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Abstract 
 

This paper proposes an algorithm to simultaneously 
estimate both the 3D shape and parameters of a 
surface reflectance model from multiple views of an 
object made of a single material. The algorithm is 
based on a multiple view shape from shading method. 
The shape of the object is represented by a triangular 
mesh. The Phong reflectance model is used to model 
the surface reflectance. We iteratively find the shape 
and reflectance parameters that best fit all input 
images. The estimates of shape and reflectance model 
are gradually refined by subdividing triangles in the 
mesh into smaller ones. The estimation takes into 
account both self-occlusion and self-shadowing. 
Analysis shows that the accuracy of reflectance 
estimation is limited by the triangle size in the shape 
model. We also propose to use Richardson 
extrapolation to overcome this and further refine the 
reflectance model estimate. The estimated 3D shape 
and reflectance model can be used to render the same 
object from different viewing directions and under 
different lighting conditions. Experimental results on 
both synthetic and real objects are given. 
 
 
1. Introduction 
 

A bottleneck in the creation of realistic scenes for 
computer graphics is often the high cost of acquiring 
models of real objects, including 3D shapes, surface 
reflectance properties and lighting conditions. In this 
paper, we present an algorithm to acquire both the 3D 
shape and surface reflectance properties 
simultaneously from images of an object taken from 
multiple viewpoints. The result is a set of shape and 
reflectance parameters that can be used to render the 
object from new viewpoints and under different 
lighting conditions. 

1.1 Related works 
 

3D reconstruction and surface reflectance 
estimation from images have usually formed two 
separate problems in computer vision for many years. 
For 3D reconstruction, the use of simpler reflectance 
model, namely the lambertian model, is common. 
Lambertian property makes a surface appears identical 
from all viewing directions, and therefore simplifies 
matching based 3D reconstruction. Solutions for 
general non-lambertian scenes have only been pursued 
recently. For example, Jin et.al [1] propose to use the 
rank constraint of radiance tensor as the discrepancy 
measure for correspondences. Their method can handle 
objects with high specularity. Shape from shading 
(SFS) and photometric stereo methods make use of 
shading information to recover 3D shape. These 
methods usually assume that surface reflectance 
properties are known. Much work on shape from 
shading is based on the lambertian model, uses a single 
view, or assumes simple lighting conditions [2]. In 
general, single view shape from shading problem is ill-
conditioned, more so for non-lambertian objects with 
unknown reflectance, and its solution relies on strong 
regularization. Multiple view shape from shading 
methods have been used to improve the conditioning 
and have also enabled recovery of surface albedo under 
lambertian reflectance [3, 4]. Similar research is also 
done in the context of the fusion of SFS and shape 
from motion (SFM) [21]. Under lambertian 
assumption, SFS and SFM can be applied separately 
and the results fused at a later stage. For more general 
reflectance, SFS and SFM are intertwined through 
BRDF and the problem need to be treated in an 
integrated manner. By controlling lighting conditions, 
photometric stereo and related methods improve the 
conditioning of the problem while avoiding the 
correspondence issue. Lee & Kuo [5] use photometric 
stereo in conjunction with a polygonal mesh, instead of 
surface normal, as the surface model, and the 



Torrance-Sparrow reflectance model to recover the 
shape. Hertzmann and Seitz [6] place several reference 
spheres with materials similar to those of the object 
into the scene to reconstruct the 3D shape of the object 
(lambertian or non-lambertian) from a single view 
using photometric stereo. However, the needs for the 
control of lighting and calibration spheres restrict the 
method’s applicability. Further, none of these methods 
consider self-shadowing. 

In computer graphics, estimation of reflectance 
properties from images, through Bidirectional 
Reflectance Distribution Function (BRDF), is referred 
to as an “inverse rendering” problem. Much of the 
work on this is done assuming known 3D geometry. 
Marschner [7] proposes a method to acquire dense 
samples of BRDF from images of a single material 
surface. Debevec et al. [8] estimate the reflectance 
field of a human face using a controlled light stage. 
Love [9] estimates the reflectance model for outdoor 
scenes under natural illumination. Apricio et al. [10] 
propose a method to acquire phong reflectance model 
from range and intensity images. Ramamoorthi and 
Hanrahan [11] give taxonomy of different inverse 
rendering approaches and propose a general signal 
processing framework to estimate both illumination 
and BRDF. 

In image based modeling, often neither the 3D 
structure nor the reflectance model of the object is 
known. Most previous work estimates these 
characteristics in two separate steps. Sato et al. [12] 
first construct a 3D model of the object by merging the 
range images from different views. Using the model, 
they separate the diffuse and specular color 
components and estimate the corresponding reflectance 
parameters. Kim et al. [13] first estimate the Torrance-
Sparrow model using a sample sphere made of the 
same material as the object. And then use this model 
and photometric stereo to recover the 3D object shape. 
Clearly, a more desirable formulation would result if 
the two steps are integrated. 

