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Multiscale Image Segmentation by
Integrated Edge and Region Detection

Mark Tabb and Narendra Ahuj&ellow, IEEE

Abstract—This paper is concerned with the detection of low-
level structure in images. It describes an algorithm for image
segmentation at multiple scales. The detected regions are ho-
mogeneous and surrounded by closed edge contours. Previous
approaches to multiscale segmentation represent an image at
different scales using a scale-space. However, structure is only
represented implicitly in this representation, structures at coarser
scales are inherently smoothed, and the problem of structure ex-
traction is unaddressed. This paper argues that the issues of scale
selection and structure detection cannot be treated separately. A
new concept of scale is presented that represents image structures
at different scales, and not the image itself. This scale is integrated
into a nonlinear transform which makes structure explicit in the
transformed domain. Structures that are stable (locally invariant)
to changes in scale are identified as being perceptually relevant.
The transform can be viewed as collecting spatially distributed
evidence for edges and regions, and making it available at contour
locations, thereby facilitating integrated detection of edges and
regions without restrictive models of geometry or homogeneity.
In this sense, it performs Gestalt analysis. All scale parameters
of the transform are automatically determined, and structure of
any arbitrary geometry can be identified without any smoothing,
even at coarse scales.

|. INTRODUCTION
. Fig. 1. Image of a sailboat on a lake. The image contains significant
HIS PAPER addresses the classical problem of detectif@itiscale structure. For example, at a scale where regions have significant

low-level structure in images, or image Segmentatio'mtensity variation, the cloud mass and water each can be considered as single
: : : P egions. However, if sensitivity to intensity variation is increased, individual
T_hIS pr_ObIem_ involves the identification of local a_tregs_ (releouds and the streaks within the water should be identified as regions.
gions) in an image that are homogeneous and dissimilar to
all spatially adjacent regions. Homogeneity may be measured o _
in terms of color, texture, motion, depth, etc., but for the This paper assumes @agriori knowledge of either the scale
purposes of this paper it is measured by graylevel similaritf geometry of any structures present within an image. The
Structure identification is inherently a multiscale problergoal is to identify all image structures without any smoothing
because image structure is recursive, i.e., regions may confirihe structure boundaries, regardless of the scale at which
substructure, which themselves contain substructure, etc. t¢ structures occur, and without incorrectly identifying any
course, digital images have finite resolution, so the numbermdnrelevant areas as structures. Perceptual validity is used as
levels of structure is limited (typically, 3—4). As an exampl@ subjective measure of structure relevance. A large number of
of the multiscale nature of structure, consider Fig. 1, whicklgorithms for image segmentation have been proposed over
consists of an image of a sailboat on a lake. The cloud make years. However, almost all of these methods completely
and water are each single regions at a scale which alloigsore the issue of scale. As a result, they are capable of
for significant intensity variation. However, if sensitivity toidentifying only a limited variety of structures. Some examples
intensity variation is increased, then individual clouds and tluf these approaches include: thresholding techniques [1], [2],
streaks within the water should be identified as regions. region growing [2]-[4], split-and-merge [5], watersheds [6],
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work was supported in part by the Advanced Research Projects Ager{lﬁsed) models [8]. Prior attempts at multiscale segmentation
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at any given scale may actually contain multiscale structunghere R = domair(I(u,v))\{(z,%)} and 7 = (v — z)i +
Hence, a multiscale segmentation algorithm is still required o — y)] For each pixel (point) in an image, the transform
extract the image structures from the scale-space decompasialyzes the intensities present in a neighborhood of the pixel,
tion. The basic problem with scale-space is that it representsaad produces a force vector. Associated with each pixel is
image at different scales, but not the image structure. Furtharhomogeneity scales,, which reflects the homogeneity of
all scale-spaces inherently involve some smoothing of tliee region into which the pixel groups, and a spatial scale,
image, which causes the boundaries of any extracted structtige which controls the neighborhood from which the force
to be smoothed as well. on the pixel is computed. The force field encodes the region
A new approach to segmentation is presented in this papstructure in a manner which allows easy extraction. The scale
Scale is defined such that it represents image structurepatametersy, ando,, determine the scale at which the image
different scales, not the image itself. For each structure, thigions get encoded within the field.
involves the use of a homogeneity scale which describes théThe transform computes at each pixel a vector sum of
amount of homogeneity variation within the structure, angairwise affinities between the pixel and all other pixels. The
a set of spatial scales which describe the size and shapsultant vector produced by the transform at each pixel defines
of the structure. This concept of scale is integrated intmth the direction and magnitude of attraction experienced by
a novel nonlinear transform introduced in [16]-[18]. Thehe pixel from the rest of the image. The affinity between a pair
structure at any given scale is represented explicitly in tlé pixels is determined by the scale parameters. The spatial
transformed domain. This allows easy examination of ttezale parametery,, controls the spatial distance function,
change in structure due to a change in scale. Structurg$-), and the homogeneity scale parametegy, controls the
that are stable (locally invariant) with scale are identifiedomogeneity distance functiod,(-). For a grayscale image,
as corresponding to perceptually valid image structure. fhe homogeneity between two pixel&/, is given by
this manner, the processes of scale selection and structure
identification are integrated and performed automatically. Al = I(z,y) = (v, w)|. (2)
The transform can be viewed as collecting spatially dis- \yith the above definition of the force field,

