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Multiscale Image Segmentation by
Integrated Edge and Region Detection

Mark Tabb and Narendra Ahuja,Fellow, IEEE

Abstract—This paper is concerned with the detection of low-
level structure in images. It describes an algorithm for image
segmentation at multiple scales. The detected regions are ho-
mogeneous and surrounded by closed edge contours. Previous
approaches to multiscale segmentation represent an image at
different scales using a scale-space. However, structure is only
represented implicitly in this representation, structures at coarser
scales are inherently smoothed, and the problem of structure ex-
traction is unaddressed. This paper argues that the issues of scale
selection and structure detection cannot be treated separately. A
new concept of scale is presented that represents image structures
at different scales, and not the image itself. This scale is integrated
into a nonlinear transform which makes structure explicit in the
transformed domain. Structures that are stable (locally invariant)
to changes in scale are identified as being perceptually relevant.
The transform can be viewed as collecting spatially distributed
evidence for edges and regions, and making it available at contour
locations, thereby facilitating integrated detection of edges and
regions without restrictive models of geometry or homogeneity.
In this sense, it performs Gestalt analysis. All scale parameters
of the transform are automatically determined, and structure of
any arbitrary geometry can be identified without any smoothing,
even at coarse scales.

I. INTRODUCTION

T HIS PAPER addresses the classical problem of detecting
low-level structure in images, or image segmentation.

This problem involves the identification of local areas (re-
gions) in an image that are homogeneous and dissimilar to
all spatially adjacent regions. Homogeneity may be measured
in terms of color, texture, motion, depth, etc., but for the
purposes of this paper it is measured by graylevel similarity.
Structure identification is inherently a multiscale problem
because image structure is recursive, i.e., regions may contain
substructure, which themselves contain substructure, etc. Of
course, digital images have finite resolution, so the number of
levels of structure is limited (typically, 3–4). As an example
of the multiscale nature of structure, consider Fig. 1, which
consists of an image of a sailboat on a lake. The cloud mass
and water are each single regions at a scale which allows
for significant intensity variation. However, if sensitivity to
intensity variation is increased, then individual clouds and the
streaks within the water should be identified as regions.
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Fig. 1. Image of a sailboat on a lake. The image contains significant
multiscale structure. For example, at a scale where regions have significant
intensity variation, the cloud mass and water each can be considered as single
regions. However, if sensitivity to intensity variation is increased, individual
clouds and the streaks within the water should be identified as regions.

This paper assumes noa priori knowledge of either the scale
or geometry of any structures present within an image. The
goal is to identify all image structures without any smoothing
of the structure boundaries, regardless of the scale at which
the structures occur, and without incorrectly identifying any
nonrelevant areas as structures. Perceptual validity is used as
a subjective measure of structure relevance. A large number of
algorithms for image segmentation have been proposed over
the years. However, almost all of these methods completely
ignore the issue of scale. As a result, they are capable of
identifying only a limited variety of structures. Some examples
of these approaches include: thresholding techniques [1], [2],
region growing [2]–[4], split-and-merge [5], watersheds [6],
rule-based systems [7], and Markov random field-based (MRF-
based) models [8]. Prior attempts at multiscale segmentation
[9]–[12] all involve the creation of a scale-space [9], [13]–[15]
wherein an image is represented at different scales by a single
scale parameter. Although scale-space produces a hierarchy
which represents a signal at different levels of detail, it is not
a structural decomposition. Structure is contained implicitly
within the scale-space, and the representation of the image
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at any given scale may actually contain multiscale structure.
Hence, a multiscale segmentation algorithm is still required to
extract the image structures from the scale-space decomposi-
tion. The basic problem with scale-space is that it represents an
image at different scales, but not the image structure. Further,
all scale-spaces inherently involve some smoothing of the
image, which causes the boundaries of any extracted structure
to be smoothed as well.

A new approach to segmentation is presented in this paper.
Scale is defined such that it represents image structure at
different scales, not the image itself. For each structure, this
involves the use of a homogeneity scale which describes the
amount of homogeneity variation within the structure, and
a set of spatial scales which describe the size and shape
of the structure. This concept of scale is integrated into
a novel nonlinear transform introduced in [16]–[18]. The
structure at any given scale is represented explicitly in the
transformed domain. This allows easy examination of the
change in structure due to a change in scale. Structures
that are stable (locally invariant) with scale are identified
as corresponding to perceptually valid image structure. In
this manner, the processes of scale selection and structure
identification are integrated and performed automatically.

