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ABSTRACT 
Large margin classifiers have demonstrated their advantages 
in many visual learning tasks, and have attracted much at- 
tention in vision and image processing communities. In this 
paper we apply and compare two large margin classifiers, 
Support Vector Machines and Sparse Network of Winnows, 
to detect faces in still gray scale images. Furthermore, we 
study the theoretical frameworks of these classifiers and an- 
alyze the empirical results. Experiments on a test set of 
24,045 images exhibit good generalization and robustness, 
and conform to theoretical analysis. 

1. INTRODUCTION 
Machine learning and statistical methods have become pop- 
ular as tools for addressing a variety of visual learning prob- 
lems, ranging from object recognition, pedestrian detection, 
to face detection. There are, however, very few attempts to 
address theoretical issues and, in particular, study the suit- 
ability of different learning algorithms to different vision 
problems. The goal of this paper is to present a theoretical 
account of a learning approach and its suitability to visual 
recognition. We use tools from computational learning the- 
ory [ 13, 141 in order to study the properties of two success- 
ful learning approaches. The algorithms are evaluated on 
a visual learning problem - face detection - and the theo- 
retical generalization properties, along with our analysis of 
the data are used to explain the prediction performance and 
discuss the suitability of the approaches to visual learning 
problems. The learning approaches we study are Support 
Vector Machines (SVMs) [ 141 and the SNoW learning a- 
chitecture [ ll]. Both have been studied extensively recently 
and have shown good empirical performance on several vi- 
sual learning problems. We study both generalization and 
computational efficiency issues and draw conclusions that 
are relevant to further use of these learning methods in vi- 
sual recognition tasks. 

Several theoretical results have suggested that these two 
approaches have incomparable generalization performance 
that depend on well defined properties of the domain and the 
target concept. We study these properties and conclude that 
the face detection data suggests that the SNoW based ap- 
proach should have advantages in terms of generalization. 
In addition to generalization, the two learning approaches 
can also be measured in terms of efficiency. This is im- 
portant especially when one wants to “blow” up the feature 
space in order to increase the expressivity of the features 
and allow a linear classifier to discriminate faces from non- 
faces, or to discriminate between objects. In this case, we 

argue that the SVM approach is advantageous. We argue 
that in order to fully exploit the nice generalization proper- 
ties of SNoW, images should be represented using features 
that give rise to a fairly small number of active features in 
each image. That is an attempt should be made to use rep- 
resentations that are not pixel based, but rather based on 
sparser phenomenon in the image, such as edges, conjunc- 
tions of those or other types of features. We show some 
preliminary results that support this and suggest several di- 
rections for future work. 

2. LARGE MARGIN CLASSIFIERS, 
Most efficient learning methods known today, including many 
probabilistic classifiers, make use of a linear decision sur- 
face over the feature space. Among these methods we fo- 
cus here on SVMs and SNoW which have demonstrated 
good empirical results in vision and natural language pro- 
cessing problems [9, 151. SNoW and SVM, are representa- 
tives of two different classes of linear classifiers/regressors. 
SNoW is based on Winnow, a muItipIicative update rule al- 
gorithm [8, 71; SVMs are based on perceptron [IO],  an ad- 
ditive update rule. Although SVMs can also be developed 
independently of the relation to perceptron, for the sake of 
our theoretical analysis viewing them as a large margin per- 
ceptron [4,3] is important. Moreover, recent results [5] have 
shown that the generalization properties of SVMs are dom- 
inated by those of large margin perceptron, and therefore it 
is sufficient here to study those. 

2.1. The SNoW Learning Architecture 
The SNoW (Sparse Network of Winnows) learning archi- 
tecture is a sparse network of linear units over a common 
pre-defined or incrementally learned feature space. Nodes 
in the input layer of the network represent relations over the 
input instance and are being used as the input features. Each 
linear unit is called a target node and represents a concept 
of interest over the input. In the application described here, 
target nodes could represent an object in terms features ex- 
tracted from the 2D image input, a face, or a non-face. In 
the current presentation we assume that all features are bi- 
nary (in (0, l}), although SNOW can take real numbers as 
input. An input instance is mapped into a set of features 
which are active (with feature value 1) in it; this variable 
size representation is presented to the input layer of SNoW 
and propagates to the target nodes. Target nodes are linked 
via weighted edges to (some of) the input features. 