. ; ) L pixels are
tributed evidence for edges and regions and making it €%, ned together into regions whose boundaries correspond to
plicitly available at contour locations, and, in this sense,

) ; o _diverging force vectors i and whose skeletons correspond
performs Gestalt analysis. Further, it does this without using converging force vectors if. In addition, an increase in,

restric?ive models of structure geometry or intensity variatioghomd cause less homogeneous structures to be encoded, and
and without the need for any user-specified parameters. ThiSincrease im, should cause larger structures to be encoded.
allows the identification of precise structure boundaries that 3§ ensure such a relationship between scale and structure

completely unsmoothed, even at coarse scales. The transftm jiciance functionsd,(-) and d,(-), should possess the
incorporates into its definition the duality of region- and edg‘?c‘;llowing properties: g

based descriptions of image structure, namely, that the region:i) Unit Range The transform measures the degree of
have a smooth variation of some property (e.g., intensity) in the attraction among pixels, not repulsions. Therefares
interior and a sharp discontinuity across the boundary. Thus, dy(),do() < 18 requir,ed '

5(),ds(+) < .

the transform performs integrated edge and region detection . . . -
and can be viewed as a multiscale edge and blob detector a%) Decreasing At.tract|on (|mag-e charactenstm)’h e de-
gree of attraction between pixels should be directly pro-

the same time. : L
. . . ) : portional to their similarityd, (AL, 0,4) > dy(AL, 04)
The rest of this paper is organized as follows: Section Il for Al, < Al, Vo, and proximity, d,(71,0,) >

reviews the general transform and presents the specific form d.(70,) for 7]l < [i7all, ¥
used in this paper. Section Il discusses the extraction of imag%) Ir:c:égéing Att;;ctian ZSQC:;Ie T:Sﬁaracteristicyixel simi-

structure from the transformed image, and Section IV gives : : )
experimental results for synthetic and real images. Section V larity should be directly proportional to both homogene-
P y ges. ity scale,dy (Al o)) < dy(Alo}) for o} < o2, and

presents concluding remarks. spatial scaled, (7, 0!) < d (7, 02) for o1 < o2.
4) lIsotropicity. Structure should not be detected by the

II. THE TRANSFORM transform preferentially in any direction. Thus, we need
ds(7,05) = f(I[7], 05)-
Locality: The field at each pixel should depend only
on a local (albeit adaptively determined) neighborhood
around that pixel. Hence, let,(7,c5) = 0 for ||7|| >
¢ - g5, for some constang;.
Two possible forms for these functions satisfying the above
criteria are unnormalized Gaussian

