 3� 3 and 4� 4, respec-
tively. We pad zeros around the boundaries before applying
convolution to keep the size of all feature maps the same as
the input of each level. We initialize the convolutional filters
using the method of He et al. [45] and use the leaky rectified
linear units (LReLUs) [46] with a negative slope of 0.2 as the
non-linear activation function.

Fig. 4. Local residual learning. We explore three different ways of local
skip connection in the feature embedding sub-network of the LapSRN
for training deeper models. Fig. 5. Structure of our recursive block. There are D convolutional layers

in a recursive block. The weights of convolutional layers are distinct
within the block but shared among all recursive blocks. We use the pre-
activation structure [41] without the batch normalization layer.
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We use 91 images from Yang et al. [2] and 200 images
from the training set of the Berkeley Segmentation Data-
set [47] as our training data. The training dataset of 291
images is commonly used in the state-of-the-art SR meth-
ods [5], [11], [13], [16]. We use a batch size of 64 and crop
the size of HR patches to 128� 128. An epoch has 1,000 iter-
ations of back-propagation. We augment the training data
in three ways: (1) Scaling: randomly downscale images
between ½0:5; 1:0�; (2) Rotation: randomly rotate image by
90�, 180�, or 270�; (3) Flipping: flip images horizontally with
a probability of 0.5. Following the training protocol of exist-
ing methods [9], [11], [13], we generate the LR training
patches using the bicubic downsampling. We use the Mat-
ConvNet toolbox [48] and train our model using the Sto-
chastic Gradient Descent (SGD) solver. In addition, we set
the momentum to 0.9 and the weight decay to 1e� 4. The
learning rate is initialized to 1e� 5 for all layers and
decreased by a factor of 2 for every 100 epochs.

4 DISCUSSIONS AND ANALYSIS

In this section, we first validate the contributions of different
components in the proposed network. We then discuss the
effect of local residual learning and parameter sharing in
our feature embedding sub-network. Finally, we analyze
the performance of multi-scale training strategy.

4.1 Model Design

We train a LapSRN model with 5 convolutional layers
(without parameters sharing and the recursive layers) at
each pyramid level to analyze the performance of pyramid
network structure, global residual learning, robust loss
functions, and multi-scale supervision.

4.1.1 Pyramid Structure

By removing the pyramid structure, our model falls back to
a network similar to the FSRCNN but with the global

residual learning. We train this network using 10 convolu-
tional layers in order to have the same depth as our
LapSRN. Fig. 6 shows the convergence curves in terms of
PSNR on the SET14 for 4� SR. The quantitative results
in Table 2 and Fig. 7 show that the pyramid structure leads
to considerable performance improvement (e.g., 0.7 dB on
SET5 and 0.4 dB on SET14), which validates the effectiveness
of our Laplacian pyramid network design.

4.1.2 Global Residual Learning

To demonstrate the effectiveness of global residual learning,
we remove the image reconstruction branch and directly
predict the HR images at each level. In Fig. 6, the perfor-
mance of the non-residual network (blue curve) converges
slowly and fluctuates significantly during training. Our full
LapSRN model (red curve), on the other hand, outperforms
the SRCNNwithin 10 epochs.

4.1.3 Loss Function

To validate the effectiveness of the Charbonnier loss func-
tion, we train the proposed network with conventional L2

loss function. We use a larger learning rate (1e� 4) since the
gradient magnitude of the L2 loss is smaller. As illustrated
in Fig. 6, the network optimized with the L2 loss (green
curve) requires more iterations to achieve comparable per-
formance with SRCNN. In Fig. 7, we show that the SR
images reconstruct by our full model contain relatively
clean and sharp details.

4.1.4 Multi-scale Supervision

As described in Section 3.3, we use the multiple loss func-
tions to supervise the intermediate output at each pyramid
level. We show the intermediate output images at each pyr-
amid scale in Fig. 8. The model without the multi-scale
supervision (i.e., only applying supervision at the finest
scale) cannot reduce the spatial aliasing artifacts well, while
our LapSRN progressively reconstructs clear and sharp
straight lines.

Fig. 6. Convergence analysis. We analyze the contributions of the pyra-
mid structures, loss functions, and global residual learning by replacing
each component with the one used in existing methods. Our full model
converges faster and achieves better performance.

TABLE 2
Ablation Study of LapSRN

GRL Pyramid Loss SET5 SET14

@ Charbonnier 30.58 27.61
@ Charbonnier 31.10 27.94

@ @ L2 30.93 27.86
@ @ Charbonnier 31.28 28.04

Our full model performs favorably against several variants of the LapSRN on
both SET5 and SET14 for 4� SR.