The transform can be viewed as collecting spatially dis-
tributed evidence for edges and regions and making it ex-
plicitly available at contour locations, and, in this sense, it
performs Gestalt analysis. Further, it does this without using
restrictive models of structure geometry or intensity variation,
and without the need for any user-specified parameters. This
allows the identification of precise structure boundaries that are
completely unsmoothed, even at coarse scales. The transform
incorporates into its definition the duality of region- and edge-
based descriptions of image structure, namely, that the regions
have a smooth variation of some property (e.g., intensity) in the
interior and a sharp discontinuity across the boundary. Thus,
the transform performs integrated edge and region detection,
and can be viewed as a multiscale edge and blob detector at
the same time.

The rest of this paper is organized as follows: Section II
reviews the general transform and presents the specific form
used in this paper. Section III discusses the extraction of image
structure from the transformed image, and Section IV gives
experimental results for synthetic and real images. Section V
presents concluding remarks.

II. THE TRANSFORM

In this section, we briefly review the transform for a contin-
uous, two-dimensional (2-D) gray-scale image. Extensions to
discrete space, arbitrary dimension, and vector-valued data are
straightforward. Details can be found in [16]–[18]. The general
form of the transform maps an image, , into a family of
attraction force fields, , as follows:

(1)

where domain and
. For each pixel (point) in an image, the transform

analyzes the intensities present in a neighborhood of the pixel,
and produces a force vector. Associated with each pixel is
a homogeneity scale, , which reflects the homogeneity of
the region into which the pixel groups, and a spatial scale,

, which controls the neighborhood from which the force
on the pixel is computed. The force field encodes the region
structure in a manner which allows easy extraction. The scale
parameters, and , determine the scale at which the image
regions get encoded within the field.

The transform computes at each pixel a vector sum of
pairwise affinities between the pixel and all other pixels. The
resultant vector produced by the transform at each pixel defines
both the direction and magnitude of attraction experienced by
the pixel from the rest of the image. The affinity between a pair
of pixels is determined by the scale parameters. The spatial
scale parameter, , controls the spatial distance function,

, and the homogeneity scale parameter,, controls the
homogeneity distance function, . For a grayscale image,
the homogeneity between two pixels, , is given by

(2)

With the above definition of the force field,, pixels are
grouped together into regions whose boundaries correspond to
diverging force vectors in and whose skeletons correspond
to converging force vectors in. In addition, an increase in
should cause less homogeneous structures to be encoded, and
an increase in should cause larger structures to be encoded.
To ensure such a relationship between scale and structure,
the distance functions, and , should possess the
following properties:

1) Unit Range: The transform measures the degree of
attraction among pixels, not repulsions. Therefore,

is required.
2) Decreasing Attraction (image characteristic): The de-

gree of attraction between pixels should be directly pro-
portional to their similarity,
for , and proximity,

for .
3) Increasing Attraction (scale characteristic): Pixel simi-

larity should be directly proportional to both homogene-
ity scale, for , and
spatial scale, for .

4) Isotropicity: Structure should not be detected by the
transform preferentially in any direction. Thus, we need

.
5) Locality: The field at each pixel should depend only

on a local (albeit adaptively determined) neighborhood
around that pixel. Hence, let for

, for some constant,.

Two possible forms for these functions satisfying the above
criteria are unnormalized Gaussian

(3)

(4)
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and box-car window

(5)

(6)

where

else
(7)

Although is not invariant to the form of and ,
different forms result in minimal change in the encoded
structure information, so long as the forms satisfy the listed
criteria. This is due to the property that structure is represented
as converging and diverging vectors which are locally invariant
to changes in scale. Experiments have been performed using
different functions (box-car, Gaussian, linear, exponential) for
both and on various real images. There was no
change in the detected structures using different forms for

, and only marginal changes for different forms of .
A box-car function for gives the best results, a point
which is explained in Section II-D, after some necessary
concepts have been introduced in the interceding sections.