In this section, we briefly review the transform for a contin- 5)
uous, two-dimensional (2-D) gray-scale image. Extensions to
discrete space, arbitrary dimension, and vector-valued data are
straightforward. Details can be found in [16]-[18]. The general
form of the transform maps an imagéz, i), into a family of
attraction force fieldsF(x, y; o4(z, y), 0s(x,¥)), as follows:

F(z,y; o4(z, ), 04(x,y)) dy(Aloy) ~ 27r0§NM(0,0'§) 3)
7

(
= d (AI,O' (xvy)) . ds(rv Us(xvy))——,»dUJdU (1) = ~ ¢V 27TO'§N||7—'|| (0,0’3), Hr” < 20,
/R/ g g 7l ds (7, 05) {07 17| > 20, @
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and box-car window

dg(Al, 04) ~ Bar(og) (5)
ds(7,05) ~ By (0s) (6)

where
B0 ={y M @

Although F is not invariant to the form ofi,(-) and d,(-),
different forms result in minimal change in the encoded
structure information, so long as the forms satisfy the listed

criteria. This is due to the property that structure is represented @) ()

as converging and diverging vectors which are locally invariahig. 2. (a) Fore, < 10, the circleC’y contains enough information to

; : tify that an edge is present at PafitFor10 < o4 < 30, the edge should
to changes in scale. Experiments have been performed ugﬂﬁﬂoe present, buf’; does not contain enough information to determine this.

different functions (box-car, Gaussian, linear, exponential) f@lowever, C-> does, (b) This illustrates the problem of overscaling.There is

both dg(.) and d,(-) on various real images. There was n¢po much information within circle’; to determine whether or not an edge

change in the detected structures using different forms f’arpresent at PoinP. All local structure information has been lost.

ds(-), and only marginal changes for different formsdf-).

A box-car function ford,(-) gives the best results, a point . )

which is explained in Section II-D, after some necessafly @5 iS 100 large, then the transform may group the pixel

concepts have been introduced in the interceding sectionsINt0 @ region containing very distant and unrelated pixels.
Fig. 2 gives an example which demonstrates the necessity of

A. Specific Formulation of Scale Used for Image Segmentatigf€Ctingos properly in order to determine whether or not a

) o rﬁ;ﬁion boundary (edge) is present at a pixel. This example is
Two independent scale parameters per pixel is overgengflependent of the method actually used to perform the region

for characterizing jmage strgcture. In thi§ paper, a struct &dge) identification (the transform in this case).
is modeled by a single,, which characterizes the degree of There are four regions of constant intensity in Fig. 2(a),

homogeneity of the structure, andog at each pixel which o,cpy |apeled by its intensity. The most reasonable groupings

characterizes its size and shape. This number of spatial sc3|ag respect tos, for these regions are {50, 60, 70, 80} for
is necessary in order to identify a structure without any spatigl . .~ _ 1 5{150—60 70-80} for 10 < s < 30. and
g b ’ _ g y

smoothing. For example, identifying an octopus-like Strucw@o_—60—70—80} foro, > 30. Consider the point? which
g > 30.

(large, main body with fine appendages) requires large valyess on the high-frequency edge separating regions 60 and
of o, within the body and small values within the appendagesy ang the low-frequency edge between regions 50 and 80.
In contrast, if retaining fine boundary detail is not necessarye the spatial information usable for determining whether or
then a(oy, 05) pair is sufficient to represent the scale of ot an edge is present @ be contained within a circle of
structure. In Section II-B, it is shown that, if the valuexgffor 5 4ius,. centered atP. and also let; denote the radius of
which a pixel belongs to a particular structure is known, the, o GS Foro. < 10 'O, = provid;S enough information

. . . i g y Vs —
the appropriate value far; can be determined automatically ¢, determining that an edge should be presentPatFor