Fig. 7. Contribution of different components in LapSRN. (a) Ground truth
HR image (b) without pyramid structure (c) without global residual learn-
ing (d) without robust loss (e) full model (f) HR patch.

Fig. 8. Contribution of multi-scale supervision (M.S.). The multi-scale
supervision guides the network training to progressively reconstruct the
HR images and help reduce the spatial aliasing artifacts.

LAI ETAL.: FASTANDACCURATE IMAGE SUPER-RESOLUTION WITH DEEP LAPLACIAN PYRAMID NETWORKS 2605

Authorized licensed use limited to: University of Illinois. Downloaded on April 15,2020 at 22:18:15 UTC from IEEE Xplore.  Restrictions apply. 



4.2 Parameter Sharing

In this section, we reduce the network parameters in our
LapSRN by sharing weights across and within pyramid lev-
els and discuss the performance contribution.

4.2.1 Parameter Sharing Across Pyramid Levels

Our preliminary LapSRN 4� model [16] has 812k parame-
ters as each pyramid level has distinct convolutional and
transposed convolutional layers. By sharing the weights
across pyramid levels as shown in Fig. 3, we reduce the
number of parameters to 407k. Such model has 10 convolu-
tional layers, 1 recursive block, and does not use any local
residual learning strategies. We denote this model by
LapSRNNS-D10R1. We compare the above models on the
BSDS100 and URBAN100 datasets for 4� SR. Table 3 shows
that the LapSRNNS-D10R1 achieves comparable perfor-
mance with the LapSRN [16] while using only half of the
network parameters.

4.2.2 Parameter Sharing within Pyramid Levels

We further reduce the network parameters by decreasing
the number of convolutional layers (D) and increasing the
number of recursive blocks (R). We train another two mod-
els: LapSRNNS-D5R2 and LapSRNNS-D2R5, which have 222
and 112 k parameters, respectively. As shown in Table 3,
while the LapSRNNS-D5R2 and LapSRNNS-D2R5 have
fewer parameters, we observe the performance drop, partic-
ularly on the challenging URBAN100 dataset.

4.3 Training Deeper Models

In Section 4.2, we show that we can achieve comparable per-
formance to the preliminary LapSRN by using only half or
27 percent of parameters. Next, we train deeper models to

improve the performance without increasing the number of
the network parameters.

4.3.1 Local Residual Learning

We increase the number of recursive blocks in our feature
embedding sub-network to increase the depth of network
but keep the number of parameters the same. We test three
LapSRN models: D5R2, D5R5, and D5R8, which have 5 dis-
tinct convolutional layers with 2, 5 and 8 recursive blocks,
respectively. We train the models with three different local
residual learning methods as described in Section 3.2.3. We
plot the convergence curves of the LapSRN-D5R5 in Fig. 9
and present the quantitative evaluation in Table 4. Overall,
the shared-source local skip connection method (LapSRNSS)
performs favorably against other alternatives, particularly
for deepermodels (i.e., more recursive blocks).

4.3.2 Study of D and R

Our feature embedding sub-network consists of R recursive
blocks, and each recursive block has D distinct convolutional
layers which are shared among all the recursive blocks. Here
we extensively evaluate the contributions of R and D to the
reconstruction accuracy. We use D = 2; 4; 5; 10 to construct
models with different network depth. We use the shared-
source local skip connection for all the evaluated models.
We show the quantitative evaluation in Table 5 and visualize
the performance over the network depth in Fig. 10. While
the D2R5, D5R2, and D10R1 models perform comparably,

TABLE 3
Parameter Sharing in LapSRN

Model #Parameters BSDS100 URBAN100

LapSRN [16] 812k 27.32 25.21
LapSRNNS-D10R1 407k 27.32 25.20
LapSRNNS-D5R2 222k 27.30 25.16
LapSRNNS-D2R5 112k 27.26 25.10

We reduce the number of network parameters by sharing the weights between
pyramid levels and applying recursive layers in the feature embedding sub-
network.

Fig. 9. Comparisons of local residual learning. We train our LapSRN-
D5R5 model with three different local residual learning methods as
described in Section 3.2.3 and evaluate on the SET5 for 4� SR.