Let At = {il, . . . , i,,,} be the set of features that are ac- 
tive in an example and are linked to the target node t .  Then 
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the linear unit corresponding to t is active iff CiEAt "24 > 
O t ,  where wi is the weight on the edge connecting the ith 
feature to the target node t ,  and 8t is the threshold for the 
target node t .  Each SNoW unit may include a collection 
of subnetworks, one for each of the target relations but all 
using the same feature space. A given example is treated au- 
tonomously by each target unit; an example labeled t may 
be treated as a positive example by the t unit and as a neg- 
ative example by the rest of the target nodes in its subnet- 
work. At decision time, a prediction for each subnetwork is 
derived using a winner-take-all policy. In this way, SNoW 
may be viewed as a multi-class predictor. In the application 
described here, we may have one unit with target subnet- 
works for all the target objects or we may define different 
units, each with two competing target objects. 

SNOW'S learning policy is on-line and mistake-driven; 
several update rules can be used within SNoW, but here we 
concentrate on the one which is a variant of Littlestone's 
Winnow multiplicative update rule [8]. The Winnow up- 
date rule has, in addition to the threshold 8t at the target t ,  
two update parameters: a promotion parameter n: > 1 and 
a demotion parameter 0 < ,Ll < 1. These are being used 
to update the current rejpresentation of the target t (the set 
of weights w,") only whl-n a mistake in prediction is made. 
Let At = { i l ,  . . . , iTTI] ,  be the set of active features that 
are linked to the target node t .  If the algorithm predicts 
0 (that is, CiEAt wt :; 0,) and the received label is 1, 
the active weights in the current example are promoted in 
a multiplicative fashion: Vi E At, t a . w:. If the al- 
gorithm predicts l (EictAt wi > 8,) and the received label 
is 0, the active weights in the current example are demoted: 
Vi E At, wi t ,B . w:. All other weights are unchanged. 
As will be clear below, the key feature of the Winnow up- 
date rule is that the number of examples required to learn a 
linear function grows linearly with the number n,, of rele- 
vant features and only 'logarithmically with the total num- 
ber of features. This property seems crucial in domains in 
which the number of p3tential features is vast, but a rela- 
tively small number of them is relevant. Moreover, in the 
sparse model, the number of examples required before con- 
verging to a linear separator that separates the data (pro- 
vided it exists) scales with O(n ,  log na). Winnow is known 
to learn efficiently any linear function (in general cases effi- 
ciency scales with the margin) and to be robust in the pres- 
ence of various kinds ol' noise and in cases where no linear 
function can make perfect classifications, while still main- 
taining its abovementioned dependence on the number of 
total and relevant attributes [7]. 

2.2. Large Margin Perceptron and SVMs 
In this section we briefl.y present perceptron and SVM; the 
presentation concentratas on the linearly separable case, al- 
though it can be extendad to the more general case. 

The perceptron also maintains a weight vector w and, 

given an input vector xi, predicts that xi is a positive ex- 
ample iff w . xi > 8. Like Winnow, the perceptron's up- 
date rule is also an on-line and mistake driven, and the only 
difference between them is that the weight update rule of 
perceptron is additive. That is, if the linear function mis- 
classified an input training vector xi with true label yi (here 
we assume for notational convenience that y i  E {-1, +1}) 
then we update each component i of the weight vector 'U! by: 
w j  c wj  + qxiyi, where q is the learning rate parameter. 

Like Winnow, the Perceptron is also known to learn ev- 
ery linear function, and in the general case, the number of 
mistakes required before it converge to a hyperplane that 
separates the data depends also on the margin in the data, 
that is, on maxzZ . yl, where yi E {-1, +1} is the true 
label of the example zz , 