This allows (1) to be simplified to 10 < o, < 30 an edge should still be present, byt= r; does
not provide enough information to support this conclusion;
F(z,y; o4(z,y),0:(z,y)) = Fo,(z,9). (8) however,s, = 7, does. Too much information is just as
much of a problem as too little. For both these values of
The homogeneity scaley,, is made spatially invariant ando,, choosings, = r3 as in Fig. 2(b) provides much more
is the sole independent scale parameter to the transfoinformation than necessary. Effectively, the local structural
This results in an image being mapped into a one-parameitgiormation is lost. It should be apparent from Fig. 2 that, for
family of attraction force fieldsF,,, which contains all of the each value o&, at each pixel, there is some appropriate range
multiscale structure present in an image, thereby simplifyiraf values fors, which is necessary for structure identification
the problem of structure identification to a one-dimensiontd be possible.
(1-D) search. Within the context of the transform, selecting an appropriate
In addition to regarding the set of spatial scales associatalue of o, at a pixel, for a givens,, corresponds to the
with a structure as describing its size and shape, an alternaipixeel belonging to a region of contracting flow (inward force
(but equivalent) interpretation is that the spatial scales descrimztors) defined by contiguous pixels. Such a region is termed
the appropriate amount of spatial information necessary agegion of attraction The region boundary is the source of the
identify a structure having a given degree of homogeneitffow. Consider a region whose boundary is given by a closed
For example, ifo; at a pixel is too small, then there may noturveV, whereVV is the outward normal df . Denote byF~
be enough spatial information available for the transform the field immediately on the interior af and byF ™ the field
determine to which region the pixel should group. Similarlypn the immediate exterior. From the property of contracting
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Fig. 3. (a) Proper choice af; results in the black region being transformed

into a zone of attraction consisting of a single region of contracting flow. (b)

(b) o5 has been selected too large causing the zone of attraction to con

several regions of contracting flow. tl@fa 4. (a) Binary image containing square black regions. (b) A plot of the

change in vector direction with; is given for a pixel belonging to the square
pointed to byA. The three main minima correspond to the spatially stable
points. The pixel belongs to a different zone of attraction at each of these

. L . oints, corresponding to the three perceptual dot clusters to which the pixel
flow, V satisfies the two relations gebng& P 9 pereep P

VV.F~ <0, VV.Ft >0 9)

if the pixel intensities are uniformly distributed whetg(-) is
since every point on a boundary curve separates at legshzero because the pairwise vector components in the vector
two areas of contracting flow. Fig. 3(a) shows™ and F*  sym computed atzo, 7o) by (8) tend to cancel out. As the in-
vectors for a black region on a white background. Othesnsity distribution becomes more asymmetfiE,, (o, vo)||
values of(ay,05) may result in contracting flow over a sethecomes larger since the pairwise vector components no longer
of disconnected regions [see Fig. 3(b)]. The temwne of cancel. For every,, a pixel (zo, %) belongs to some region
attractionis used to denote the image space characterized §yattraction. lfos (o, yo) is small enough so that the spatial
contracting flow, regardless of whether or not it consists @Upport of d,(-) does not extend beyond the region, then

one or more regions. IFs, (x0,¥0)| is small and the vector direction very sensitive
o to noise. Ifos(zo, o) is increased so that the spatial support
B. Determining Values fow, of d,(-) extends beyond the regiofiF,, (xo,%0)|| becomes

For a giveno,, at each pixelo, o) within some region larger and the vector direction becomes stable approximately
R, o4(x0,10) Needs to be chosen such tiatorresponds to a orthogonal to the nearest part of the region boundary. When
region of contracting flow ifF. In general, a continuous rangethis occurs, the pixel has been properly scaled.
of values ofc,(x0, o), denotedjo;, o], yields contracting ~ Define
flow. This range is determined by examining the behavior of
F,, (z0,y0) asos(wo,y0) is varied.||F,, (xo,%0)| is small o, =min(o,) such that|F,, (xo,%0)|| > 1 (og4,05). (10)
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Fig. 5. (a) Image of people at a 3-D movie. (b) and (c) show plots.ofersuso, for the two pixels located under the leftmost and rightmost, respectively,
crosshairg +) overlaid onto the image. For (b), the pixel belongs to two regions of attraction: the woman'’s face before and after it merges into the background.
For (c), the pixel belongs to three regions of attraction: the man’s shirt, the shirt merged into the rest of the man, and the man merged into the.backgrou
Transitions between regions of attraction are clearly indicated by discontinuities in the value of