TABLE 4
Quantitative Evaluation of Local Residual Learning

Model Depth LapSRNNS LapSRNDS LapSRNSS

D5R2 24 25.16 25.22 25.23
D5R5 54 25.18 25.33 25.34
D5R8 84 25.26 25.33 25.38

We compare three different local residual learning methods on the URBAN100
dataset for 4� SR. Overall, the shared local skip connection method
(LapSRNSS) achieves superior performance for deeper models.

TABLE 5
Quantitative Evaluation of the Number of Recursive Blocks R
and the Number of Convolutional LayersD in Our Feature

Embedding Sub-Network

Model #Parameters Depth BSDS100 URBAN100

D2R5 112 k 24 27.33 25.24
D2R12 112 k 52 27.35 25.31
D2R20 112 k 84 27.37 25.31

D4R3 185 k 28 27.33 25.25
D4R6 185 k 52 27.37 25.34
D4R10 185 k 84 27.37 25.35

D5R2 222 k 24 27.32 25.23
D5R5 222 k 54 27.38 25.34
D5R8 222 k 84 27.39 25.38

D10R1 407 k 24 27.33 25.23
D10R2 407 k 44 27.36 25.27
D10R4 407 k 84 27.38 25.36

We build LapSRN with different network depth by varying the values of D and
R and evaluate on the BSDS100 and URBAN100 datasets for 4� SR.
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the D5R8 method achieves the best reconstruction accuracy
when the network depth ismore than 80.

4.4 Multi-Scale Training

We train our LapSRN using the multi-scale training strategy
(Section 3.4). As our pyramid network design only accounts
for training with 2n� samples, we train our LapSRNSS-D5R8
model with the following scale combinations: f2�g, f4�g,

f8�g, f2�; 4�g, f2�; 8�g, f4�; 8�g and f2�; 4�; 8�g. Dur-
ing training, we equally split a batch of samples for every
upsampling scale. Note that all these models have the same
numbers of parameters due to parameter sharing. We evalu-
ate the above models for 2�, 4� and 8� SR by constructing
LapSRN with the corresponding pyramid levels. We also
evaluate 3� SR using our 2-level LapSRN and resizing the
network output to the desired spatial resolution. From our

TABLE 6
Quantitative Evaluation of State-of-the-Art SR Algorithms

Algorithm Scale
SET5 SET14 BSDS100 URBAN100 MANGA109

PSNR / SSIM / IFC PSNR / SSIM / IFC PSNR / SSIM / IFC PSNR / SSIM / IFC PSNR / SSIM / IFC

Bicubic

2�

33.69 / 0.931 / 6.166 30.25 / 0.870 / 6.126 29.57 / 0.844 / 5.695 26.89 / 0.841 / 6.319 30.86 / 0.936 / 6.214
A+ [3] 36.60 / 0.955 / 8.715 32.32 / 0.906 / 8.200 31.24 / 0.887 / 7.464 29.25 / 0.895 / 8.440 35.37 / 0.968 / 8.906
RFL [5] 36.59 / 0.954 / 8.741 32.29 / 0.905 / 8.224 31.18 / 0.885 / 7.473 29.14 / 0.891 / 8.439 35.12 / 0.966 / 8.921
SelfExSR [22] 36.60 / 0.955 / 8.404 32.24 / 0.904 / 8.018 31.20 / 0.887 / 7.239 29.55 / 0.898 / 8.414 35.82 / 0.969 / 8.721
SRCNN [9] 36.72 / 0.955 / 8.166 32.51 / 0.908 / 7.867 31.38 / 0.889 / 7.242 29.53 / 0.896 / 8.092 35.76 / 0.968 / 8.471
FSRCNN [15] 37.05 / 0.956 / 8.199 32.66 / 0.909 / 7.841 31.53 / 0.892 / 7.180 29.88 / 0.902 / 8.131 36.67 / 0.971 / 8.587
SCN [10] 36.58 / 0.954 / 7.358 32.35 / 0.905 / 7.085 31.26 / 0.885 / 6.500 29.52 / 0.897 / 7.324 35.51 / 0.967 / 7.601
VDSR [11] 37.53 / 0.959 / 8.190 33.05 / 0.913 / 7.878 31.90 / 0.896 / 7.169 30.77 / 0.914 / 8.270 37.22 / 0.975 / 9.120
DRCN [12] 37.63 / 0.959 / 8.326 33.06 / 0.912 / 8.025 31.85 / 0.895 / 7.220 30.76 / 0.914 / 8.527 37.63 / 0.974 / 9.541
LapSRN [16] 37.52 / 0.959 / 9.010 33.08 / 0.913 / 8.501 31.80 / 0.895 / 7.715 30.41 / 0.910 / 8.907 37.27 / 0.974 / 9.481
DRRN [13] 37.74 / 0.959 / 8.671 33.23 / 0.914 / 8.320 32.05 / 0.897 / 7.613 31.23 / 0.919 / 8.917 37.92 / 0.976 / 9.268
MS-LapSRN-D5R2 (ours) 37.62 / 0.960 / 9.038 33.13 / 0.913 / 8.539 31.93 / 0.897 / 7.776 30.82 / 0.915 / 9.081 37.38 / 0.975 / 9.434
MS-LapSRN-D5R5 (ours) 37.72 / 0.960 / 9.265 33.24 / 0.914 / 8.726 32.00 / 0.898 / 7.906 31.01 / 0.917 / 9.334 37.71 / 0.975 / 9.710
MS-LapSRN-D5R8 (ours) 37.78 / 0.960 / 9.305 33.28 / 0.915 / 8.748 32.05 / 0.898 / 7.927 31.15 / 0.919 / 9.406 37.78 / 0.976 / 9.765

