
 1 Copyright © 2006 by ASME 

Proceedings of JRC2006 

Joint Rail Conference 

April 4-6, 2006, Atlanta, GA, USA 

JRC2006-94052 
 

IMPROVING THE EFFICIENCY AND EFFECTIVENESS OF RAILCAR SAFETY 

APPLIANCE INSPECTION USING MACHINE VISION TECHNOLOGY 
 

 

Riley Edwards 
Graduate Research Assistant 
Railroad Engineering Program 

Department of Civil and Environmental Engineering 
University of Illinois at Urbana-Champaign      

B118 Newmark Civil Engineering Laboratory     
205 N. Matthews Ave., Urbana, IL, USA 61801  

Tel: (217) 244-6063 Fax: (217) 244-0815       
email: jedward2@uiuc.edu 

Christopher P.L. Barkan  
Associate Professor                                        

Director - Railroad Engineering Program    
Department of Civil and Environmental Engineering                                              

University of Illinois at Urbana-Champaign       
1201 Newmark Civil Engineering Laboratory     

205 N. Matthews Ave., Urbana, IL, USA 61801  
Tel: (217) 244-6338 Fax: (217) 333-1924       

email: cbarkan@uiuc.edu 
 

John M. Hart 
Research Engineer       

Computer Vision and Robotics 
Laboratory                      

Beckman Institute for Advanced 
Science and Technology                             
405 N. Mathews Avenue,  

Urbana, Illinois, USA 61801          
Tel: (217) 244-4174                   

email: jmh@vision.ai.uiuc.edu 
 

 
Sinisa Todorovic         

Postdoctoral Associate 
Computer Vision and Robotics 

Laboratory                     
Beckman Institute for Advanced 

Science and Technology                             
405 N. Mathews Avenue, 

Urbana, Illinois, USA 61801          
Tel: (217) 244-4174                   

email: sintod@vision.ai.uiuc.edu 
 

 
Narendra Ahuja 

Professor 
Department of Electrical and 

Computer Engineering 
Computer Vision and Robotics 

Laboratory 
2041 Beckman Institute for 

Advanced Science and 
Technology 

405 N. Mathews Avenue 
Urbana, Illinois, USA 61801 

Tel: (217) 333-1837                
Fax: (217) 244-8371 

email: ahuja@uiuc.edu 
 

 

 

ABSTRACT 

Before a train departs a yard, many aspects of the freight cars 

and locomotives undergo inspection, including their safety 

appliances.  Safety appliances are handholds, ladders and other 

objects that serve as the interface between humans and railcars 

during transportation.  Federal safety rules govern the design 

and condition of safety appliances.  The current car inspection 

process is primarily visual making it laborious, redundant, and 

generally lacking of memory.  There exists a potential to 

increase both the effectiveness and efficiency of safety 

appliance inspections by utilizing machine vision technology to 

enhance the railcar inspection process.  Machine vision consists 

of capturing digital video and using algorithms capable of 

detecting and analyzing the particular objects or patterns of 

interest.  Computer algorithms can objectively inspect railcars 

without tiring or becoming distracted and can also focus on 

certain parts of the railcar not easily seen by an inspector on the 

ground.  Thus far, algorithms have been developed that can 

detect deformed ladders, handholds, and brake wheels on open-

top gondolas and hoppers.  Next, visual learning will be 

employed to teach the algorithm the differences between 

Federal Railroad Administration (FRA) safety appliance defects 

and other types of deformation not requiring a car to be bad 

ordered.  The final product will be a wayside inspection system 

capable of detecting safety appliance defects on passing 

railcars. 

 

INTRODUCTION 
Safe and efficient movement of trains and execution of railroad 

employee duties are critically important to the railroad industry.  

Consequently, any means of providing additional productivity, 

efficiency, and safety benefits is of great interest to railroads.  

Currently, before a train departs a rail yard it is inspected for a 

variety of defects, including safety appliances.  Safety 
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appliances on railcars act as the interface between man and 

machine when it comes to the movement of railcars.  They 

consist of handholds, sill steps, brake steps, ladders, running 

boards, uncoupling levers, and brake wheels as well as other car 

specific appliances.   