The value of1" determines the smallest feature size that sy examining the behavior dF,, (zo,%0) as os(xo,%0) iS
captured in the field structure. Explicit relationships betweeancreased beyondl; . As this occurs, the pixel initially belongs
structure scale and size can be created by var{ingith to the connected zone of attraction. The vector direction tends
scale. For example, makin@ an increasing function of to change very slowly as long as this is true. However, when
scale increases the effective minimum structure size as scalézo, o) becomes large enough, a transition occurs and the
becomes coarser. Such issues are not addressed here, howpi@l.now belongs to a different zone of attraction. The vector
For the purposes of this paper, we et 4, which is small direction changes much more rapidly during such a transition.
enough to allow structures of any arbitrary size and shapeAs o.(xq,y0) is further increased, the same cycle of behavior
be identified except those which consist of only a couple afiay recur: an interval of little change in the vector direction
pixels, and, hence, are heavily aliased. In genérakpresents followed by rapid change during transition. We term the state
the minimum value for||F,, (xo,%0)|| which signifies the of little change as characterized bpatial stability For each
existence of an edge, and, whighi,,, (z0,%0)|| = 1", an edge zone of attraction to which the pixelro, o) belongs, the
exists roughly within a distance ef;” from the pixel. If the value of o,(z¢,yo) for which the vector direction changes
pixel is near the region boundary, is small, ando, is the least is called apatially stable pointFig. 4(a) shows a
approximately equal to the radius of the region if the pixel isinary image containing squares composed of nine pixels. A
near the region center. plot of |%9(05)| is given in Fig. 4(b) for a pixel belonging
The value ofr} corresponds to the largest(xo, 1o), which  to the square pointed to hy, whereé(s,) is defined as the
does not result in overscaling, i.e., the pixel becoming attractadgle in radians oF,, (o,%0) from some reference direction.
to a disconnected zone of attraction. This situation is detect€de stability points of the graph occur at = {2,9,48}.
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Fig. 8. (a) 1-D signal with four levels. (b)—(d) Edges and some field vectors
are shown for three different scales: (b) at fine scale, four regions are detected;
(c) at a coarser scale, regions Il and Ill merge together; (d) at an even coarser
scale, the edge separating regions Il and Il has reappeared, resulting in one
region consisting of regions | and Il and another consisting of regions I
and V.

Fig. 6. Demonstration of the increase in the interval «f for which
structures transition due to the use of functionsdgt-) other than a box-car.
Consider the transform computed at poirfs and P. within a uniform
triangular region, and using the same value of represented by the radius of
the drawn circles. Ifl,(-) is box-car, both points transition to the background
at the same value af,, whereas ifd,(-) is Gaussianp; transitions before
P,, resulting in a finite transition interval for the region.

@ (b)

Fig. 9. (a) Segmented regions at different scales, with the intensities of the

Fig. 7. The presence of a concavity causes vectors to diverge across thefiist scale regions labeled. (b) Tree corresponding to this segmentation. Each
segment formed by joining the concavity center on the region boundary (Poigde corresponds to a different region, and the range,ofor which each
A) to the nearest point on the medial axis of the region (Point B). region is present is shown within each node.