A. Specific Formulation of Scale Used for Image Segmentation

Two independent scale parameters per pixel is overgeneral
for characterizing image structure. In this paper, a structure
is modeled by a single which characterizes the degree of
homogeneity of the structure, and a at each pixel which
characterizes its size and shape. This number of spatial scales
is necessary in order to identify a structure without any spatial
smoothing. For example, identifying an octopus-like structure
(large, main body with fine appendages) requires large values
of within the body and small values within the appendages.
In contrast, if retaining fine boundary detail is not necessary,
then a pair is sufficient to represent the scale of a
structure. In Section II-B, it is shown that, if the value offor
which a pixel belongs to a particular structure is known, then
the appropriate value for can be determined automatically.
This allows (1) to be simplified to

(8)

The homogeneity scale, , is made spatially invariant and
is the sole independent scale parameter to the transform.
This results in an image being mapped into a one-parameter
family of attraction force fields, , which contains all of the
multiscale structure present in an image, thereby simplifying
the problem of structure identification to a one-dimensional
(1-D) search.

In addition to regarding the set of spatial scales associated
with a structure as describing its size and shape, an alternative
(but equivalent) interpretation is that the spatial scales describe
the appropriate amount of spatial information necessary to
identify a structure having a given degree of homogeneity.
For example, if at a pixel is too small, then there may not
be enough spatial information available for the transform to
determine to which region the pixel should group. Similarly,

(a) (b)

Fig. 2. (a) For�g < 10, the circleC1 contains enough information to
identify that an edge is present at PointP . For10 � �g < 30, the edge should
still be present, butC1 does not contain enough information to determine this.
However,C2 does, (b) This illustrates the problem of overscaling.There is
too much information within circleC3 to determine whether or not an edge
is present at PointP . All local structure information has been lost.

if is too large, then the transform may group the pixel
into a region containing very distant and unrelated pixels.
Fig. 2 gives an example which demonstrates the necessity of
selecting properly in order to determine whether or not a
region boundary (edge) is present at a pixel. This example is
independent of the method actually used to perform the region
(edge) identification (the transform in this case).

There are four regions of constant intensity in Fig. 2(a),
each labeled by its intensity. The most reasonable groupings
with respect to for these regions are {50, 60, 70, 80} for

{50–60, 70–80} for , and
{50–60–70–80} for . Consider the point which
lies on the high-frequency edge separating regions 60 and
70, and the low-frequency edge between regions 50 and 80.
Let the spatial information usable for determining whether or
not an edge is present at be contained within a circle of
radius centered at , and also let denote the radius of
circle . For provides enough information
for determining that an edge should be present at. For

an edge should still be present, but does
not provide enough information to support this conclusion;
however, does. Too much information is just as
much of a problem as too little. For both these values of

, choosing as in Fig. 2(b) provides much more
information than necessary. Effectively, the local structural
information is lost. It should be apparent from Fig. 2 that, for
each value of at each pixel, there is some appropriate range
of values for which is necessary for structure identification
to be possible.

Within the context of the transform, selecting an appropriate
value of at a pixel, for a given , corresponds to the
pixel belonging to a region of contracting flow (inward force
vectors) defined by contiguous pixels. Such a region is termed
a region of attraction. The region boundary is the source of the
flow. Consider a region whose boundary is given by a closed
curve , where is the outward normal of . Denote by
the field immediately on the interior of and by the field
on the immediate exterior. From the property of contracting
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(a)

(b)

Fig. 3. (a) Proper choice of�s results in the black region being transformed
into a zone of attraction consisting of a single region of contracting flow.
(b) �s has been selected too large causing the zone of attraction to contain
several regions of contracting flow.

flow, satisfies the two relations

(9)

since every point on a boundary curve separates at least
two areas of contracting flow. Fig. 3(a) shows and
vectors for a black region on a white background. Other
values of may result in contracting flow over a set
of disconnected regions [see Fig. 3(b)]. The termzone of
attraction is used to denote the image space characterized by
contracting flow, regardless of whether or not it consists of
one or more regions.

B. Determining Values for

For a given , at each pixel within some region
needs to be chosen such thatcorresponds to a

region of contracting flow in . In general, a continuous range
of values of , denoted , yields contracting
flow. This range is determined by examining the behavior of

as is varied. is small

(a)

(b)

Fig. 4. (a) Binary image containing square black regions. (b) A plot of the
change in vector direction with�s is given for a pixel belonging to the square
pointed to byA. The three main minima correspond to the spatially stable
points. The pixel belongs to a different zone of attraction at each of these
points, corresponding to the three perceptual dot clusters to which the pixel
belongs.

if the pixel intensities are uniformly distributed where is
nonzero because the pairwise vector components in the vector
sum computed at by (8) tend to cancel out. As the in-
tensity distribution becomes more asymmetric,
becomes larger since the pairwise vector components no longer
cancel. For every , a pixel belongs to some region
of attraction. If is small enough so that the spatial
support of does not extend beyond the region, then

is small and the vector direction very sensitive
to noise. If is increased so that the spatial support
of extends beyond the region, becomes
larger and the vector direction becomes stable approximately
orthogonal to the nearest part of the region boundary. When
this occurs, the pixel has been properly scaled.

