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Abstract

This paper is concerned with the extraction of spatio-
temporal patterns in video sequences with focus on trajec-
tories of gestural motions associated with American Sign
Language. An algorithm is described to extract the motion
trajectories of salient features such as human palms from
an image sequence. First, motion segmentation of the im-
age sequence is generated based on a multiscale segmen-
tation of the frames and attributed graph matching of re-
gions across frames. This produces region correspondences
and their affine transformations. Second, colors of the mov-
ing regions are used to determine skin regions. Third, the
head and palm regions are identified based on the shape and
size of skin regions in motion. Finally, affine transforma-
tions defining a region’s motion between successive frames
are concatenated to construct the region’s motion trajectory.
Experimental results showing the extracted motion trajecto-
ries are presented.

1 Introduction

Gesture recognition plays an important role in the ad-
vancement of human computer interaction (HCI) since it
provides a natural and efficient way to communicate be-
tween humans and computers. With the increasing interest
in HCI, there has been rapid growth of studies related to ges-
ture recognition in recent years. Hand gestures comprise the
majority of gestures used by humans. In this paper, we will
use the term gesture to refer to hand gesture. Most of the
work on gesture recognition focuses on static hand gestures
or postures [3], [8] with much less attention given to the dy-
namic characteristics of gestures [11]. Our work is aimed at
recognizing gestures of American Sign Language (ASL) us-
ing spatio-temporal analysis of gestural motion trajectories.

We perform motion segmentation to group pixels of sim-
ilar motion into regions and find region correspondences
across frames. Although there are many motion regions in
each frame, the movements of palm regions contain sig-

nificant information about the gesture meaning, and there-
fore palm motion is extracted. Further, ASL experts have
pointed out that gesture interpretation requires not only the
motion pattern but also relative locations of the hand with re-
spect to other landmark parts of the body such as the head,
shoulders, and waist [2]. Therefore, human head region is
extracted for use as reference in gesture recognition.

To distinguish among the different moving regions, we
use color and geometric characteristics. Both head and palm
regions have skin color and have similar elliptic shapes, but
differ in size. Motion regions with skin color are first identi-
fied, and a connected component analysis is then performed
to merge neighboring regions until the shape of the merged
region is approximately elliptic. The head and palm re-
gions are discriminated based on difference in size. The
palm regions are extracted from each frame and the affine
transformations between corresponding regions in succes-
sive frames are then computed to obtain motion trajectories.
Figure 1 summarizes our algorithm to extract motion trajec-
tories of a gesture from an image sequence.

2 Related Work

Many of the gesture recognition methods utilize special-
ized colored gloves [5] or markers [8]. Electromagnetic sen-
sor and stereo vision system have also been used to locate a
signer in video [14]. Pfinder [4] adopts a maximum a pos-
teriori probability approach to detection and tracking of the
human body using simple 2D models for recognizing ASL
signs [11]. Motion has also been used for signer localization
[6]. However, these approaches have certain restrictions on
the signer (e.g. wearing specialized gloves or using mark-
ers) or they require that the stationary background have a
certain predetermined color.

To overcome the limitations of the individual cues of
localization, fusion of cues is explored for head localiza-
tion in video [7], yet not fully exploited for hand localiza-
tion as pointed out in a recent review [10]. We describe a
method that combines motion, color and geometric analy-
sis for hand localization and motion trajectory computation.
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This method leads to robustness and accuracy in the extrac-
tion of motion trajectories, which in turn helps in recogniz-
ing complex hand gestures.

3 Motion Segmentation

In order to capture the dynamic characteristics of hand
gestures, we segment an image frame into regions with simi-
lar motion. The algorithm processes an image sequence two
successive frames at a time. For a pair of frames, 46537#8353769;:#< ,
the algorithm identifies regions in each frame comprising
the multiscale intraframe structure. Regions at all scales are
then matched across frames. Affine transforms re computed
for each matched region pair. The affine transform param-
eters for region at all scales are then used to derive a single
motion field which is then segmented to identify the differ-
ently moving regions between the two frames. The follow-
ing sections describe the major steps in the motion segmen-
tation algorithm.=?>�@ ACB?DFE�G�H�I�J�DFKML�NOJ&P�KRQSK�PTN�K;U�E)J&E�GWV?U