These are the locations of the three largest local minima ff o5 = o5 - Selectingo, (xo,40) € [0'5_70';] for each pixel
the graph. Each minimum corresponds to a different zone ¥f!dS anF with every force vector belonging to a region of
attraction for this pixel. These zones of attraction correspofraction.

to the three clusters in the image to which one perceives the ) )

pixel A belonging. The cluster containing all pixels in thé>: Behavior ofF with o

image also has a stability point, but this point occurs for a In this section, the effect of varying, on F is examined

larger o, than shown in Fig. 4(b). first at the level of individual pixels, and then for entire
To prevent overscaling, the upper bound;, is defined as structures. For a given value of,, eacho (g, o) is chosen
the value of the first spatially stable point, i.e., properly as detailed in the preceding section.
As o, varies, a pixel initially belongs to the same region of
o} = min(s,) such thati ig(as) >0 (11) attraction for some range of values, but at some point it makes
Ts | Q05 a transition and becomes a part of another region of attraction.
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D movie. (b) Force vectors present wihinThe vector directions are intensity coded so that the brightness is proportional

(e)

(a) People at a 3

Fig. 10.

Intensity discontinuites correspond to region boundaries and skeletons, although some

to the clockwise angle of the force vector from the positivaxis.

but with

1

Byt fed) Analogous to (b)

discontinuities are artifacts of intensity based (linear) coding of the cyclic direction values. (c) Same as (b)

the force vectors shown as line segments. The length of the line segment represents the vector magnitude, and the vector tail is indicated by a small

square. (e)—(g) Region boundaries present at, respectivgly= 5,21,39.
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Fig. 11. (a) Sailboat on a lake. (b—d) Region boundaries present at, respedctiyely, 5,10, 26. (e)—(g) Same as (b)—(d), but with regions displayed
by their average gray level.

These transitions are readily discernible by examining tiWhile the pixel belongs to the same region of attractieq,
o4—0, plot of a pixel. Asg, increases, the region of attractiorincreases slowly as, increases. The nearest boundary point
to which a pixel belongs increases in size as pixels previousif/the next (coarser) region of attraction of the pixel is farther
outside the region (because they were too dissimilar), gradualyay than the nearest boundary point of the present region
merge into the region. Since, represents the approximateof attraction, resulting in a discontinuity in the value of at
distance between the pixel and the nearest boundary of the o, where the transition occurs. Examples of two typical
region of attraction,s; is nondecreasing as, increases. o,—o, plot are given in Fig. 5.
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Fig. 12. (a) Lena. (b)—(d) Region boundaries present at, respectiwgly= 7,10,21. (e)-(g) Same as (b)—(d), but with regions displayed by their
average gray level.

Fig. 5(a) shows an image of people at a three-dimensioriiabt consists of the man’s shirt, the second occurs when the
(3-D) movie. Plots ofr; vs. o, are shown in 5(b) and 5(c) for shirt merges with the rest of the man, and the third occurs when
the pixels located at the centers of the leftmost and rightmdke man merges into the background. For both 5(b) and (c),
crosshairg+) overlaid onto the image, respectively. The pixelransitions between regions of attraction are clearly indicated
for Fig. 5(b) belongs to two relevant regions of attraction. Thigy discontinuities in the value of .
first consists of the woman’s face, and the second occurs agrom examination of thes,—o, plot of a pixel, both the
the face merges into the background region. The pixel faumber of structures to which the pixel belongs as well as
Fig. 5(c) belongs to three relevant regions of attraction. Thiee range ofs, for which the pixel belongs to each structure
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Fig. 13. (a) Aerial scene. (b)—(d) Region boundaries present at, respectively, 7,13, 26.

can be determined. However, in and of itself, this does nwithin the circle centered aP; occupied by the region is less
provide enough information to do structure identificatiorthan the proportion within the circle aP,. The net effect
An understanding of the behavior of entire structures witls that the range otr, for which the region merges into
respect tos, is also required. Asr, varies, some structuresthe background is increased. This result also holds under the
coalesce while others disappear. Because image structwmédition of zero-mean noise. It is easily shown that the form
generally have nonzero variance, regions of attraction forofi d,(-) which yields the shortest transition interval is the box-
and disappear over some rangeogf Hence, for any given car function. A longer transition interval reduces the interval
structure, as is increased, the structure gradually forms, theof o, for which a structure is stable, and may even eliminate it
remains relatively stable for some interval, and then graduabiytirely. Only structures which are marginally stable (using the
disappears as its constituent pixels form into other, coarstable measure presented in Section IIl) are negatively effected
structures. The identification of these structures frbimis by this, which explains why the use of a box-car &) vis-
addressed in Section llI. a-vis other functions results in only a slight improvement in
segmentation quality.