Bicubic

3�

30.41 / 0.869 / 3.596 27.55 / 0.775 / 3.491 27.22 / 0.741 / 3.168 24.47 / 0.737 / 3.661 26.99 / 0.859 / 3.521
A+ [3] 32.62 / 0.909 / 4.979 29.15 / 0.820 / 4.545 28.31 / 0.785 / 4.028 26.05 / 0.799 / 4.883 29.93 / 0.912 / 4.880
RFL [5] 32.47 / 0.906 / 4.956 29.07 / 0.818 / 4.533 28.23 / 0.782 / 4.023 25.88 / 0.792 / 4.781 29.61 / 0.905 / 4.758
SelfExSR [22] 32.66 / 0.910 / 4.911 29.18 / 0.821 / 4.505 28.30 / 0.786 / 3.923 26.45 / 0.810 / 4.988 27.57 / 0.821 / 2.193
SRCNN [9] 32.78 / 0.909 / 4.682 29.32 / 0.823 / 4.372 28.42 / 0.788 / 3.879 26.25 / 0.801 / 4.630 30.59 / 0.914 / 4.698
FSRCNN [15] 33.18 / 0.914 / 4.970 29.37 / 0.824 / 4.569 28.53 / 0.791 / 4.061 26.43 / 0.808 / 4.878 31.10 / 0.921 / 4.912
SCN [10] 32.62 / 0.908 / 4.321 29.16 / 0.818 / 4.006 28.33 / 0.783 / 3.553 26.21 / 0.801 / 4.253 30.22 / 0.914 / 4.302
VDSR [11] 33.67 / 0.921 / 5.088 29.78 / 0.832 / 4.606 28.83 / 0.799 / 4.043 27.14 / 0.829 / 5.045 32.01 / 0.934 / 5.389
DRCN [12] 33.83 / 0.922 / 5.202 29.77 / 0.832 / 4.686 28.80 / 0.797 / 4.070 27.15 / 0.828 / 5.187 32.31 / 0.936 / 5.564
LapSRN [16] 33.82 / 0.922 / 5.194 29.87 / 0.832 / 4.662 28.82 / 0.798 / 4.057 27.07 / 0.828 / 5.168 32.21 / 0.935 / 5.406
DRRN [13] 34.03 / 0.924 / 5.397 29.96 / 0.835 / 4.878 28.95 / 0.800 / 4.269 27.53 / 0.764 / 5.456 32.74 / 0.939 / 5.659
MS-LapSRN-D5R2 (ours) 33.88 / 0.923 / 5.165 29.89 / 0.834 / 4.637 28.87 / 0.800 / 4.040 27.23 / 0.831 / 5.142 32.28 / 0.936 / 5.384
MS-LapSRN-D5R5 (ours) 34.01 / 0.924 / 5.307 29.96 / 0.836 / 4.758 28.92 / 0.801 / 4.127 27.39 / 0.835 / 5.333 32.60 / 0.938 / 5.559
MS-LapSRN-D5R8 (ours) 34.06 / 0.924 / 5.390 29.97 / 0.836 / 4.806 28.93 / 0.802 / 4.154 27.47 / 0.837 / 5.409 32.68 / 0.939 / 5.621