Define

such that (10)
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(a)

(b) (c)

Fig. 5. (a) Image of people at a 3-D movie. (b) and (c) show plots of�s versus�g for the two pixels located under the leftmost and rightmost, respectively,
crosshairs(+) overlaid onto the image. For (b), the pixel belongs to two regions of attraction: the woman’s face before and after it merges into the background.
For (c), the pixel belongs to three regions of attraction: the man’s shirt, the shirt merged into the rest of the man, and the man merged into the background.
Transitions between regions of attraction are clearly indicated by discontinuities in the value of�s.

The value of determines the smallest feature size that is
captured in the field structure. Explicit relationships between
structure scale and size can be created by varyingwith
scale. For example, making an increasing function of
scale increases the effective minimum structure size as scale
becomes coarser. Such issues are not addressed here, however.
For the purposes of this paper, we set 4, which is small
enough to allow structures of any arbitrary size and shape to
be identified except those which consist of only a couple of
pixels, and, hence, are heavily aliased. In general,represents
the minimum value for which signifies the
existence of an edge, and, when , an edge
exists roughly within a distance of from the pixel. If the
pixel is near the region boundary, is small, and is
approximately equal to the radius of the region if the pixel is
near the region center.

The value of corresponds to the largest , which
does not result in overscaling, i.e., the pixel becoming attracted
to a disconnected zone of attraction. This situation is detected

by examining the behavior of as is
increased beyond . As this occurs, the pixel initially belongs
to the connected zone of attraction. The vector direction tends
to change very slowly as long as this is true. However, when

becomes large enough, a transition occurs and the
pixel now belongs to a different zone of attraction. The vector
direction changes much more rapidly during such a transition.
As is further increased, the same cycle of behavior
may recur: an interval of little change in the vector direction
followed by rapid change during transition. We term the state
of little change as characterized byspatial stability. For each
zone of attraction to which the pixel belongs, the
value of for which the vector direction changes
the least is called aspatially stable point. Fig. 4(a) shows a
binary image containing squares composed of nine pixels. A
plot of is given in Fig. 4(b) for a pixel belonging
to the square pointed to by, where is defined as the
angle in radians of from some reference direction.
The stability points of the graph occur at .
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Fig. 6. Demonstration of the increase in the interval of�g for which
structures transition due to the use of functions fordg(�) other than a box-car.
Consider the transform computed at pointsP1 and P2 within a uniform
triangular region, and using the same value of�s, represented by the radius of
the drawn circles. Ifdg(�) is box-car, both points transition to the background
at the same value of�g, whereas ifdg(�) is Gaussian,P1transitions before
P2, resulting in a finite transition interval for the region.

Fig. 7. The presence of a concavity causes vectors to diverge across the line
segment formed by joining the concavity center on the region boundary (Point
A) to the nearest point on the medial axis of the region (Point B).

These are the locations of the three largest local minima in
the graph. Each minimum corresponds to a different zone of
attraction for this pixel. These zones of attraction correspond
to the three clusters in the image to which one perceives the
pixel A belonging. The cluster containing all pixels in the
image also has a stability point, but this point occurs for a
larger than shown in Fig. 4(b).

To prevent overscaling, the upper bound,, is defined as
the value of the first spatially stable point, i.e.,

such that (11)

Fig. 8. (a) 1-D signal with four levels. (b)–(d) Edges and some field vectors
are shown for three different scales: (b) at fine scale, four regions are detected;
(c) at a coarser scale, regions II and III merge together; (d) at an even coarser
scale, the edge separating regions II and III has reappeared, resulting in one
region consisting of regions I and II and another consisting of regions III
and IV.