Multiscale segmentation is performed using a transform
descried in [1] which extracts a hierarchy of regions in each
image. The general form of the transform, which maps an
image to a family of attraction force fields, is defined byX 4�Y�83Z�[3\�]�46Y;83Z�<#83\_^`4�Y�83Z�<+<?aRbcb�dfe�]�46gc5�83\/]�4�Y�83Z�<+<#he�^)4jik 8l\_^j46Y;8lZ�<m<Rnop�p no p�p e�qre�s

(1)
where tRaue�v)wyx�z�{S465/46|;8ls�<m<m}�~�4�Y�83Z�<�� and ik aM4�s���Y_< iz��46qR��Z�< i� . The parameter \ ] denotes a homogeneity scale
which reflects the homogeneity of a region to which a pixel

belongs and \�^ is spatial scale that controls the neighbor-
hood from which the force on the pixel is computed. The ho-
mogeneity of two pixels is given by the Euclidean distance
between the associated w -dimensional vectors of pixel val-
ues (e.g., w�aR� for a color image):gc5 a�� 5�46Y;83Z�<;��5�4�s�83qr<`� (2)

The spatial scale parameter, \_^ , controls the spatial dis-
tance function, e�^j4mh�< , and the homogeneity scale parame-
ter, \ ] , controls the homogeneity distance function, e ] 4mh�< .
One possible form for these functions satisfying criteria dis-
cussed in [13] are unnormalized Gaussiane ] 46gc5�83\ ] <�� � ���&\&�]�� �S� 46��83\ �] <e ^ 4jik 8l\ ^ <�� ��� ���&\&�^)� p�p no p�p 4���83\ �^ <#8�����ik ��������\�^�/8 ����ik ��������\�

(̂3)
The force field encodes the region structure in a man-

ner which allows easy extraction. Region boundaries corre-
spond to diverging force vectors in

X
and region skeletons

correspond to converging force vectors in
X

. An increase in\ ] causes less homogeneous structures to be encoded and an
increase in \_^ causes large structures to be encoded.

Figure 2 shows an image and its segmented regions at
different scales which are displayed by their average gray
level. The extracted region boundaries align well with the
perceived boundaries at different scales. To obtain the seg-
mentations, all parameters of the transform are selected au-
tomatically, eliminating the need to make a priori assump-
tions about either the geometric or homogeneity character-
istics of the structure.=?>F�  .K_P¡GWV?U�A¢J&E�I�£?G¤U¡P

The matching of motion regions across frames is formu-
lated as a graph matching problem at four different scales
where scale refers to the level of detail captured by the image
segmentation process. Three partitions of each image are
created by slicing through the multiscale pyramid at three
preselected values of \/] . Region partitions from adjacent
frames are matched from coarse to fine, with coarser scale
matches guiding the finer scale matching. Each partition is
represented as a region adjacency graph, within which each
region is represented as a node and region adjacencies are
represented as edges. Region matching at each scale con-
sists of finding the set of graph transformation operations
(edge deletion, edge and node matching, and node merging)
of least cost that create an isomorphism between the current
graph pair. The cost of matching a pair of regions takes into
account their similarity with regard to area, average inten-
sity, expected position as estimated from each region’s mo-
tion in previous frames, and the spatial relationship of each
region with its neighboring regions.
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Once the image partitions at the three different homo-
geneity scales have been matched, matchings are then ob-
tained for the regions in the first frame of the frame pair that
were identified by the motion segmentation module using
the previous frame pair. The match in the second frame for
each of these motion regions is given as the union of the
set of finest scale regions that comprise the motion region.
This gives a fourth matched pair of image partitions, and is
considered to be the coarsest scale set of matches that is uti-
lized in affine estimation. The details of the algorithm can
be found in [12].=?>F= ´¶µ�U¡K�·²¸�JSU¹H»ºmVS¸�NOJ&E�GWV?U½¼³H)E�G¤N�J&E�GWV?U