 

Safety appliances have been required on railcars since 1893 

when the Interstate Commerce Commission (ICC) passed the 

Safety Appliance Act [1].  The Safety Appliance Act focused 

mostly on the need for automatic couplers and power brakes but 

also called for what we now consider safety appliances by 

requiring secure grab irons or handholds on cars [1, 2].  The 

objective was to provide railroad transportation employees with 

a set of safe, standardized features to mount and dismount the 

car or couple and uncouple the car.  Safety appliances are 

currently regulated by the Federal Government through the 

Railroad Safety Appliances Standards, Code of Federal 

Regulations (CFR) Part 231, that specify the location, number, 

material, configuration, and means of securement of all safety 

appliances [3]. 

 

Safety appliances are inspected by railroad carmen primarily 

using visual cues with some tactile and auditory means for 

certain tasks.  Carmen are trained to inspect cars for many types 

of defects that may cause the car to be unsafe for movement.  In 

addition to inspection, their duties include repair and re-railing 

of railcars.  At certain points, train and engine personnel are 

expected to inspect cars for defective safety appliances and 

determine if the car is safe for movement.  Cars are generally 

inspected each time they are added to a train, even though they 

may have satisfactorily passed multiple inspections prior to the 

current inspection.  Much of the success of current process is 

due to the redundancy of inspections.   As carmen inspect 

hundreds of cars during their shift, monotony and fatigue may 

affect the efficiency of inspections.   

 

Inspection results are not recorded by specific vehicle therefore 

a specific railcar’s safety appliance health cannot be tracked 

over time, making planned maintenance and monitoring defect 

trends difficult.  Defect trends could be used as a means of 

locating industries that consistently damage railcars, or be used 

to suggest future design changes for railcar safety appliances.  

Inspections are undertaken while inbound and outbound trains 

are on receiving and departure tracks.  Capacity in yards is 

increasingly at a premium, therefore improving inspection 

efficiency also has the potential to increase yard throughput.   

  

One way that the effectiveness and efficiency of safety 

appliance inspections can be increased is through the 

implementation of machine vision technology.  As a train passes 

a machine vision inspection site, digital video of the train is 

captured.  Machine vision algorithms then identify the safety 

appliances on railcars and detect defects.  A system of this type 

would lead to better utilization of labor, more effective 

inspections, and potentially improve utilization of yard space.  

The system should be able to categorize defects in terms of the 

appropriate level of action required.  The system would also 

lend itself to development of a database for each car that would 

enable trends to be detected and allow better planning and 

management of railcar maintenance. 

NOMENCLATURE 
Federal Railroad Administration, Code of Federal Regulations, 

Machine Vision, Railcar Inspection, Railroad Safety Appliance 

Standards, Safety Appliance. 

 

QUANTIFICATION OF SAFETY APPLIANCE DEFECTS  
We used several sources of data to quantify the occurrence of 

safety appliance defects; data from FRA safety appliance 

inspections and bad order data obtained from individual 

railroads.  Additionally, car repair data from the Association of 

American Railroads (AAR) were used to estimate the 

magnitude of costs associated with safety appliance repairs.  

 

The FRA maintains a database of all inspections conducted by 

both federal and state inspectors.  The data are grouped by 

numeric codes specified in the CFR signifying the reason for 

the violation, and also by type of inspector; state or local.  The 

data for Part 231 are divided into major rules.  Each major rule 

pertains to a specific appliance.  Analysis of these data for the 

period 1995-2004 showed that 59% of defects occurred on 

ladder treads, handholds, and sill steps [4] (Fig. 1).  
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Figure 1.  FRA Safety Appliance Defects found by FRA 

inspectors between 1995 and 2004 grouped by major rule of 

CFR Part 231, The Railroad Safety Appliance Standards 

 

Between 1995 and 2003, 21% of FRA Motive Power and 

Equipment (MP&E) inspections focused on the Safety 

Appliance Standards.  These inspections revealed 32% of the 

total defects detected by MP&E inspectors.  The defect rate, or 

percentage of defective units (railcars) to the number of units 

inspected, is also given in the FRA database.  The rate varies 

from 5.4% to 7.4% for the years 1995-2004, averaging 6.6%.  

This rate does not account for multiple defects on a single car.  

These data are critical in monitoring the rates at which safety 
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appliance violations occur from the FRA standpoint as well as 

in evaluating the difference between FRA defect ratios and 

railroad safety appliance bad order ratios. 