(a) (b)

Fig. 9. (a) Segmented regions at different scales, with the intensities of the
finest scale regions labeled. (b) Tree corresponding to this segmentation. Each
node corresponds to a different region, and the range of�g for which each
region is present is shown within each node.

for . Selecting for each pixel
yields an with every force vector belonging to a region of
attraction.

C. Behavior of with

In this section, the effect of varying on is examined
first at the level of individual pixels, and then for entire
structures. For a given value of , each is chosen
properly as detailed in the preceding section.

As varies, a pixel initially belongs to the same region of
attraction for some range of values, but at some point it makes
a transition and becomes a part of another region of attraction.
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(a) (b) (c)

(d)

(e) (f) (g)

Fig. 10. (a) People at a 3-D movie. (b) Force vectors present withinF5. The vector directions are intensity coded so that the brightness is proportional
to the clockwise angle of the force vector from the positivex-axis. Intensity discontinuites correspond to region boundaries and skeletons, although some
discontinuities are artifacts of intensity based (linear) coding of the cyclic direction values. (c) Same as (b), but forF39. (d) Analogous to (b), but with
the force vectors shown as line segments. The length of the line segment represents the vector magnitude, and the vector tail is indicated by a small
square. (e)–(g) Region boundaries present at, respectively,�g = 5; 21; 39.
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(a)

(b) (c) (d)

(e) (f) (g)

Fig. 11. (a) Sailboat on a lake. (b–d) Region boundaries present at, respectively,�g = 5; 10; 26. (e)–(g) Same as (b)–(d), but with regions displayed
by their average gray level.

These transitions are readily discernible by examining the
– plot of a pixel. As increases, the region of attraction

to which a pixel belongs increases in size as pixels previously
outside the region (because they were too dissimilar), gradually
merge into the region. Since represents the approximate
distance between the pixel and the nearest boundary of its
region of attraction, is nondecreasing as increases.

While the pixel belongs to the same region of attraction,
increases slowly as increases. The nearest boundary point
of the next (coarser) region of attraction of the pixel is farther
away than the nearest boundary point of the present region
of attraction, resulting in a discontinuity in the value of at
the where the transition occurs. Examples of two typical

– plot are given in Fig. 5.
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(a)

(b) (c) (d)

(e) (f) (g)

Fig. 12. (a) Lena. (b)–(d) Region boundaries present at, respectively,�g = 7; 10; 21. (e)–(g) Same as (b)–(d), but with regions displayed by their
average gray level.

Fig. 5(a) shows an image of people at a three-dimensional
(3-D) movie. Plots of vs. are shown in 5(b) and 5(c) for
the pixels located at the centers of the leftmost and rightmost
crosshairs overlaid onto the image, respectively. The pixel
for Fig. 5(b) belongs to two relevant regions of attraction. The
first consists of the woman’s face, and the second occurs as
the face merges into the background region. The pixel for
Fig. 5(c) belongs to three relevant regions of attraction. The

first consists of the man’s shirt, the second occurs when the
shirt merges with the rest of the man, and the third occurs when
the man merges into the background. For both 5(b) and (c),
transitions between regions of attraction are clearly indicated
by discontinuities in the value of .

From examination of the – plot of a pixel, both the
number of structures to which the pixel belongs as well as
the range of for which the pixel belongs to each structure
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(a) (b)

(c) (d)

Fig. 13. (a) Aerial scene. (b)–(d) Region boundaries present at, respectively,�g = 7; 13; 26.

can be determined. However, in and of itself, this does not
provide enough information to do structure identification.
An understanding of the behavior of entire structures with
respect to is also required. As varies, some structures
coalesce while others disappear. Because image structures
generally have nonzero variance, regions of attraction form
and disappear over some range of. Hence, for any given
structure, as is increased, the structure gradually forms, then
remains relatively stable for some interval, and then gradually
disappears as its constituent pixels form into other, coarser
structures. The identification of these structures fromis
addressed in Section III.

D. Homogeneity Distance Function Selection

The purpose of this section is to motivate briefly the
use of a box-car function for . Consider Fig. 6, which
contains a uniform triangular region having contrastwith
the background. The transform is computed at pointsand

within the region for the same value of , represented
by the radius of the drawn circles. If a box-car is used for

, then both points merge into the background region at
. However, if is Gaussian, merges into the

background earlier than because the proportion of area

within the circle centered at occupied by the region is less
than the proportion within the circle at . The net effect
is that the range of for which the region merges into
the background is increased. This result also holds under the
addition of zero-mean noise. It is easily shown that the form
of which yields the shortest transition interval is the box-
car function. A longer transition interval reduces the interval
of for which a structure is stable, and may even eliminate it
entirely. Only structures which are marginally stable (using the
stable measure presented in Section III) are negatively effected
by this, which explains why the use of a box-car for vis-
a-vis other functions results in only a slight improvement in
segmentation quality.