Linear separability is a rather strict condition. One way 
to make methods more powerful is to add dimensions of 
features to the input space. Usually, if we add enough new 
features, we can make the data linearly separable; if the sep- 
aration is sufficiently good, then the expected generalization 
error will be small, proved that we do not increase the com- 
plexity of instances too much by this transformation. How- 
ever, from a computational point of view this could be pro- 
hibitively hard. This problem can be sometimes solved by 
the kernel trick. Aizerman et. a1 have suggested this meth- 
ods and showed that it can be combined with perceptron [ 11. 
Boser et. a1 showed that the same holds for SVMs [2]. As 
will be clear later, the kernel trick serves to aid efficiency, in 
case there is a need to work in a higher dimensional space; 
however, the generalization properties, in general, depend 

the linear classifier is determined. 
SVMs, or batch large margin classifiers can be derived 

directly from a large margin version of perceptron (which 
we do not describe here; see e.g., [16]) using a standard 
way to convert the on-line algorithm to a batch algorithm. 
This is done in order to convert the mistake bounds that 
are typically derived for on-line algorithms to generaliza- 
tion bounds that are of more interest (e.g. [4]). However, for 
completeness, we briefly explain the original, direct deriva- 
tion of SVMs. SVMs can be derived directly from the fol- 
lowing inductive inference. Given a labeled set of train- 
ing samples, an SVM finds the optimal hyperplane that cor- 
rectly separates the data points while maximizing the dis- 
tance of either class from the hyperplane (maximizing the 
margin). Vapnik shows that maximizing the margin is equiv- 
alent to minimizing the VC dimension and thus yield best 
generalization results [ 141. Computing the best hyperplane 
is posed as a constrained optimization problem and solved 
using quadratic programming techniques. The optimal hy- 
perplane is defined by 

. .  

on the effective, high dimensional, feature space in which 

1 
2 

min -w2, subject to yi(wTzi  + b)  2 1 V i  = 1 , .  . . , M 
where b is a bias term computed from the margin. 
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Finally we note that although large margin perceptron 
and SVMs are very related, it turns out that the general- 
ization bounds of the large margin perceptron are slightly 
better than those of SVMs and therefore we will use those 
in our analysis. Although these are worst case bounds, they 
have already be shown to be quite representative in some 
experiments using synthetic data [7], so we can use them to 
guide our understanding. 

3. GENERALIZATION AND EFFICIENCY 
We consider twoissues when comparing learning algorithms 
(e.g., SNOW and SVM): generalization and efficiency. 

3.1. Generalization Error Bounds 
Leaming;systems-use training data in order to generatea hy- 
potkiesis; but the :key performance measure.one caresabout 
is actually how. well they will perform on previously. un- 
seen, ,examples:. Generalization bounds: are. derivedi in1 or- 
der to estimate,.gixen the perfomance.om-the trainingdata, 
what will be the performance on previously unseen,exam- 
ples. The assuml?tio~undkl~ingthe. derivation of general- 
ization boundsis: the basic assumption of the PAC learning: 
theory [ 131, thatt the test. data,is sampled from the same (un, 
known) distribution: from.wliich the training data was Sam; 
pled. In the following we preset two theorems, one desccitb 
ing the generalization error bound of large margin classifiers 
(e.g., SVMs) and the corresponding theoremkfor the multi- 
plicative update algorithm (e.g.,. Winnow): The first is a 
variant of Theorem 4.19 about the in [ 3, 16 J : 

Theorem 1 I f  the data is E z ,  norm bounckfas  11x112 5 
b, then consider the family r of hyperplanes w such that 
I IwJ 12 5 a. Denote by E, (w) the misclass@cation ermr of 
‘U: with the true distribution. Then there is a constant C such 
that for any y > 0, with probability 1 - 7 over n, random 
samples, any w E S satisjes: 

where k ,  = I{i : wTxiyi < y}l is the numberofsamples 
with margin less than y 
Similarly we present a generalization bound for Winnow 
family of algorithms (e.g., SNoW). Derivations of this the- 
orem can be found in [ 3, 161. 

Theorem 2 I f  the data is L ,  n o m  bounded as llzll, 5 
b, then consider the family I? of hyperplanes w such that 
1JwII1 5 a a n d C i w j l n ( a )  5 c. DenotetiyE,,,(’U:) 
the misclassijcation error of with the true distribution. 
Then there is a constant C such that for any y > 0, with 
probability 1 - 7 over n, random samples, any ‘U: E S satis- 
j es :  

n,ab 1 

Y 9 
+ ac)In(- + 2) +In - 

where p denotes an initial weight vector and k,  = I{i : 
wTxigi < r}l is the number of samples with margin less 
than y. 
In order to understand the relative merits of the algorithms, 
a closer look at the above bounds shows that, modulo some 
unimportant terms, the error bounds E, and El,& for the 
additive algorithms and the multiplicative algorithms scale 
with: 