 

In order to determine the number of defects that are found by 

carmen, an analysis of bad order data was conducted for the 

fourth quarter of 2004 at two major Class I railroad yards. The 

percentage of cars bad ordered due to safety appliance defects 

was 0.6% and 1.5% at the two yards.  However, these numbers 

underestimate the actual occurrence of defects because many 

cars are repaired in the yard without moving the car to the 

repair shop or facility, often referred to as a RIP track.  One 

Class I railroad mechanical manager estimated that as many as 

75% of the safety appliance repairs were completed in this way.  

In these cases there is no requirement to record the repair unless 

it was billable under the AAR Interchange Rules [5].  If 0.6% to 

1.5% of cars are bad ordered for safety appliance defects, and 

only 25% of safety appliance defects are actually bad ordered to 

the shop, the percentage of cars with safety appliance defects 

could be as much as four times higher than the bad order 

numbers show.  This would result in 2.4% to 6.0% of cars 

having safety appliance defects, a figure comparable to the FRA 

average of 6.6%.  In addition, the differences between the FRA 

defect rates and the railroad bad order rates are a result of 

differing amounts of inspection scrutiny.  FRA inspectors spend 

considerably more time inspecting a railcar than do railroad 

carmen.  They may climb over a car, checking all the handholds 

and running boards, whereas railroad carmen are not expected 

to, nor do they have time to, inspect to this extent on a routine 

inspection. 

 

Interestingly, there are considerable differences between the 

distributions of safety appliances defects in the two yards (Fig. 

2). Yard A sees more sill steps and operating lever defects 

whereas Yard B sees over 35% of its defects on crossover steps 

alone.  According to management at one Class I railroad, the 

percentage of safety appliance defects is affected by the amount 

of interchange traffic and the differing distribution of car types 

due to different yard and traffic make-up. 

 

AAR repair data were analyzed to determine the monetary value 

of safety appliance repairs.  In 2003, there were 195,242 repairs 

reported to AAR on ladders, handholds, brake wheels, and 

uncoupling levers [6].  This represents $5,177,415 in repair 

costs billed to railroads and private car owners, or 1.35% of all 

repairs made in interchange [6].  This number substantially 

understates the total cost of repairs made to safety appliances 

because the AAR car repair billing data statistics only include 

foreign car repair billing not repairs to system cars.  

Additionally, many safety appliance repairs are not billable 

under the AAR Interchange Rules unless the safety appliance is 

replaced or removed for straightening [5].  An additional cost 

that is more difficult to quantify is the opportunity cost while 

the car is out of service for repairs. 
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Figure 2. Comparison of Safety Appliance Defects at two   

Class 1 Rail Yards 

 

CURRENT INSPECTION PROCEDURE 
The current inspection process relies primarily on human vision 

to accomplish the task of identifying railcars with defective 

safety appliances.  Car inspectors are tasked with identifying 

not only safety appliance defects, but a number of other 

mechanical defects as well.  The most common car inspections 

single out the brake system on the train, and occur at FRA 

mandated intervals.  Brake inspections occur at the train’s initial 

terminal and at 1,000-mile intervals among other locations.  The 

Safety Appliance Standards do not specify an inspection 

frequency, but railcars are expected to be inspected at each 

opportunity per the Safety Appliance Statute, Part 203 [7].  

Carmen inspect trains by walking or riding alongside the train.  

There are many methods by which trains are inspected for 

safety appliance defects.  Figure 3 depicts three Class I 

railroads inspection processes for three flat-switched yards.  
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Figure 3. Three different approaches to inspection 
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Railroad A uses four carmen to inspect trains.  Each train is 

broken up into four blocks, and the carman couples the air 

hoses on each car before crossing over and inspecting the 

opposite side of his or her portion of the train.  Railroad B uses 

two carmen to inspect a train.  The two carmen start at the same 

end of the train and walk down opposite sides of the train, 

allowing for communication between carmen across the train.  

Like Railroad B, Railroad C uses two carmen to inspect a train, 

but they start from opposite ends of the train.  All three methods 

use the same number of person-hours, but result in different 

turnaround times.  The amount of traffic dictates how many 

inspectors are on hand at a given yard and may also dictate 

whether or not the cars are inspected on the inbound or the 

outbound.  Railroad A inspects cars upon outbound inspection, 

whereas Railroads B and C inspect cars at the time of inbound 

inspection. 