Bicubic

4�

28.43 / 0.811 / 2.337 26.01 / 0.704 / 2.246 25.97 / 0.670 / 1.993 23.15 / 0.660 / 2.386 24.93 / 0.790 / 2.289
A+ [3] 30.32 / 0.860 / 3.260 27.34 / 0.751 / 2.961 26.83 / 0.711 / 2.565 24.34 / 0.721 / 3.218 27.03 / 0.851 / 3.177
RFL [5] 30.17 / 0.855 / 3.205 27.24 / 0.747 / 2.924 26.76 / 0.708 / 2.538 24.20 / 0.712 / 3.101 26.80 / 0.841 / 3.055
SelfExSR [22] 30.34 / 0.862 / 3.249 27.41 / 0.753 / 2.952 26.84 / 0.713 / 2.512 24.83 / 0.740 / 3.381 27.83 / 0.866 / 3.358
SRCNN [9] 30.50 / 0.863 / 2.997 27.52 / 0.753 / 2.766 26.91 / 0.712 / 2.412 24.53 / 0.725 / 2.992 27.66 / 0.859 / 3.045
FSRCNN [15] 30.72 / 0.866 / 2.994 27.61 / 0.755 / 2.722 26.98 / 0.715 / 2.370 24.62 / 0.728 / 2.916 27.90 / 0.861 / 2.950
SCN [10] 30.41 / 0.863 / 2.911 27.39 / 0.751 / 2.651 26.88 / 0.711 / 2.309 24.52 / 0.726 / 2.860 27.39 / 0.857 / 2.889
VDSR [11] 31.35 / 0.883 / 3.496 28.02 / 0.768 / 3.071 27.29 / 0.726 / 2.627 25.18 / 0.754 / 3.405 28.83 / 0.887 / 3.664
DRCN [12] 31.54 / 0.884 / 3.502 28.03 / 0.768 / 3.066 27.24 / 0.725 / 2.587 25.14 / 0.752 / 3.412 28.98 / 0.887 / 3.674
LapSRN [16] 31.54 / 0.885 / 3.559 28.19 / 0.772 / 3.147 27.32 / 0.727 / 2.677 25.21 / 0.756 / 3.530 29.09 / 0.890 / 3.729
DRRN [13] 31.68 / 0.888 / 3.703 28.21 / 0.772 / 3.252 27.38 / 0.728 / 2.760 25.44 / 0.764 / 3.700 29.46 / 0.896 / 3.878
MS-LapSRN-D5R2 (ours) 31.62 / 0.887 / 3.585 28.16 / 0.772 / 3.151 27.36 / 0.729 / 2.684 25.32 / 0.760 / 3.537 29.18 / 0.892 / 3.750
MS-LapSRN-D5R5 (ours) 31.74 / 0.888 / 3.705 28.25 / 0.773 / 3.238 27.42 / 0.731 / 2.737 25.45 / 0.765 / 3.674 29.48 / 0.896 / 3.888
MS-LapSRN-D5R8 (ours) 31.74 / 0.889 / 3.749 28.26 / 0.774 / 3.261 27.43 / 0.731 / 2.755 25.51 / 0.768 / 3.727 29.54 / 0.897 / 3.928