where w is the target hygrplane. , 

e main difference between SVM 
and SNOW is the data assumption. If the data is L2 norm 
bounded and there is. a, small La norm hyperplane, then 
SVM is suitable for&eproblem. On the other hand, Win- 
now is suitable for a:problem.where the data is L ,  norm 
bounded and there..is:;a.smdl’Dl norm hyperplane. Theo- 
retical analysis irid&tes;tliatttlie: advantage of the Winnow 
family ofihlgorithm..(e:g:, SNOW) over Perceptron family 
of!-algorithms (e.g., SVM) requires the data to have small 
C,.norm but large Lg norm. Numericaliexperiments in [7] 
have confirmed the claim abovewddemonstrated the gen- 
eralization bounds are quite tight: 
3.1.1. Experiment,I: Generalization? 
To understand and.analyze the performance:of: SNOW and 
SVM.we perfor*mnumerous experiment’s on face detection. 
The training set consists of. 6,977 images (2,429 faces and 
4,548 non-faces), and the test:set consists of.24,045 images 
(472 faces and 23,573 non-faces). Our training anditest sets 
are similar to the ones used in [6], which also show that 
SVMs with the feature representation of normalized inten- 
sity values perform better than the ones with Harr wavelet 
and gradient representations. In our experiment, each im- 
age is normalized to 20 x 20 pixels and processed with his- 
togram equalization and quantization (50 rather than 256 
scales). Figure 1 shows some face images in the training 
and test sets. We use the the normalized intensity values as 

From the theorems, 

Fig. 1. Sample face images: each image is normalized to 
20 x 20 pixels with histogram equalization. 

representations for SVM with linear kernel. For SNoW, we 
also use normalized intensity values as features of images, 
which we call linear features. 

For the baseline study where SNOW and SVM have the 
same feature representation, i.e., normalized intensity val- 
ues, SNoW clearly outperforms SVM as shown by the lower 
two ROC curves in Figure 2. For visual pattern recognition, 
most data dimension is not useful as demonstrated in the 
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ysis of the theorems which indicates that the advantage of 
SNOW over SVM requires the data to have large L2 norm 
but small L ,  norm 

-,- I -  ? -  4. CONCLUSION 
+ - - - ,  I - . -  This paper proposes some theoretical arguments that sug- 

gest that the SNOW-based learning framework has impor- 
tant advantages for visual learning tasks Given good ex- 
perimental results with SNOW on face detection, the main 
contribution of this work is in providing an explanation for 
this phenomena - by giving a theoretical analysis and vali- 
dating it with real world data - and providing ways for think- 
ing about good representations for visual learning tasks We 
have shown that SNoW, being based on a multiplicative 
update algorithm, has some nice generalization properties 
compared to other learning algorithms used in this domain 

- +  , - 1 - - t  - -  

- *  ~ I - - f  

I % /  -. I - ,_ - - .  

0 0 1  02 03 01 Ob O S  0 7  0 8  0'2 

Fahe Po51we 
Fig. 2 ROC curves SNOW vs SVM 

Eigenface [ 121 approach and others. Many studies have also 
shown that the target hyperplane function in visual pattern 
recognition is usually sparse. Consequently, the target hy- 
perplane has a relatively ::mall Lz norm and relatively small 
L1 norm. Under such situations, the Perceptron does not 
have any theoretical advantage over Winnow. Thus it is not 
surprising to see that the Winnow family and the Perceptron 
family of algorithms perform equally well. For the experi- 
ment with linear features (i.e., normalized intensity values), 
the Lz normis on the average 10.2 times larger than the L,  
norm. The number of active features in the final hyperplane 
of SNOW is very sparse, i.e., 1.6% of all possible features. 
The number of support vectors is also sparse, i.e., 5% of 
all the training example:;. The empirical results show that 
SNOW outperforms SVhl (shown in lower two ROC curves 
in Figure 2) and match the predictions of the theorems well. 
3.1.2. Experiment II: Eificiency 
Since the features in the SVM with polynomial kernel are 
more expressive than the linear features, we choose to use 
conjunctions of features to capture local information of im- 
age patterns. For each pixel, we represent the conjunction 
of intensity values of m, pixels within a window of w x w 
pixels as a new feature value and use them as feature vec- 
tors. Each feature value is then mapped to a binary feature 
using the method discussed in [15] To make sure that the 
combined computational requirement of SNOW (computa- 
tional loads of features and training) does not outweigh the 
one of SVM, we choose to use a small window of 2 x 2 
pixels and conjunctions (of 2 pixels. 