 
1.2 Contributions of this paper 
 

This paper is aimed at simultaneous recovery of 
both 3D shape and surface reflectance properties from 
multiple calibrated views of a non-lambertian object. 
We assume that the object is made from a single 
material, and lighting distribution is known or 
estimated separately. We neglect any inter-reflections 
between different parts of the object. The main features 
and contributions of this paper are as follows: 
a. We incorporate multiple view information so that 

the shape and reflectance estimation problems 
become well-conditioned. 

b. We take into account the effects of self-occlusions 
and self-shadows. 

c. We use information about object silhouette present 
in the multiple views, which gives a good initial 
shape estimate and also helps predict occlusion. 

d. We avoid potentially poor scaling among shape 
and reflectance parameters by iterating between 
two separate optimization steps. 

e. We extrapolate the reflectance model parameters 
estimated from different scales to further refine the 
estimation. 

This paper is organized as follows. Section 2 poses 
the problem as one of minimization over shape and 
reflectance parameters. Section 3 proposes an iterative 
and multi-scale method to minimize the cost function; 
various issues such as shadows, occlusions, 
initialization, and reflectance parameters extrapolation 
are also discussed. Section 4 gives experiment results 
on real and synthetic images. Section 5 presents 
conclusions and directions of future work. 
 
2. Problem formulation 
 

Our proposed method extends shape from shading 
algorithms to incorporate multiple views. It is based on 
the “synthesis and analysis” idea which is also used in 
[14] for specular surface reconstruction. It synthesizes 
the images of the object from different viewpoints 
based on the current shape and reflectance model, and 
compares them with the observed images. Then it 
gradually improves the shape and reflectance to better 
match the observations. 

 
Fig. 1. Synthesize images from a mesh model. 
 

As shown in Fig. 1. We represent the object shape 
with a triangular mesh having vertices 

}...1|{ mkVV k == . Each triangular facet on the object 
surface is represented as the collection of its three 
vertices. 
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The object’s surface objS  is the union of all the 

triangles on the mesh. We use V
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 and B
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 to denote the 



vectors of shape parameters and reflectance model 
parameters respectively.  

If 23: RRj →π  denote the projection transform 
from 3D world coordinate to jth image plane, then the 
projected patch of iT  on the jth synthesized image is: 
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denotes the reflectance value of the triangle in the jth 
image, computed from the triangle’s normal direction 

inG , viewing direction )( j
ie , reflectance model B

G
, and 

all the light sources L
G

 that can illuminate the triangle. 
Here we assume every triangle has a uniform 
reflectance value in each view. The synthesized image 
is the union of the projected patches of all visible 
triangles, 
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The observed patch corresponding to iT  in the jth 
input image, )( j

io , can be expressed as the quadruplet 
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where )( j
iI  is the average intensity value of )( j

io  on  jth 
input image )( jI . 

We define the error between )( j
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difference of )( j
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iI , weighted by the number of 

pixels )( )( j
ioq  in )( j

io  

)()(),( )()()()()( j
i

j
i

j
i

j
i

j
i oqIRoterr ⋅−=          (5) 

We also define a cost function C  to represent the 
difference between synthetic and observed images as 
the sum of the squared error in (5) over all visible 
triangles and all input views. 
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Our goal is to find a set of optimal shape and 
reflectance model parameters >< **, BV

GG
 that 

minimize the cost function: 
{ }),(minarg**, BVCBV
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3. Algorithms and implementation details 
 
3.1 Shape parameterization 

 

Shape parameters V
G

 consist of the majority of 
parameters to be optimized. To reduce the number of 
such parameters, we represent the vertices of our 
triangular mesh model in spherical coordinates with the 
origin inside the object (the origin is manually 

selected). For each vertex in the model, we fix the 
azimuthal and polar components and allow the vertices 
to move only in radial directions. Each vertex thus has 
only 1 degree-of-freedom along the vector from the 
origin. This will reduce the number of parameters by a 
factor of 3. However, this simplification restricts our 
mesh model to represent only star-shaped objects 
(where no two points on the object surface have the 
same pair of azimuthal and polar components). This 
star-shape constraint will help avoid vertices clustering 
together during the shape optimization process. 
 
