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Abstract

In this paper, we propose an algorithm for estimat-
ing dense shape and motion of dynamic piecewise pla-
nar scenes from region correspondences using factor-
wzation. Region correspondences are used since they
are easter to establish and more reliable than either
line or point correspondences. The itmage measure-
ments required are the centroid and area for each re-
gion. Singular value decomposition is employed to find
the basis of range space of the motion, shape, and sur-
face normal matrices. By imposing model constraints,
motion, shape, and surface normal can be recovered
only from region correspondences.

1 Introduction

Recovering 3-D shape and motion from image se-
quences is an important task in computer vision. The
existing methods can be classified into two categories:
the feature based and the optical flow based. The
accuracy of structure and motion estimates depends
on the accuracy of feature correspondences and op-
tical flow. Most of the existing structure from mo-
tion algorithms use point or line features. This paper
uses regions to estimate image motion and thereby 3D
structure and motion. The use of regions is expected
to reduce the sensitivity to noise, thus improving the
estimates.

Several efforts have been made to solve the prob-
lem of structure from motion using region informa-
tion. Sull and Ahuja [11] proposed a region-based
method to estimate the 3-D structure and motion of
textured piecewise planar surfaces. They assume that
each plane has at least four regions, and use Hough
transform to estimate the second order image flow and
to perform region matching. A closed form solution
is then obtained by solving the flow field equations.
Negahdaripour and Lee [10] estimate first order op-
tical flow. They prove that in order to recover the
motion and 3-D planar structure, at least two image
regions with distinct first order flow structures have

to be identified. Using the coefficients of the flows for
such regions, a closed form solution for the camera mo-
tion and the orientation of the surface normals of the
regions are found. Lee and Cooper [5] approximate a
3-D surface by planar patches. Region matching be-
tween images is done by using affine invariants. Hav-
ing recovered the region matches, they give a closed
form solution for motion and structure of the regions.
Also, Schweitzer and Krishnan [6] approximate im-
age motion induced by camera or object motion by an
affine coordinate transformation and extract 3-D in-
formation directly from the affine parameters. Their
algorithm uses expressions involving six affine param-
eters computed for each image patch. All these meth-
ods have to estimate parameters relating regions in
motion. In this paper, we introduce a region-based
factorization method for estimating dense shape and
motion of textured, piecewise planar scenes directly
from region correspondences.

Factorization for motion and structure estimation
has been used in two related contexts under ortho-
graphic assumptions [1, 4, 2]. Singular value decom-
position (SVD) technique is the key step for this family
of algorithms. One purpose of SVD is to find the basis
for range space of parameter matrices, and the other
purpose is to reduce measurement noise by directly
exploring data model constraints (rank theorem). De-
brunner and Ahuja [1, 2] propose an algorithm based
on factorization by assuming that motion is constant
over a short period, which gives closed-form expres-
sions of shape and motion for multiple objects motion.
Tomasi and Kanade [4] factorize the feature point lo-
cations in image stream into the object shape and
camera motion. A family of structure from motion al-
gorithms using long sequences based on factorization
has been developed [4, 3, 8]. These algorithms use
models ranging from orthographic projection model
to affine camera model and point correspondences to
line correspondences. In this paper, we propose an



algorithm that uses region features assumed to lie on
piecewise planar surfaces imaged under orthographic
projection.

A multiscale segmentation of all image frames is
performed and the regions are matched [12; 9]. The
centroids and areas of regions are recorded in the rel-
ative position matrix and the area matrix. These two
matrices carry information about motion and struc-
ture, which can be extracted by singular value de-
composition followed by a normalization procedure.
The key idea is that by including region area mea-
surements into the motion and structure normaliza-
tion step, both the 3-D coordinates of region centroids
and the corresponding planar patch normals can be
computed, which means dense shape and motion can
be recovered.

This paper is organized as follows. We first analyze
the data model - the relationship between the param-
eters to be estimated and the measurements. Then,
an algorithm based on orthographic projection is pre-
sented followed by dense shape and motion solutions
under weak-perspective and para-perspective models.
Finally, the algorithm is tested using synthetic data
and real images.