III. I DENTIFYING REGIONS OFATTRACTION WITHIN

This section presents a method for identifying the regions of
attraction within that correspond to relevant image structure.
In order to illustrate the integration of edge- and region- based
representations within , Section III-A describes a purely
edge-based structure extraction method which gives closed
contours, and, hence, regions. In Section III-B, a stability
criterion is used to identify which of these structures is
perceptually valid. Finally, the issue of a compact and efficient
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(a) (b)

(c) (d)

Fig. 14. (a) 2-D slice from a CT scan of a dog heart. (b)–(d) Region boundaries present at, respectively,�g = 5; 13; 21.

form for representing the segmentation is addressed in Section
III-C.

A. Identifying Region Boundaries

Since (9) holds along each boundary curve, the vectors along
each boundary curve diverge from one another. For the interval
of for which a structure is fully formed within , these
boundaries form closed contours. Thus, structure identification
consists of searching for all sets of boundaries that form
closed contours. Toward this end, a local measure for a region
boundary needs to be defined. In a continuous space, one can
show that the only place within where vectors diverge from
one another is at region boundaries, and that this divergence is
always , regardless of the boundary geometry [16]. However,
discretization may reduce this divergence somewhat, and, for
regions containing concavities, causes vectors to diverge from
one another across the line segment formed by joining the
center of the concavity on the region boundary to the nearest
point on the medial axis of the region, as illustrated in Fig. 7.
In a continuous space, the angle between two vectors across
segment approaches zero in the limit as the vectors are
chosen arbitrarily close to . For a digital image, the finite
spatial resolution causes a nonzero angle of at mostto exist

between the vectors across the line segment. The value of
decreases as , and, hence, , increases. For 1, it is
easily shown that , and for

4, . The angular distributions of the divergence
present at region boundaries and concavities never overlap,
so can be used as a threshold for classifying these two cases.
Region boundaries are identified by comparing each vector
with its eight nearest neighbors. For example, to determine
whether or not a region boundary exists between and

at , the following test is used:

If &

&

then & are boundary pts. (12)

Analogous tests are used for the other neighboring vector pairs.

B. Structure Stability

Not all of the structures identified in the previous section
are perceptually valid. This is because reflects the relative
homogeneity within a structure, but not the relative contrast
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(a) (b)

(c) (d)

Fig. 15. (a) Aerial image taken from a camera mounted beneath an airplane. (b)–(d) Region boundaries present at, respectively,�g = 5; 10; 26.

of the structure with neighboring structures. The latter is
reflected in the extent of a structure in, or —lifetime.
This is measured from the point at which a structure is
half-formed to when it has half-disappeared. This results in
a pixel being assigned to a structure for every value of

. Exact computation of the —lifetime of a structure
requires examination of the plot of each pixel within
the structure for the discontinuities in , which indicate
transitions of the pixel into and out of the structure. This
could be done but is unnecessarily expensive computationally.
A simpler approach is to approximate the lifetime using only
the structure boundary pixels, since a transition at a boundary
pixel is reflected in an edge appearing or disappearing, and
this edge information is already computed in Section III-A.

A structure is considered stable with , and, hence, per-
ceptually relevant, if it obeys the following “octave” rule:

A structure with —lifetime , is stable iff

The octave rule essentially requires the homogeneity vari-
ation within a structure to be less than the relative contrast
between the structure and neighboring structures. This results
in structures that not only become less homogeneous as scale
becomes coarser, but also have increasing contrast with neigh-
boring regions. The octave rule yields good results in practice,
but is not based on psychophysical criteria. Experiments are
planned in which people subjectively evaluate segmentations

produced by different rules in order to determine a perceptually
valid criterion for identifying the regions of attraction which
correspond to relevant structures.