Bicubic

8�

24.40 / 0.658 / 0.836 23.10 / 0.566 / 0.784 23.67 / 0.548 / 0.646 20.74 / 0.516 / 0.858 21.47 / 0.650 / 0.810
A+ [3] 25.53 / 0.693 / 1.077 23.89 / 0.595 / 0.983 24.21 / 0.569 / 0.797 21.37 / 0.546 / 1.092 22.39 / 0.681 / 1.056
RFL [5] 25.38 / 0.679 / 0.991 23.79 / 0.587 / 0.916 24.13 / 0.563 / 0.749 21.27 / 0.536 / 0.992 22.28 / 0.669 / 0.968
SelfExSR [22] 25.49 / 0.703 / 1.121 23.92 / 0.601 / 1.005 24.19 / 0.568 / 0.773 21.81 / 0.577 / 1.283 22.99 / 0.719 / 1.244
SRCNN [9] 25.33 / 0.690 / 0.938 23.76 / 0.591 / 0.865 24.13 / 0.566 / 0.705 21.29 / 0.544 / 0.947 22.46 / 0.695 / 1.013
FSRCNN [15] 25.60 / 0.697 / 1.016 24.00 / 0.599 / 0.942 24.31 / 0.572 / 0.767 21.45 / 0.550 / 0.995 22.72 / 0.692 / 1.009
SCN [10] 25.59 / 0.706 / 1.063 24.02 / 0.603 / 0.967 24.30 / 0.573 / 0.777 21.52 / 0.560 / 1.074 22.68 / 0.701 / 1.073
VDSR [11] 25.93 / 0.724 / 1.199 24.26 / 0.614 / 1.067 24.49 / 0.583 / 0.859 21.70 / 0.571 / 1.199 23.16 / 0.725 / 1.263
DRCN [12] 25.93 / 0.723 / 1.192 24.25 / 0.614 / 1.057 24.49 / 0.582 / 0.854 21.71 / 0.571 / 1.197 23.20 / 0.724 / 1.257
LapSRN [16] 26.15 / 0.738 / 1.302 24.35 / 0.620 / 1.133 24.54 / 0.586 / 0.893 21.81 / 0.581 / 1.288 23.39 / 0.735 / 1.352
DRRN [13] 26.18 / 0.738 / 1.307 24.42 / 0.622 / 1.127 24.59 / 0.587 / 0.891 21.88 / 0.583 / 1.299 23.60 / 0.742 / 1.406
MS-LapSRN-D5R2 (ours) 26.20 / 0.747 / 1.366 24.45 / 0.626 / 1.170 24.61 / 0.590 / 0.920 21.95 / 0.592 / 1.364 23.70 / 0.751 / 1.470
MS-LapSRN-D5R5 (ours) 26.34 / 0.752 / 1.414 24.57 / 0.629 / 1.200 24.65 / 0.591 / 0.938 22.06 / 0.597 / 1.426 23.85 / 0.756 / 1.538
MS-LapSRN-D5R8 (ours) 26.34 / 0.753 / 1.435 24.57 / 0.629 / 1.209 24.65 / 0.592 / 0.943 22.06 / 0.598 / 1.446 23.90 / 0.759 / 1.564

We report the average PSNR/SSIM/IFC for 2�, 3�, 4� and 8� SR. Red and blue indicate the best and the second best performance, respectively. Both
LapSRN [16] and the proposed MS-LapSRN do not use any 3� SR images for training. To generate the results of 3� SR, we first perform 4� SR on input LR
images and then downsample the output to the target resolution.
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experimental results, the model trained with 2�; 4� and 8�
samples has the capacity to handle multiple upsampling
scales and generalizes well to the unseen 3� SR examples.
Furthermore, the multi-scale models perform favorably
against the single-scale models, particularly on the URBAN100
dataset. Due to the space limit, we present complete quanti-
tative and visual comparisons in the supplementary mate-
rial, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPAMI.2018.2865304.

5 EXPERIMENT RESULTS

In this section, we compare the proposed LapSRN with sev-
eral state-of-the-art SR methods on benchmark datasets. We
present the quantitative evaluation, qualitative comparison,

runtime, and parameters comparisons.We then evaluate our
method on real-world photos, compare with the LAP-
GAN [34], and incorporate the adversarial training. In addi-
tion, we conduct a human subject study using the pairwise
comparison and provide the analysis in the supplementary
material, available online. Finally, we discuss the limitation
of the proposedmethod.We provide our source code and SR
results generated by all the evaluatedmethods on our project
website at http://vllab.ucmerced.edu/wlai24/LapSRN.

5.1 Comparisons with State-of-the-arts

We compare the proposedmethodwith 10 state-of-the-art SR
algorithms, including dictionary-based methods (A+ [3] and
RFL [5]), self-similarity based method (SelfExSR [22]), and
CNN-based methods (SRCNN [9], FSRCNN [15], SCN [10],
VDSR [11], DRCN [12], DRRN [13] and our preliminary
approach [16]). We carry out extensive experiments on five
public benchmark datasets: SET5 [24], SET14 [27], BSDS100
[47], URBAN100 [22] and MANGA109 [49]. The SET5, SET14 and
BSDS100 datasets consist of natural scenes; the URBAN100 set
contains challenging urban scenes images with details in
different frequency bands; and the MANGA109 is a dataset of
Japanesemanga.

We evaluate the SR results with three widely used image
quality metrics: PSNR, SSIM [50], and IFC [51] and compare
performance on 2�, 3�, 4� and 8� SR. We re-train existing
methods for 8� SR using the source code (A+ [3], RFL [5],
SRCNN [9], FSRCNN [15], VDSR [11], and DRRN [13]) or
our own implementation (DRCN). Both the SelfExSR and
SCN methods can naturally handle different scale factors
using progressive reconstruction. We use 2�; 4� and 8� SR

Fig. 10. PSNR versus network depth. We test the proposed model with
differentD and R on the URBAN100 dataset for 4� SR.