 

Relationship Between Inspection Rate and Defect 
Detection 
The functional relationship between the number of defects 

escaping inspection and inspection rate is not as simple as 

intuition might suggest.  Audited studies of inspection 

effectiveness in a manufacturing environment indicate a more 

complex relationship [8].  Figure 4 shows the percent of defects 

escaping detection for a typical inspector completing 100% 

inspections at differing inspection speeds.   
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Figure 4. Functional relationship between percent of defects 

escaping detection and inspection rate of a human inspecting 

using 100 percent inspection [8] 

 

When inspection rate is low, the number of missed defects is 

also low (Fig. 4) [8].  As inspection rate increases, so does the 

percentage of defects that are missed until a local maximum is 

reached at point A.  As the inspection rate continues to increase 

after point A, the percentage of defects escaping detection 

actually decreases due to reduction in monotony until it reaches 

a minimum at point B.  Beyond point B, the percentage of 

defects missed increases once again as fatigue and the limits of 

human cognitive ability begin to have a greater effect and the 

percent conformance decreases. 

 

It should be noted that the functional relationship described in 

Fig. 4 applies to inspections of like pieces inspected under 

consistent conditions.  This is not the case with railroad safety 

appliance inspections.  With respect to safety appliance 

inspection it is also important to consider the varying levels of 

difficulty inspecting different safety appliances using the current 

visual methods.  For instance, a handhold that violates the 2” 

clearance rule may be more easily detected than a brake wheel 

that violates the 4” clearance rule.  Beyond this, different 

parameters for the same safety appliance have varying levels of 

difficulty in identification.  Finally, different locations of a 

given safety appliance may have different levels of detection 

difficulty.  For example, if a ladder at eye level is deformed it 

may be easily detected, but if the top ladder rung on a car is 

deformed, it may be very difficult for the inspector to detect.    

 

METHODS OF IMPROVING THE EFFICIENCY AND 

EFFECTIVENESS OF SAFETY APPLIANCE 

INSPECTIONS 

 
Machine Vision  
As mentioned above, one means by which the efficiency of car 

inspections can be increased is through use of technology to 

enhance inspection effectiveness.  Machine vision lends itself to 

a number of railcar inspection tasks [9, 10, 11], including many 

aspects of safety appliance inspections.  Machine vision 

consists of capturing digital images and using algorithms to 

detect certain attributes in these images.  In the context of this 

work, these images are of railcar safety appliances and the 

attributes are various forms of defects or deformation. 

Comparison of Human Vision and Machine Vision 

An understanding of the strengths and weaknesses of human 

and machine vision leads to a more realistic view of the 

possibilities of machine vision.  Humans are capable of 

analyzing complex and dynamic situations.  However, humans 

are not as good at performing repetitive inspections without 

suffering from boredom and fatigue.  Additionally, for many 

tasks, humans are not as reliable at judging objects with the 

level of objectivity and consistency that is inherent in machine 

vision [12]. Machine vision systems have a higher first cost 

associated with the initial implementation of the system than 

does a human counterpart, but may have a lower operating cost, 

depending on the number of units to be inspected.  Machine 

vision does not easily adapt to unforeseen events, but for certain 

types of consistent, repetitive tasks – precisely the ones humans 
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become ineffective at – machine vision may offer more reliable, 

lower cost inspection.   

Inspection Memory 

Inspections can occur either with or without some type of 

memory.   Currently, the majority of car inspections are 

completed manually and the results are not recorded.  The 

addition of memory to the current system is possible through 

the use of a Personal Data Assistant (PDA).  Carmen would 

enter defect information into their PDA’s, which would be 

downloaded and used later as a means of tracking defects or 

planning maintenance. 

 

Utilizing technologies without memory is useful in the short 

term, aiding mechanical personnel in the detection of defects, 

but it does not provide a means of tracking a railcar’s health 

through time.  This would have the advantage of making the 

system less memory intensive from a data storage perspective.  

However, addition of memory to the inspection process could 

enhance the effectiveness and value of the machine vision 

system by improving maintenance scheduling and efficiency.  

While all FRA safety appliance defects must be repaired before 

a train can depart a yard, there are other forms of deformation 

that could be repaired as time allows.  For instance, if a ladder 

is deformed, but not a FRA defect, it would likely be repaired in 

its next visit to a repair facility.  Memory in the inspection of 

railcars could lead to better scheduling of upcoming 

maintenance on a railcar, and ensure the needed parts are in 

stock or on the way before the car arrives at the facility.    

Examples of system memory could range from storing digital 

images for image correlation purposes, or matching safety 

appliance data with car numbers and storing this information in 

a database. 