C. Segmentation Representation

This section addresses the issue of how best to represent
the segmentation obtained in Sections III-A and III-B. The
segmentation consists of a list of relevant structures along with
their —lifetimes and constituent pixels. Because this seg-
mentation retains the geometric fidelity of structure boundaries
at all scales, the segmentation often can be represented as a
tree, i.e., every structure consists of a set union of structures
present at any finer scale. In certain isolated situations, how-
ever, this does not hold true, as is demonstrated in Fig. 8. A
1-D signal having four levels is shown in Fig. 8(a). At some
initial scale, the resulting field is shown in Fig. 8(b) along
with the three edges detected. These edges separate the signal
into four regions, numbered as shown. At some coarser scale,
Fig. 8(c), the edge separating regions II and III disappears and
these regions merge. However, at a yet coarser scale, Fig. 8(d),
this edge reappears and the other two edges disappear.

Because a tree is such a convenient representation, the
segmentation is post-processed to explicitly force it into this
form. This is accomplished by projecting structure boundaries
downward to all finer scales. This prevents certain regions,
such as II and III in Fig. 8, from merging together. The
segmentation is now representable as a tree, such as the



654 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 6, NO. 5, MAY 1997

one in Fig. 9. Each node in the tree corresponds to a seg-
mented structure. Information about a structure which can be
stored at its associated node includes average intensity, texture
statistics, —lifetime, boundary chain-code, moments, area,
etc. The base of the tree contains the finest scale structures,
and incrementally coarser structures are represented as the
tree is traversed upwards. The tree representation has many
useful aspects, including efficient coarse-fine access to the
image structures as well as compact storage of the segmen-
tation.

IV. EXPERIMENTAL RESULTS

This section presents the results of the described image
segmentation method for a variety of real images. For each
image in Figs. 10–15, the tree representing the multiscale
segmentation is computed. The segmentation is visualized by
displaying the structure boundaries, as well as the average
gray-scale of the structures for Figs. 11 and 12, for each
structure present within the tree at a particular value of.
For each image, three different values ofwere selected
so that a wide variety of different structures can be seen.
For Fig. 10, in addition to the segmentation results shown
in Fig. 10(e)–(g), the directions of the force vectors that
comprise and are displayed in Fig. 10(b) and (c),
respectively. The vector directions are intensity coded so
that the brightness is proportional to the clockwise angle the
force vector makes from the positive-axis. Since structure
boundaries and skeletons are represented withinby di-
verging and converging, respectively, field vectors with phase
differences of approximately, they appear as sharp intensity
discontinuities. Some intensity discontinuities, however, are
artifacts due to the branch cut present along the positive-
axis, and should be ignored. Also, the force vectors ofthat
corresponding to the area within the white box in Fig. 10(a)
are displayed as line segments in Fig. 10(d). The length of
each line segment represents the vector magnitude, and the
vector tail is indicated by a small square. Fig. 10(d) allows
one to inspect more closely the structures encoded within.

Figs. 10–15 were selected to demonstrate the performance
of this algorithm in a variety of different situations, for
example, noise (Fig. 14); shading (Fig. 12); significant mul-
tiscale structure (Figs. 10, 11, 14, and 15); sharp and diffuse
edges in close proximity (Figs. 12–15); and high-curvature
structure boundaries (Figs. 10, 11). In all cases, the identified
structures closely correspond to human perception of relevant
structure, and the structure boundaries closely align with
the actual boundaries in the image. Finally, the amount of
computation required by this algorithm is reasonable. About
10 s is currently required to segment a 512512 image on
a Sun SPARC20 Workstation..

V. CONCLUSION

The application of a new nonlinear transform introduced
in [16]–[18] to the problem of image segmentation has been
described. The identified regions correspond to perceptually
valid image structure, and the identified region boundaries
align closely with the actual boundaries of the structures,

regardless of the scale of the structures. All parameters of
the transform are selected automatically, eliminating the need
for any user-specified parameters. Automatic selection of
both the homogeneity and spatial scales avoids the need
to make restrictivea priori assumptions about either the
geometric or homogeneity characteristics of the structure.
A tree is constructed that represents all of the structure
in a given image and the range of homogeneity scale for
which each structure is present. This approach to structure
detection is distinguished from previous methods in several
respects. First, scale is formulated in a manner which naturally
represents image structure. Second, the processes of scale
selection and structure detection are integrated. In addition, a
unification between region- and edge- detection is achieved
in the transformed domain. Finally, structure of arbitrary
geometry can be detected without any smoothing of the
structure boundaries, even at coarse scales.
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