Fig. 11. Visual comparison for 4� SR on the BSDS100, URBAN100 and MANGA109 datasets.
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samples for training VDSR [11] and DRRN [13] while use
only 8� SR samples for other algorithms to follow the train-
ing strategies of individual methods.

We compare three variations of the proposed method:
(1) LapSRNSS-D5R2, which has similar depth as the VDSR
[11], DRCN [12] and LapSRN [16], (2) LapSRNSS-D5R5,
which has the same depth as in the DRRN [13], and (3)
LapSRNSS-D5R8, which has 84 layers for 4� SR.We train the
above three models using the multi-scale training strategy
with 2�; 4� and 8� SR samples and denote our multi-scale
models asMS-LapSRN.

We show the quantitative results in Table 6. Our LapSRN
performs favorably against existing methods especially on
4� and 8� SR. In particular, our algorithm achieves higher
IFC values, which has been shown to be correlated well
with human perception of image super-resolution [52]. We
note that our method does not use any 3� SR samples for
training but still generates comparable results as the DRRN.

We show visual comparisons on the BSDS100, URBAN100
and MANGA109 datasets for 4� SR in Fig. 11 and 8� SR
in Fig. 12. Our method accurately reconstructs parallel
straight lines, grid patterns, and texts. We observe that the
results generated from pre-upsampling based methods [9],
[11], [13] still contain noticeable artifacts caused by spatial
aliasing. In contrast, our approach effectively suppresses
such artifacts through progressive reconstruction and the
robust loss function. For 8� SR, it is challenging to predict
HR images from bicubic-upsampled input [3], [9], [11] or
using one-step upsampling [15]. The state-of-the-art meth-
ods do not super-resolve the fine structures well. In con-
trast, our MS-LapSRN reconstructs high-quality HR images
at a relatively fast speed.

We note that the direct reconstruction based methods,
e.g., VDSR [11], can also upsample LR images progressively
by iteratively applying the 2� SR model. We present
detailed comparisons and analysis of such a progressive
reconstruction strategy in the supplementary material,
available online.

5.2 Execution Time

We use the source codes of state-of-the-art methods to evalu-
ate the runtime on the same machine with 3.4 GHz Intel i7
CPU (32G RAM) and NVIDIA Titan Xp GPU (12GMemory).
Since the testing code of the SRCNN [9] and FSRCNN [15] is
based on CPU implementation, we rebuild these models
in MatConvNet to measure the runtime on GPU. Fig. 13
shows the trade-offs between the runtime and performance

Fig. 12. Visual comparison for 8� SR on the BSDS100, URBAN100 and MANGA109 datasets.

Fig. 13. Runtime versus performance. The results are evaluated on the
URBAN100 dataset for 4� SR. The proposed MS-LapSRN strides a bal-
ance between reconstruction accuracy and execution time.
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(in terms of PSNR) on the URBAN100 dataset for 4� SR. The
speed of our MS-LapSRN-D5R2 is faster than all the existing
methods except the FSRCNN [15]. Our MS-LapSRN-D5R8
model outperforms the state-of-the-art DRRN [13] method
and is an order of magnitude faster.

Next, we focus on comparisons between fast CNN-based
methods: SRCNN [9], FSRCNN [15], VDSR [11], and
LapSRN [16]. We take an LR image with a spatial resolution
of 128� 128, and perform 2�, 4� and 8� SR, respectively.
We evaluate each method for 10 times and report the aver-
aged runtime in Fig. 14. The FSRCNN is the fastest algo-
rithm since it applies convolution on LR images and has
less number of convolutional layers and filters. The runtime
of the SRCNN and VDSR depends on the size of output
images, while the speed of the FSRCNN and LapSRN is
mainly determined by the size of input images. As the pro-
posed LapSRN progressively upscales images and applies
more convolutional layers for larger upsampling scales (i.e.,
require more pyramid levels), the time complexity slightly
increases with respect to the desired upsampling scales.
However, the speed of our LapSRN still performs favorably
against the SRCNN, VDSR, and other existing methods.

5.3 Model Parameters

We show the reconstruction performance versus the number
of network parameters of CNN-based SR methods in Fig. 15.
By sharing parameters and using recursive layers, our MS-
LapSRN has parameters about 73 percent less than the
LapSRN [16], 66 percent less than the VDSR [11], 87 percent
less than the DRCN [12], and 25 percent less than the
DRRN [13]. While our model has a smaller footprint, we
achieve the state-of-the-art performance among these CNN-
based methods. Comparing to the SRCNN [9] and FSRCNN
[15], our MS-LapSRN-D5R8 has about 0.9 to 1 dB improve-
ment on the challengingURBAN100 dataset for 4� SR.