2 Data Model

Suppose an object surface consists of R planar
patches whose correspondences are known across im-
age frames. Denote region r in f-th frame RE, ;,
where r = 1,--- R;f = 1,---  F. Due to the piece-
wise planar nature of the scene, the dense shape can
be represented by (1) the centroid of each region C_>'T,
which is a 3-D vector in the World coordinate system,
and (2) the unit normal vector ;. The objective then
is to recover C’ and n; for each region.

The recovery is based on the locations and areas of
image regions, since under rigidity constraint, the rel-
ative positions as well as the areas of the correspond-
ing 3D planar patches are invariant to motion. Two
measurement matrices, called relative position matriz
and region area matriz are formed, and motion and
structure are recovered from them by singular value
decomposition.

2.1 Relative Position Matrix

The relative region positions are represented by the
relative position vectors, defined to be P, = C, —

ref,*=1,---, R, which gives the position of region
r relative to some reference region (Figure 1). The
reference region RE,.; can be arbitrarily chosen from
the R regions.

Under orthographic projection, a 3-D vector (or
point) §p> in world coordinate system is related to the

image plane

Figure 1: Relative Position Vectors

image plane pixel (uzp,vsp) by

wpp =T (5 =Ty =T1(50=T0) (1)
where ?f = (ays,bys,cp)Tis the vector from the world
origin to the origin of image frame f, and 7)f and
?f are the direction vectors along x and y axes in
the image plane.

By moving the world origin to the centroid of the
reference region, we obtain the relationship between
the relative position vector P, and its projection on
the image plane t;, as

Upr = zf?r,vfr_ _]f (2)

We measure the projections of the relative position
vectors to form a measurement matrix W as

W = RP (3)
- = — = = — 17T
where R = [ is - ip 1 jgo - jp ]

isa2F x 3 matrlx representmg motion (rotation), and
P=] P1 PR ] is a 3 x (R—1) relative position

matrix. Obviously, W is at most of rank three due to
the fact that it is the product of a 2F x 3 matrix and
a3 x (R —1) matrix.
2.2 Region Area Matrix

Let Sy be the actual area of a planar patch, Sy
be the area projected onto the image plane, and
7 be the unit normal vector of the planar patch.
Under orthographic projection model, let N be the

weighted normal vector of patch r, i.e. N, = Sy 7/,

Given R region correspondences in F' frames, denote
T

the area of region r in frame f as a;. = k’_f) NZ,

where r =1, --

- Rand f=1,--

measurement matrix A as

-y F. Forman I'x R

ai; a1z - G1R
@21 422 - G2R

A= ] ] ) . (4)
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The measurement matrix can be expressed in matrix
form as

A=KN (5)
where,
. - = — 1T
K = [k ks kp ]
- == —
N = [N N Ng |
ay 0 0
0 as 0

I
5
3l
2l

0 0 - ap
Clearly, the rank of matrix A is also at most three.

3 Shape and Motion Estimation

From the above analysis, we have two measurement
matrices: the relative position matrix and the region
area matrix. These two measurement matrices are of
at most rank three from the data model. We perform
singular value decomposition on these two matrices
and find their best rank three approximates respec-
tively. One purpose for this is performing denoising
of the measurement matrices according to the data
model. Because the inherent data model can only pro-
duce rank three measurement matrices, if the measure-
ment matrices have rank larger than three, it must be
caused by the measurement noise. So, the rank three
approximation can be considered as noise filtering in
the least squares sense. Another purpose of singular
value decomposition 1s to find the basis of the mo-
tion subspace, the shape subspace, and the surface
normal subspace, after which we can use the metric
constraints to solve for motion matrix, shape matrix
and surface normal matrix.

3.1 Relative Position Matrix Factoriza-
tion

From the relative position matrix equation (3),
W = RP, we compute the singular value decomposi-
tion of matrix W [4], W = 0120, , such that 0T O, =
0F0y = 0,0 = I, where I is the (R —1) x (R —1)
identity matrix. X is a diagonal matrix whose diago-
nal entries are the singular values. If the singular val-
ues are sorted in non-decreasing order, the first three
columns of Oy denoted as Of, the first 3 x 3 submatrix
of ¥ denoted as ¥/, and the first 3 rows of O denoted
as Oy will form the best rank three approximation to

W as
W = 0105 (6)

If we cleﬁneARA = 0} and P = ¥'O), then we can
write W = RP R and P are with respect to a linear

transform ) of the true solution R and P, that is
R=RQ,,S=Q7'P (7)

where, ()1 i1s an invertible 3 x 3 matrix. @ is de-

termined later by using the metric constraints in the

normalization step.