 

MACHINE VISION DETECTION OF SAFETY 

APPLIANCE DEFECTS 
The University of Illinois at Urbana-Champaign is developing 

machine vision technology to detect defective safety appliances.  

In the next section we describe a new image acquisition system, 

algorithms, and preliminary portable field setup. 

Image Acquisition System  

This project is being conducted using a digital video camera 

with a ½” color Charge-Coupled Device (CCD) camera.  

Initially, a 6-12 mm lens with a variable focal length was used.  

While this lens provided adequate images where the track was 

well ballasted and elevated above ground level, the setup 

proved difficult at locations where the rails were not 

significantly higher than ground level.  Additionally, use of a 

variable focal length lens can make replication of a given focal 

length difficult.  Use of a fixed focal length lens and proper 

setup protocols provided better repeatability.  

 

In the initial, portable setup, the camera is mounted upside 

down below the tripod head, close to the substrate supporting 

the tripod, and remains outside the clearance plate for rail 

equipment [13]. The clearance plate represents the maximum 

cross section that railcars and their loads must fit within while 

moving within North American interchange.  These dimensions 

also provide a guide as to the barrier that no trackside objects 

should penetrate.  The resolution of the most distant safety 

appliance, generally the top ladder rung, is the limiting factor in 

resolution selection.  Resolution refers the number of pixels in 

an inch, with a higher resolution resulting in greater detail 

available for algorithmic recognition.  Use of a resolution of 

480x640 enabled the top ladder rung to be distinguished 

without being considered noise.  The noise threshold for this 

recognition task is two pixels. 

 

Frames are generated at a rate of 30 frames per second and are 

converted to an AVI format.  This frame rate ensures that an 

image will be captured within the tolerable window of 40 pixels 

relative to the center of the image (Fig. 5).   

 

     
   A                                B                               C 

Figure 5.  Image sequence for one corner of a railcar showing, 

A) an image taken too early, B) at the optimum time, and 

 C) too late 

 

This frame rate is satisfactory for train speeds up to 25 miles 

per hour.  At higher speeds the frame rate must be increased to 

ensure that images of the appropriate part of the car at the 

proper angle are obtained. 

Machine Vision Algorithm 

The goal of the machine vision algorithm is to detect ladder 

rungs, handholds and brake-wheels, and to classify the detected 

appliances as FRA defects, non-FRA deformation, or no 

deformation. From the input video it is first necessary to select 

an optimal frame that provides the best view of a car passing by 

the camera.  Note that in a video sequence the position of the 

moving car is displaced in each consecutive frame by a small 

but not necessarily constant amount. In the optimal frame (Fig. 

5B), the car position is such that the car’s two top edges meet at 

the center of the image. 

 

In the next module of the machine vision system, the selected 

frame is analyzed. Due to a foreshortening effect caused by the 
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camera position and angle from which the railcar is viewed, 

parts of the car that are farthest away from the camera appear 

smaller and distorted. Therefore, we conduct a perspective 

correction that yields two views of the car that each appear as if 

they were taken by two cameras perpendicular to the car's side 

and ends (Fig. 6). This procedure not only saves the costs of 

mounting two cameras, but more importantly provides the 

perpendicular view of the end of the car that an additional 

camera, irrespective of position, would be unable to obtain. The 

perspective correction is done by using homography, where all 

the points belonging to a specified plane are transformed so that 

the foreshortening effect is corrected.  The specification of the 

two planes in the image is done automatically by finding the 

intersection of the top edge of the car with the image 

boundaries. Once the planes are specified, homography projects 

them onto the image plane. 
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Figure 6. Perspective correction by specifying two planes A-B-

C-F and A-E-D-F. As the final result, two views of the car are 

obtained, as if two cameras perpendicular to the side and end of 

the car were available 

 

Such corrected images are more amenable to detection and 

assessment of safety appliance condition. In the next module, 

each corrected part of the selected frame is analyzed to detect 

safety appliances. To detect ladder rungs, edges are detected 

using a Canny detector (Fig. 7A). Then starting from the top 

edge of the car, the algorithm searches for periodically spaced, 

horizontal, parallel lines to define the area where the ladder and 

handholds are most likely to be. The straight-line edges in the 

specified area are classified as compliant (no exception) ladder 

rungs and handholds; the edges that are curves are classified as 

deformed appliances. Note that the algorithm correctly 

identified the deformation to the top and second from bottom 

side ladder rungs as well as deformation to the end ladder rung 

that is second from the top (Fig. 7A).  These examples of safety 

appliance deformation, like those seen in Fig. 7A, were imaged 

after being inflicted on cars at the Transportation Technology 

Center Facility for Accelerated Service Testing (FAST) near 

Pueblo, CO.  Two more examples of detected ladder rungs and 

handholds are presented in Fig. 7B.   