Figure 2 shows the upper two ROC curves of SVM with 
second order polynomial kernel and SNOW with conjunc- 
tion of features. Although SVM performs slightly better 
than SNoW, we think that SNOW can perform as well as 
SVM if the feature representation is as powerful as the one 
in SVM with polynomia.1 kernel. The Lz norm of the local 
features (generated by 2 x 2 window) is 2.2 times larger than 
L,  norm. In this case, SVM performs slightly better than 
SNoW. The results conform to the predictions of the anal- 

On the other hand, algorithmsthat are based on additive up- 
date algorithms, like perceptrons and SVM, have some nice 
computational properties, stemming from the ability to use 
the kernel trick and to avoid computing with in very high 
dimensional data. We then argue that SNoW, with its abil- 
ity to handle variable size examples does not suffer from 
the dimensionality of the data but only from the presence of 
many active features in each examples. Moving to a sparse 
representation of images, (e.g., edges, conjunctions of those 
or others families of features studied in computer vision) 
would allow one to enjoy both worlds - a good generaliza- 
tion performance along with computational efficiency. We 
believe this to be an important direction for future research. 

5. REFERENCES 

[11 M. A i z m a n ,  E. Braveman, and L. Rozonoer. Theoretical foundations of 
the potential function method in pattern recognition learning. Automarion 
and Remote Control, 25:821-837,1964. 

[Z ]  B. E. Boser, I. M. Guyon, and V. Vapnik. A training algorithm for optimal 
margin classifias. In COLT 1 YY2, pp. 144-152. 

[3] N. Cristianini and J. Shawe-Taylor. A n  Inrroducrion to Support Vecror Ma- 
chines and other Kernel-based learninp methods. Cambridee Universih, 
Press, 2OOO. 

[4] Y. Freund and R. Schapire. Large margin classification using the pexceptron. 
Machine Learning, 37(3):277-296, 1999. 

151 T. Graeuel R. Herbrich, and R. C. Williamson. From marain to suanitv. In - ~~ . .  
N I P S I ~ . M I T P ~ ~ ~ ~ , ~ W ~ .  

[6] B. Heisele, T. Poggio, and M. Pontil Face detection in still gray images. AI 
Memo 1687. MIT AI Lab. 2OOO. 

[71 J. Kivinen, M. K. Warmuih, and P. Auer. ThePerceplron algorithm vs. Win- 
now: linear vs. logarithmic mistake bound when few input variables are rele- 
vant. Arrificial Intelligence, 1-2325-343, 1997. 

[SI N. Littlestone. Learning quickly when irrelevant attributes abound: A new 
hear-threshold algorithm. Machine Learning, 2285-318. 1988. 

[9] C. Papagwrgiou and T. Poggio. Atrainablesystem for object detection. IJCV, 
38(1):15-33, 2000. 

[ 101 E Rosenblatt. ThePerceptron: A probabilistic model for information storage 
and organization m the brain. Psychological Review, 65:386-$07, 1958. 

[Ill D. Roth. Learning to resolve natural language ambiguities: A unified ap- 
proach. InAAAIlYYS p 806-813. 

[ 121 M. Turk and A. Pent1.d; Eigenfaces for recognition. Journal of Cognirive 
Neuroscience, 3(1):71-86, 1991. 

[13] L. G. Valiant. Athwry of me learnable. CACM, 27(11):1134-1142, 1984. 
[14] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Vexlag. 

New York, 1995. 
[15] M.-H. Yang, D. Roth, and N. Ahuja. A SNOW-based face detector. In NIPS 

12, pp. 855-861. MIT Press, 2000. 
[ 161 T. Zhang. Some theoretical resulb concerning the convergence of composi- 

tions of regularized linear functions. In NIPS 12, pp. 370-376. MIT Press, 
2m. 

668 