5.4 Super-Resolving Real-world Photos

We demonstrate an application of super-resolving historical
photographs with JPEG compression artifacts. In these
cases, neither the ground-truth images nor the downsam-
pling kernels are available. As shown in Fig. 16, our method
can reconstruct sharper and more accurate images than the
state-of-the-art approaches.

5.5 Comparison to LAPGAN

As described in Section 2.4, the target applications of the
LAPGAN [34] and LapSRN are different. Therefore, we
focus on comparing the network architectures for image
super-resolution. We train the LAPGAN and LapSRN for
4� and 8� SR with the same training data and settings. We
use 5 convolutional layers at each level and optimize both
networks with the Charbonnier loss function. We note that
in [34] the sub-networks are independently trained. For fair
comparisons, we jointly train the entire network for both
LAPGAN and LapSRN. We present quantitative compari-
sons and runtime on the SET14 and BSDS100 datasets
in Table 7. Under the same training setting, our method
achieves more accurate reconstruction and faster execution
speed than that of the LAPGAN.

5.6 Adversarial Training

We demonstrate that our LapSRN can be extended to incor-
porate the adversarial training [35]. We treat our LapSRN as

Fig. 14. Trade-off between runtime and upsampling scales. We fix the
size of input images to 128� 128 and perform 2�, 4� and 8� SR with
the SRCNN [9], FSRCNN [15], VDSR [11] and three variations of MS-
LapSRN, respectively.

Fig. 15. Number of network parameters versus performance. The results
are evaluated on the URBAN100 dataset for 4� SR. The proposed MS-
LapSRN strides a balance between reconstruction accuracy and execu-
tion time.

Fig. 16. Comparison of real-world photos for 4� SR. The ground truth
HR images and the blur kernels are not available in these cases. On the
top image, our method super-resolves the letter “W” accurately while
VDSR incorrectly connects the stroke with the letter “O”. On the bottom
image, our method reconstructs the rails without the artifacts.
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a generative network and build a discriminative network
using the discriminator of the DCGAN [53]. The discrimina-
tive network consists of four convolutional layers with a
stride of 2, two fully connected layers and one sigmoid layer
to generate a scalar probability for distinguishing between
real images and generated images from the generative net-
work. We find that it is difficult to obtain accurate SR images
by solely minimizing the cross-entropy loss. Therefore, we
include the pixel-wise reconstruction loss (i.e., Charbonnier
loss) to enforce the similarity between the input LR images
and the corresponding ground truthHR images.

We show a visual result in Fig. 17 for 4� SR. The network
with the adversarial training generates more plausible
details on regions of irregular structures, e.g., grass, and
feathers. However, the predicted results may not be faith-
fully reconstructed with respect to the ground truth high-
resolution images. As a result, the accuracy is not as good as
the model trained with the Charbonnier loss.

5.7 Limitations

While our model is capable of generating clean and
sharp HR images for large upsampling scales, e.g., 8�, it
does not “hallucinate” fine details. As shown in Fig. 18,
the top of the building is significantly blurred in the 8�
downscaled LR image. All SR algorithms fail to recover
the fine structure except the SelfExSR [22] method which
explicitly detects the 3D scene geometry and uses self-
similarity to hallucinate the regular structure. This is a
common limitation shared by parametric SR methods [3],
[9], [11], [12], [13], [15].

6 CONCLUSIONS

In this work, we propose a deep convolutional networkwithin
a Laplacian pyramid framework for fast and accurate image

super-resolution. Our model progressively predicts high-fre-
quency residuals in a coarse-to-fine manner with deeply
supervision from the robust Charbonnier loss functions. By
sharing parameters across as well as within pyramid levels, we
use 73 percent fewer parameters than our preliminary
method [16] and achieve improved performance.We incorpo-
rate local skip connections in our network for training deeper
models. Furthermore, we adopt the multi-scale training strat-
egy to train a single model for handling multiple upsampling
scales. We present a comprehensive evaluation on various
design choices and believe that the thorough analysis benefits
our community. We have shown the promise of the proposed
LapSRN in the context of image super-resolution. Yet, our net-
work design is general and can potentially be applied to other
image transformation and synthesis problems.
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