D. Homogeneity Distance Function Selection

The purpose of this section is to motivate briefly the
use of a box-car function fod,(-). Consider Fig. 6, which  This section presents a method for identifying the regions of
contains a uniform triangular region having contréstwith attraction withinF' that correspond to relevant image structure.
the background. The transform is computed at poifitsand In order to illustrate the integration of edge- and region- based
P, within the region for the same value of,, represented representations withir¥, Section IlI-A describes a purely
by the radius of the drawn circles. If a box-car is used fadge-based structure extraction method which gives closed
dy(-), then both points merge into the background region abntours, and, hence, regions. In Section |lI-B, a stability
o4 = C. However, ifd,(-) is Gaussian’, merges into the criterion is used to identify which of these structures is
background earlier tha’, because the proportion of aregperceptually valid. Finally, the issue of a compact and efficient

Ill. I DENTIFYING REGIONS OFATTRACTION WITHIN F
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™y

Fig. 14. (a) 2-D slice from a CT scan of a dog heart. (b)—(d) Region boundaries present at, respecfively, 13, 21.

© (d)

form for representing the segmentation is addressed in Sectimiween the vectors across the line segment. The value of

1-C. decreases as,, and, hencel’, increases. Fofl’ = 1, it is

easily shown that = 2arctan(1/(v/2 + 1)) ~ /4, and for

T = 4, e = 7/7. The angular distributions of the divergence

present at region boundaries and concavities never overlap,
Since (9) holds along each boundary curve, the vectors algmgcan be used as a threshold for classifying these two cases.

each boundary curve diverge from one another. For the interiRggion boundaries are identified by comparing each vector

of g, for which a structure is fully formed withiiF, these with its eight nearest neighbors. For example, to determine

boundaries form closed contours. Thus, structure identificatioiether or not a region boundary exists betwéeg yo) and

consists of searchin@ for all sets of boundaries that form(zo + 1,y0) at o, = 040, the following test is used:

closed contours. Toward this end, a local measure for a region

boundary needs to be defined. In a continuous space, one can  If F,, (xo,90)s <0 & Fy (w0 +1,50)z > 0

show that thg only pl_ace withiR vyhere vectors qlver_ge from . F,,. (20, %0) - Fo, (20 + 1,0)

one another is at region boundaries, and that this divergence is & F F 1

always, regardless of the boundary geometry [16]. However, 1o, (o, yo)lll[Foy, (2o + 1, 30)ll

discretization may reduce this divergence somewhat, and, for ~ then(zo,%o0) & (xo +1,50) are boundary pts.  (12)

regions containing concavities, causes vectors to diverge from

one another across the line segment formed by joining tA@alogous tests are used for the other neighboring vector pairs.

center of the concavity on the region boundary to the nearest

point on the medial axis of the region, as illustrated in Fig. 7. .

In a continuous space, the angle between two vectors acrBssdtructure Stability

segmentAB approaches zero in the limit as the vectors are Not all of the structures identified in the previous section

chosen arbitrarily close telB. For a digital image, the finite are perceptually valid. This is becausg reflects the relative

spatial resolution causes a nonzero angle of at méstexist homogeneity within a structure, but not the relative contrast

A. Identifying Region Boundaries

< Ccose
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© (d)

Fig. 15. (a) Aerial image taken from a camera mounted beneath an airplane. (b)—(d) Region boundaries present at, respesctively), 26.