 

In the future, additional appliances, appliance parameters, and 

car types will be examined, as well as difficult lighting 

conditions.  One particularly challenging parameter to identify 

using machine vision is the securement of safety appliances.  

Checking for securement includes checking that bolts are 

present and securely fastened.  Even though a bolt is lose, it 

may still be secure, and the machine vision algorithms must be 

robust enough to differentiate between the two scenarios.  This 

recognition task may require additional camera views. 

 

   A) 

 
 

B) 

 
 

Figure 7. (A) Detection of ladder rungs and handholds; yellow 

indicates no exception and red indicates deformed appliances. 

(B) Additional examples of detected ladder rungs and 

handholds 

 

Detection and assessment of a brake-wheel does not require the 

perspective correction. Due to the fact that the brake-wheel 

differs from the background in appearance, direct analysis of 

the original image is satisfactory. We perform template 

matching of an ideal brake-wheel model from a set of templates 

developed based on known brake wheel designs. The area in the 

image for which the correlation with the template yields the 

highest value represents the detected brake-wheel. If part of the 

detected area differs from the template it is classified as 

deformed (Fig. 8).  

 

 
 

Figure 8. Brake-wheel detection; yellow indicates no exception 

and red indicates deformation of the brake-wheel 
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METHODS OF OBTAINING IMAGES OF DEFORMED 

RAILCAR SAFETY APPLIANCES 
Because of the relatively low rate of SA defects noted above, 

acquisition of a sufficient number of images showing deformed 

safety appliances needed to develop the algorithm would take a 

long time.  To accelerate this process other collection methods 

are being pursued.  One of these was damaging an open-top 

hopper car under controlled conditions at TTC and imaging it 

as a part of a test train.  Another method is through the use of a 

virtual model that allows for modeling of safety appliance 

deformation 1) under varying lighting conditions, 2) on multiple 

car types, and 3) from differing camera views and angles. 

 

THREE DIMENSIONAL MODELING OF RAILCAR 

SAFETY APPLIANCES 
Autodesk’s® 3DS MAX 8 computer modeling software was 

used to create a three dimensional model of an open-top hopper 

car.  3DS MAX allows the user flexibility in depicting different 

camera views and angles, as well as in depicting realistic 

lighting conditions.  Additionally, the program provides a means 

of generating both still images and AVI files of the railcar 

model.  A comparison of an actual camera and an image from 

the 3D model is shown in Figure 9. 

Lighting and Camera Specifics 

Within 3DS MAX, cameras can be located at any user defined 

location within the model space.  The resolution of the camera 

is set by the user and the field of view is set by changing the 

camera’s distance from the railcar.  The model allowed us to 

pinpoint the precise optimal camera angle once the view was 

selected.  The camera view refers to the portion of the railcar 

that is being imaged whereas the camera angle is the specific 

angle between the lens and the target.  The process of 

determining the camera angle was accomplished by running the 

algorithm on numerous images taken from angles that were 

below the top-of-rail.  All of the images tested were at a 45-

degree angle with respect to the track.  Locating the camera 

below the top of rail allows for imaging of ladder rung and 

handhold clearance – key elements of the Railroad Safety 

Appliance Standards. 

Model Uses  

Visual learning is being used to categorize deformation to a 

railcar’s safety appliances.  Using this approach, it is necessary 

to gather hundreds of images representing defective safety 

appliances to teach the algorithm the difference among the 

various defect classes.  Gathering these images in the field is 

tedious and labor intensive.  Each time a train is imaged in the 

field we obtain a large number of images of which only a small 

percentage, one percent or less, contain safety appliance 

defects.  Using the model, it is not only possible to simulate the 

railroad environment lighting, but also generate hundreds of 

types of deformation that would be difficult to gather by 

imaging real trains.   Information regarding typical types of 

safety appliance deformation will be gathered from railroad 

mechanical personnel ensuring the algorithms will be tailored to 

the recognition tasks that it will be facing. 