For each pair of matched regions, the best affine transfor-
mation between them is estimated iteratively. Let t 7¾ be thez th region in frame ¿ and its matched region be t 769;:¾ . Also
let the coordinates of the pixels within t 7¾ be 46Y 7¾�À 83Z 7¾�À < , with� aÂÁ?ÃjÃjÃ�� t 7¾ � where � t 7¾ � is the cardinality of t 7¾ , and the
pixel nearest the centroid of t 7¾ be 4#ÄY 7¾ 8�ÄZ 7¾ < . Each 46Y 7¾�À 8lZ 7¾�À <
is mapped by an affine transformation to the point 4)ÅY 7¾�À 8�ÅZ 7¾�À <
according toÆ Y 7¾�ÀZ 7¾�ÀOÇ È tMÉcÊ
Ë Æ Y 7¾�À �RÄY 7¾Z 7¾�À �uÄZ 7¾ÌÇ � iÍ_Î � Æ ÄY ¾ 7�9;:ÄZ ¾ 769;: ÇÐÏ

a Æ ÅY 7¾�ÀÅZ 7¾�À Ç Î
(4)

where the subscript Ñ denotes the iteration number, and t³Ò�h Ó
denotes a vector operator that rounds each vector component
to the nearest integer. The affine transformation comprises
a ��Y_� deformation matrix, ÊcË , and a translation vector, iÍ_Î .
By defining the indicator function,Ô 7¾ 46Y;8lZ�<?a½� Á�8`4�Y�83Z�<TÕ.t 7¾�/8lÖØ×6ÙjÖ (5)

the amount of mismatch is measured as46Ú 7¾ <SauÛÝÜ�Þ ßà� 5 7 46Y;83Z�<S�Ì5 769;: 4áÅY;8�ÅZ�<`�âhã Ô 7¾ 46Y;83Z�<�� Ô 7�9;:¾ 4)ÅY�8�ÅZ�<¹� Ô 7¾ 46Y;8lZ�<?h Ô 769;:¾ 4)ÅY�8�ÅZ�< ä
(6)

The affine transformation parameters that minimize Ú 7¾ are
estimated iteratively using a local descent criterion [12].

=?>�å A¢V�E�GWV?U½æçGFK&D6èéL�U�E)K�PS¸�J&E�GFVTU
The computed affine parameters give a motion field at

each of the four scales. These motion fields are then com-
bined into a single motion field by taking the coarsest motion
field and then performing the following computation recur-
sively at four scales. At each matched region, the image pre-
diction error generated by the current motion field and the
motion field at the next finer scale are compared. At any re-
gion where the prediction error using the finer scale motion
improves by a significant amount, the current motion is re-
placed by the finer scale motion. The result is a set of “best
matched” regions at the coarsest acceptable scales.=?>Fê A¢V�E�GWV?U½æçGFK&D6èëQ¡K_P?NOK�U;E)J&E�GFVTU

The resulting motion field iÚì7 Þ 769;: is segmented into areas
of similar motion. We use a heuristic that considers each pair
of best matched regions, t 7¾ and t 7À , which share a common
border, and merges them if the following relation is satisfied
for all 46Y 7¾ Î 83Z 7¾ Î < and 46Y 7À#í 83Z 7À#í < that are spatially adjacent to
one another:��� iÚ 7 Þ 769;: 4�Y 7¾ Î 83Z 7¾ Î <¹� iÚ 7 Þ 7�9;: 4�Y 7ÀØí 83Z 7À#í <j���wyx�Y;4l��� iÚì7 Þ 769;:`4�Y 7¾ Î 83Z 7¾ Î <j���-8)��� iÚì7 Þ 7F9;:�4�Y 7ÀØí 8lZ 7ÀØí <j��� <�î w
ï�ð

(7)
where wcï�ð is a constant less than 1 that determines the de-
gree of motion similarity necessary for the regions to merge.

The segmented motion regions are each represented inÚòñ_7 Þ 769;: by a different value. Because each of the best
matched regions have matches, the matches in frame ¿á�ªÁ of
the regions in Úòñ_7 Þ 769;: are known and comprise the coars-
est scale regions that are used in the affine estimation module
for the next frame pair.

It should be noted that the motion segmentation does not
necessarily correspond to the moving objects in the scene
because the motion segmentation is done over a single mo-
tion field. Nonrigid objects, such as humans, are segmented
into multiple, piecewise rigid regions. In addition, fast ob-
jects moving at rates less than one pixel per frame cannot be
identified. Handling both these situations requires examin-
ing the motion field over multiple frames.



Figure 4 shows frames from an image sequence of ASL
sign “any” and Figure 5 shows the results of motion segmen-
tation. Different motion regions are displayed with differ-
ent gray levels. Notice that there are several motion regions
within the head and palm regions because these piecewise
rigid regions have similar motion.