of the structure with neighboring structures. The latter jgroduced by different rules in order to determine a perceptually
reflected in the extent of a structure 1, or o,—lifetime.  valid criterion for identifying the regions of attraction which
This is measured from the point at which a structure irrespond to relevant structures.

half-formed to when it has half-disappeared. This results in

a pixel being assigned to a structure for every value

o4. Exact computation of ther,—lifetime of a structure ] ) i
requires examination of the, — o, plot of each pixel within This section addresses the issue of how best to represent

the structure for the discontinuities ia,, which indicate the seégmentation obtained in Sections IlI-A and Ill-B. The
transitions of the pixel into and out of the structure. Thiégmentation consists of a list of relevant structures along with
could be done but is unnecessarily expensive computationalfji" os—lifetimes and constituent pixels. Because this seg-
A simpler approach is to approximate the lifetime using onlgpentanon retains the geometric fidelity of structure boundaries
the structure boundary pixels, since a transition at a bound&ly@!l cales, the segmentation oftefn can be _repre;sented as a
pixel is reflected in an edge appearing or disappearing, alige i.e., every structure consists of a set union of structures
this edge information is already computed in Section I1I-A. present at any finer scale. In certain isolated situations, how-
A structure is considered stable with, and, hence, per- ever, this does not hold true, as is demonstrated in Fig. 8. A

ceptually relevant, if it obeys the following “octave” rule: 1-D signal having four levels is shown in Fig. 8(a). At some
P y ’ Y 9 " initial scale, the resulting field is shown in Fig. 8(b) along

with the three edges detected. These edges separate the signal
into four regions, numbered as shown. At some coarser scale,
Fig. 8(c), the edge separating regions Il and Il disappears and
The octave rule essentially requires the homogeneity vafirese regions merge. However, at a yet coarser scale, Fig. 8(d),
ation within a structure to be less than the relative contragiis edge reappears and the other two edges disappear.
between the structure and neighboring structures. This resultBecause a tree is such a convenient representation, the
in structures that not only become less homogeneous as sealigmentation is post-processed to explicitly force it into this
becomes coarser, but also have increasing contrast with nei@m. This is accomplished by projecting structure boundaries
boring regions. The octave rule yields good results in practiasdgownward to all finer scales. This prevents certain regions,
but is not based on psychophysical criteria. Experiments anech as Il and Il in Fig. 8, from merging together. The
planned in which people subjectively evaluate segmentatiosmgmentation is now representable as a tree, such as the

@. Segmentation Representation

A structure witho,—lifetime [g1, g2], is stable iffg, > 2¢;.
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one in Fig. 9. Each node in the tree corresponds to a seggardless of the scale of the structures. All parameters of
mented structure. Information about a structure which can the transform are selected automatically, eliminating the need
stored at its associated node includes average intensity, texfore any user-specified parameters. Automatic selection of
statistics,o ,—lifetime, boundary chain-code, moments, aredoth the homogeneity and spatial scales avoids the need
etc. The base of the tree contains the finest scale structutesmake restrictivea priori assumptions about either the
and incrementally coarser structures are represented as ghemetric or homogeneity characteristics of the structure.
tree is traversed upwards. The tree representation has méanyree is constructed that represents all of the structure
useful aspects, including efficient coarse-fine access to ihea given image and the range of homogeneity scale for
image structures as well as compact storage of the segmehich each structure is present. This approach to structure
tation. detection is distinguished from previous methods in several
respects. First, scale is formulated in a manner which naturally
IV. EXPERIMENTAL RESULTS represents image structure. Second, the processes of scale
selection and structure detection are integrated. In addition, a
ification between region- and edge- detection is achieved
the transformed domain. Finally, structure of arbitrary

This section presents the results of the described im
segmentation method for a variety of real images. For e

image in Figs. 10-15, the tree representing the multisc 8ometry can be detected without any smoothing of the
segmentation is computed. The segmentation is visualized Mucture boundaries. even at coarse scales

displaying the structure boundaries, as well as the average

gray-scale of the structures for Figs. 11 and 12, for each
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