 

      
Figure 9. Views of a railcar after deformation was inflicted in a 

controlled environment (left) and the corresponding 3D model 

showing the deformation (right) 

 

The use of a virtual model increases the robustness of the 

machine vision algorithm by allowing generation of images 

under varying lighting conditions.  Out of the many lighting 

types provided within 3DS, two types are of interest to this 

project.  The first is omni light, and consists of light having an 

intensity that is inversely proportional to the distance between 

the light and target.  Omni light is the best representation of 

what an artificial spotlight would provide for this application.  

Secondly, sky light is analogous to sunlight in that the intensity 

does not decrease as the distance from the light source to the 

target increases.   

 

Additionally, if the model is verified on one car type it may be 

extrapolated to be used on other car types, saving time and 

expense compared to field work. 

 

 
Figure 10. Validation of algorithms on the model image which 

replicates the deformation seen in the actual image in        

Figure 7A.   
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Figure 10 shows the algorithmic result from the model car.  The 

second ladder rung from the bottom is not an FRA defect, but 

does have deformation.  The sensitivity of the algorithm can be 

adjusted to either recognize or filter out these types of minor 

deformation. 

Model Limitations 

The limitations of the computer model should be recognized 

and considered as safety appliance recognition algorithms are 

developed.  All edges of the railcar will appear crisper than the 

actual edges on the car.  This gives the Canny detectors an 

easier task than the one that occurs in reality due to rust, minor 

irregularities and other aspects inherent in the railroad 

environment.  Altering the surface of the railcar in the model 

reduces the effects of this limitation. 

 

DISCUSSION & CONCLUSIONS 
Since the installation of safety appliances was first required on 

railcars in 1893, inspections have been carried out visually.  

However, technologies have been developed that would allow 

for increased inspection effectiveness.  A machine-vision-

enhanced inspection process could improve performance and 

speed while reducing cost. 

 

The capital cost of a machine vision system will be higher than 

incremental addition to the labor force; however, the cost per 

unit inspected may be lower, depending on the number of cars 

to be inspected at a particular location.  Additionally, the system 

would enable reallocation of labor to tasks for which they are 

uniquely qualified, such as railcar repair.  To take further 

advantage of the system, some type of system memory should 

be incorporated because it would enable better planning of 

railcar maintenance.   

 

There are many examples of wayside rail vehicle health 

monitoring systems that have been installed or are in the 

research and development stages.  An example of one wayside 

rail vehicle health monitoring system that includes a memory 

capability are Wheel Impact Load Detectors (WILD).  These 

detect vertical loads at wayside installations and report the 

information back to a central system that monitors the vehicles’ 

performance [11, 14].  This monitoring system was developed 

by the Transportation Technology Center Inc. (TTCI) and is 

known as Integrated Railway Remote Information Service 

(InteRRIS) and stores health information on a multitude of 

railcar parameters.  InteRRIS provides rail vehicle condition 

and performance monitoring that is transferable to car owners 

and railroads via the internet (16).  Another wayside vehicle 

monitoring system which is linked with InteRRIS are Truck 

Performance Detectors (TPDs) that detect poorly performing 

trucks by monitoring lateral loads.  TTCI is also deploying a 

new visual inspection system known as FactIS to inspect railcar 

truck components including wheels, brake shoes, and other 

mechanical components.  The FactIS system relies primarily on 

machine vision as a means of determining the health of a railcar.  

A system for safety appliance inspection would link Automatic 

Equipment Identification (AEI) data that is digitally encoded on 

tags located on all North American railcars to the information 

from the machine vision system in a similar manner, and 

provide input to the InteRRIS database as well as to railroad 

personnel at nearby repair facilities. 

 

An additional benefit of a machine-vision-enhanced inspection 

system is that it has the potential to alleviate congestion in rail 

yards.  Because much of the inspection process will occur along 

the line of road or at the entrance to a yard, railcars may not 

need to occupy yard trackage for as long while they await and 

undergo inspection.  Instead, based on the outcome of the 

machine-vision results certain cars requiring a closer look or 

minor repair could be promptly inspected and repaired, while 

the remainder could be switched directly to either their 

appropriate outbound track, or to a major repair track.  In 

conclusion, the prototype systems described here have the 

potential to improve rail transportation safety and efficiency in 

several ways, including improving the efficacy and efficiency of 

the inspection process as well as improving railyard 

productivity. 
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