3.2 Region Area Matrix Factorization
Referring to equation (5), A = KN, we compute

the SVD of matrix A, and find best rank three ap-

proximation of A as

A=0\Y0,=KN (8)

where K = O) and N = ¥/0}. The true solution
matrix K and the weighted surface normal matrix N
are related to K and N by a linear transform )2, 1.e.

K=KQyN=Q3'N 9)

where, (J» 1s an invertible 3 X 3 matrix and can be
solved for in a normalization step.
3.3 Normalization: Solve for (); and (>
From the above two factorization steps, we have the
affine motion and structure up to the liner transforms
@)1 and Q2. In order to calculate the true solution,
1 and @3 have to be calculated by imposing metric
constraints [4].
The unknown variables include the 18 matrix com-
ponents in (1 and (5. Using the metric constraints

=T = =T = 2T
ZleQlZf:]leQljf:kaZszf:L

(10)
—T — —T —T

T 777 777
ZleQl J = lleQz ky= JleQz k=0,
(11)
this non-linear data fitting problem is solved by the
Levenberg-Marquardt method.

4 Outline of the Algorithm

Based on the development in the previous sections,
we now have an algorithm for dense shape and motion
estimation:

1. Compute the SVD of W= 01X0> and find best
rank three approximate of W = RP, where R =
O} and P =XY'0),.

2. Compute the SVD of A = 01X0> and find best
rank three approximate A = KN, where K = 0}
andN = X0,

3. Compute the matrices 1,2 by imposing the
metric constraints.



4. Compute the rotation matrix R and K as R =
RQ1 and K = K Q2. Compute the relative posi-
tion vector matrix P as P = Q1 p. Compute the

weighted surface normal matrix as N = Q)5 'N.

5. If desired, align the first camera reference sys-
tem with the world reference system by forming
the products RRy, RY P, K Ry, and RO N, where
the orthonormal matrix Ry = [11 J1 kl] rotates
the first camera reference system into the iden-
tity matrix.

6. Normalize the weighted surface normal vectors in
matrix N to get the unlt surface normals. i.e.
unit surface normals, 7} = N /||N [|, and region
area ar_||N [|, for r =1,2,---, R.

7. Calculate shape from region centr01d 3-D coordi-
nates Pr and surface normal 77, since in region

r, the 3D coordmates for every pixel satisfies
equatlon.( - P Vink =
4.1 Alternative Method for Motion,

Shape and Surface Normal

In the algorithm described above, a non-linear data
fitting procedure is invoked to calculate (1 and 2.
Instead, a linear procedure can be used if the rela-
tive position matrix is more accurate than the region
area matrix. We can first calculate shape and motion
from the relative position matrix using Tomasi and
Kanade’s algorithm [4, 13].

From the metric constraints, i.e.

—>T—> —T = —T—
ipif = s =17 j =0 (12)

we obtain the system of 3 x F' over-determined equa-
tions for (1. Instead of solving for @y, if let L =
@1QT, the 3 x F equations become

T T N
=S 5 -
i L =3 Lij=11 Lij=0 (13)

where L € R33 is a symmetric matrix and z}

T
and _]} are the rows of R. By denoting E} =
lis1,iga,igal, jf = [dp1sdr2, Jps], and

lh Iy I3
L=11L las I (14)
s I I

the metric constraints can be rewritten as

GT =2 (15)

where G € R3'%6, T € RS, and ¢ € R3F are defined
by

g (ap,by) = agpibpi,apibso + apabsy,apibps 4 apsbyy,
(16)

apabypo, apabrs + apsbeo, apsbys].

The minimum norm least squares solution of the sys-
tem 1s given by the pseudo-inverse method, i.e.

T=c'72. (17)

where GT is the Moore-Penrose pseudo-inverse of
matrix G. When G has full column rank, GT =
(GTG)~*GT. The vector T determines the symmet-
ric matrix L, whose eigendecomposition gives Q.
After motion R and the shape S are calculated the
K matrix can be determined by k’_f) = E) X _]f Then
from equation (5) A = KN, the surface normal can
be determined as N = KTA, where KT is the Moore-
Penrose pseudo-inverse of matrix K. After normaliza-
tion, we get both the true region areas and the surface
normals.
4.2 Shape and Motion Under Weak-
perspective and Para-Perspective
Models

4.2.1 Weak-perspective

Under weak-perspective projection, the relationship
between weighted surface normal and Z-axis di-
rection vector £ is

TN =a (18)

where d is the scaling factor of weak-perspective model
and « is the region area in image plane.