4 Color Segmentation

Motion segmentation generates regions that have similar
motion. However, only some of these regions carry impor-
tant information for gesture recognition. For example, re-
gions of head or body movements are usually not important
in recognizing hand gestures. Thus, it suffices to extract the
motion of head and palm regions. We use color segmen-
tation to find motion regions that have skin-like color. Al-
though color feature alone is not sufficient or robust to iden-
tify human head in an image, many studies have shown that
color cues, when combined with other information, help in
tracking human heads and hands [7], [9], [15]. These studies
use either normalized RGB or Hue-Saturation-Value (HSV)
color representations to search for skin regions.

To locate human head and hands, we use CIE LUV color
space in order to minimize the dependence on luminance.
A look-up table is created after statistical analysis of train-
ing images that have skin-like regions. Figure 3 shows that
the regions of skin color fall into a small area of LUV color
space, i.e., only a few of all possible colors actually occur in
human skins.
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A region is classified to have human skin color if most

of its pixels fall into the trained LUV color space. Motion
regions of skin color can be thus extracted from motion seg-
mentation. In turn, regions of human head, hands and palms
can be identified from these motion regions of skin color.

5 Geometric Analysis

Since the shape of human head and palm can be approxi-
mated by ellipses, and the human hand is a thin, rectangular
region, motion regions that have skin color are merged until
the shape of the merged region is approximately elliptic or
rectangular.

The parameters of a rectangular fit can be obtained from
the bounding box of the region easily. The orientation of an
ellipse can be calculated by the moments of inertia:û a Á� h`x k)ü ¿lx�{S4 �»ý : Þ :ý � Þ þ �Ìý þ#Þ � < (8)

where ý ¾ Þ À denotes the second moments of normalized co-
ordinates with respect to the centroid defined asý � Þ þ auÿ¢ÿ����346Y � < � e�Y � e�Z � (9)

ý : Þ : a ÿ�ÿ � � 46Y � Z � <me�Y � e�Z � (10)

ý þ#Þ � aRÿ ÿ � �34�Z � < � e�Y � e�Z � (11)

where Y � a�Y²�ÝÄY , Z � a�Z��OÄZ ( ÄY , ÄZ are the centroid coordi-
nates).

The extents of the major and minor axes of the ellipse are
approximated by the extents of the region along the axis di-
rections and the degree of fit of the ellipse is determined by
the number of pixels that fall into that shape specified by the
computed parameters. That elliptic region which is larger
than the rest is viewed as human head and the palm regions
are the elliptic regions that are smaller than the head region
while the hand is a rectangular area with its size in between.
Figure 6 shows the results of color segmentation and geo-
metric analysis on the motion regions.

6 Motion Trajectory

Although motion segmentation generates the affine trans-
formations that capture motion details by matching finest re-
gions, it is sufficient to use the coarser motion trajectories of
identified palm regions for gesture recognition.

Affine transformation of palm region in each frame pair is
computed based on equation (4) in Section 3.3. These affine
transformations are then concatenated to construct the mo-
tion trajectory of the palm region. Figure 7 shows the mo-
tion trajectories of the palm region from the image sequence
“any.”

7 Experimental Results

We used a video database of more than 200 ASL signs
for experiments. Each video consists of an ASL sign which



lasts about 3 to 5 seconds at 30 frames per second. Figure 4
shows some images from a video of ASL sign “any.”

Figure 5 shows the results of motion segmentation. Note
that the head and palm of the signer consist of several motion
regions because motion segmentation is done over a single
motion field as discussed previously.

Motion regions with skin color are extracted using chro-
matic characteristics. These regions are then merged into
palm and head regions using geometric properties as shown
in Figure 6.

Affine parameters are computed for each pair of seg-
mented palm regions in successive frames. Then, the cor-
responding palm pixels in successive frames are connected
to obtain motion trajectories for all palm pixels across the
sequence. Figure 7 shows the motion trajectories of palm
region in the image sequence shown in Figure 4. These tra-
jectories match the perceived palm motion.
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8 Conclusion

In this paper, we have demonstrated a method for extract-
ing human motion trajectories based on motion segmenta-
tion, color segmentation, and geometric analysis. Experi-
mental results show that the extracted motion trajectories
match the perceived real motion. Such motion trajectories
carry important spatio-temporal information that can be uti-
lized to classify and recognize ASL gestures which is a part
of our ongoing work.
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