If we define ?/ = ?/df and ?/ = ﬁ/df, absorb
the scaling factor into the weighted surface normal and
the Z-axis direction ?, i.e.,ﬁ/ = l/dﬁ and % =
1/d?, the measurement matrices W and A and the



factorization step are the same as in the orthographic
case. Because we do not know the value of depth d,
the metric constrains in the normalization step cannot
be the same as in orthographic case [3]. Instead we can
impose the constrains

— —r —
17 17 = 117 17 = Mlk7 1 (19)
We can still use the orthogonality constraints

—iT —1

P k=0 (20)

—IT
ki = s

ty Jr = U

In order to avoid trivial solutions, we impose the

. —
constraint ||if || = 1.

From the above constraints, we compute ()1 and
(2. Other steps are the same as for orthographic case.
We can also first solve for ); and then compute the
surface normal.

4.2.2 Para-Perspective

Under the para-perspective projection model, the area
in the image plane can be expressed as [7]

) (21)

Sr=1/d*Sw (7T ) /(7T
where, 7 is the projection direction vector. This
equation is non-linear and could not facilitate factor-
ization of the region area matrix. However, by para-
perspective factorization method [3], k_;, ds, and 7f
can be solved. From the above equation, we get

7T wSw = d2S 7T k) (22)

By measuring the region area in many frames and in-
cluding the computed parameters, we can form a least-
squares approximation of the surface normal 7. Thus
the shape and motion can also be computed by form-
ing the region area measurements.

5 Experiments
5.1 Synthetic Data

The synthetic data used were created by simulat-
ing 200 planar patches in random 3D motion. 200
3D coordinates, 200 3D unit directional vectors, and
200 positive numbers are generated randomly to simu-
late the centroids of the planar patches, the associated
surface normals and the region areas, respectively. 50
random 7), 7), and k’s are generated to represent 50
frames of random camera motion. The measurement
matrices are then created by orthographic projection
and perturbed by addicative Gaussian noise, which
simulate the region tracking error and image noise.

Figure 2(a)(b) show the sum of squared estimation
error of motion and shape as a function of the variance

(a)Motion Error (b)Shape Error

Figure 2: Error Vs. Image Noise

Figure 3: First frame and region segmentation

of the Gaussian noise (in pixels). We can see that the
proposed method can obtain good estimates over a
long sequence.

5.2 Real Sequence

Figure 3(a) shows the first frame of a sequence in
which a model house is placed on a rotating platform
with angular velocity of 1 degree per frame. 10 frames
are used for this experiment.

Region detection and region matching is done by
the algorithm proposed by Tabb and Ahuja [9, 12].
The algorithm gives the region trajectories over F
frames together with the 2-D region motion approx-
imated by an affine model. Figure 3(b) shows the
regions obtained for matching by the multiscale seg-
mentation algorithm.

Figure 4(a) and Figure 4(b) show the computed
dense shape from two different view directions. Fig-
ure 5 shows the image warped on the computed shape.

We can see that reasonably good scene structure
has been reconstructed. Due to the fact that some
regions are not planar in nature, e.g. the base of the
house and the bushes in front of the house, and some
regions are not detected consistently from frame to
frame, e.g. an adjacent small region may merge with
the region, errors in the computed dense shape are
noticeable, e.g. boundary continuity between adjacent
regions may be violated. Further refinement of the
dense shape can be done by either an interpolation or
an optimization procedure.
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Figure 5: Warp the image onto the computed dense
shape

6 Conclusions

We have described a factorization based approach
for recovering shape and motion of piecewise planar
objects using region measurements of long video
sequences. The surface normal of each region can
be recovered from region area measurements which
enables recovery of dense shape and motion. Com-
pared with existing factorization methods which use
constraints along x and y directions, we introduce
the constraints in the depth direction. The advan-
tage of the proposed method is that only region
correspondences are required. The region correspon-
dences can be more reliably established compared to
either point or line correspondences. This method
can be naturally integrated with multiscale image
segmentation to yield a multiscale shape from motion.
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