3.2 Reflectance model 
 

We choose the Phong reflectance model [15] as the 
parametric reflectance model, since it is simple to 
compute, and most widely used in computer graphics. 
In Phong model, the reflectance of a surface patch 
under a directional light source kL  can be computed 
as 
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where dk  and sk  are the diffuse and specular 
coefficients and α  is the Phong exponent. rG  is the 
reflection vector which is at the mirror position of light 
direction l

G
 with respect to surface normal. The 

reflectance of the patch under a group of light sources 
is the summation of the reflectance values from each 
light source: 
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Sometimes the Phong model parameters are 
normalized such that 1=+ sd kk . However, we will 
not do this in order to allow a global scaling factor 
from illumination estimation. Hence we need to 
estimate three parameters for the reflectance model. 
 
3.3 Iterative optimization framework 
 

Our cost function (6) has two sets of parameters, 

reflectance parameters B
G

 and shape parameters V
G

, 
whose interdependency leads to chicken-and-egg 
problem. Usually, this problem is resolved by using 
iterative methods, as done by Nayar et al. in [16] for 
solving shape from inter-reflection problem. Another 
reason for using iterative methods is the large 
difference in the role played by these two parameter 

sets. B
G

 is constrained over all the facets while V
G

 is 
constrained only locally. If we were to include them 
into a single optimization procedure, we will need to 
carefully choose a proper scale of these parameters in 



order to avoid poor-conditioning. Hence, it is 
convenient to minimize them separately and interleave 
the optimization processes, as shown in Fig. 2 

 

 
Fig. 2. Flow chart of the iterative algorithm 

 
In Fig. 2, we start with an initial shape of the object, 

i.e. 0V
G

, and minimize the cost function to find a better 

B
G

. Then we fix B
G

 and refine V
G

. The whole process 
continues until the cost function in (6) no longer 
decreases or the progress of decrease is small. Since in 
both shape optimization and reflectance optimization 
we are minimizing a single cost function which is 
lower bounded by zero, the iterative process is 
guaranteed to converge. 

We treat the minimization of cost function 

),( BVC
GG

 as a non-linear least square problem and 
obtain a solution by Trust Region Reflective Newton 
(TRRN) method [17]. Each iteration in the 
optimization involves approximate solution of a large 
linear system using the method of preconditioned 
conjugate gradients (PCG). It requires knowledge of 
the derivative of the error in (5) with respect to each 
parameter. For reflectance parameters, this can be 
computed using finite differencing. To compute 
directly the derivative with respect to the shape 
parameters is very costly. Strictly speaking, we need to 
re-project the mesh model in order to compute each 
term. We use an approximate solution instead. If we 
take the derivative of (5) with respect to kth shape 
parameter, we get: 
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The derivative 
k

j
i VR ∂∂ )( can be computed using finite 

differencing, k
j

i VI ∂∂ )( can be approximated using the 
observed image gradient at the center of the observed 
patch )( j

io  in the vertex moving direction, and 

k
j

i Voq ∂∂ )( )(  can be approximated using the area 
change of the observed patch, all with respect to 
change in the location of the kth vertex. 

 
3.4 Handling self-occlusion and self-shadowing 
 
In (6), for every image, we need to compute the sum of 
the squared errors only over the visible triangles. Our 
algorithm ensures this by checking the triangle’s 
visibility based on the current estimate of the shape at 
each step of the minimization process.  
        We also account for self-shadowing in a similar 
manner. For each discrete directional light source, we 
use orthographic projection to project the mesh model 
onto the image plane perpendicular to the light 
direction. Then all the invisible triangles are in the 
shadow area of that light source. For triangles that are 
partially visible, we compute the ratio between the 
visible triangle area and the projected triangle area, and 
scale the light source intensity in (8) with the ratio 
when computing the reflectance of those triangles. 
 
3.5 Choosing initial shape 
 

For a local optimization method, a good initial 
estimate is very important. We use the visual hull 
computed from the multiple silhouettes as the initial 
shape. Silhouette in each image can be obtained via 
image segmentation, or background subtraction. Visual 
hull gives a quite near initialization and helps avoid 
false positive of “un-occluded” areas (occluded areas 
interpreted as not occluded) in the initial iterations, 
since no possible shape of the object can have portions 
outside the visual hull. The visual hull also serves as 
the outer bound of the object shape during 
minimization. 
 
3.6 Multi-scale shape minimization and 
Richardson extrapolation 
 

Through iterative reflectance and shape 
optimization, we are able to find simultaneously a set 
of reflectance and shape parameters that minimize the 
cost function in (6). However, the TTRN method may 
only find a local minimum. A common solution to this 
problem is multi-scale analysis. Accordingly, we first 
optimize the shape and reflectance parameters using a 
coarse triangle mesh. Then we subdivide each triangle 
into four small triangles and start optimization at a 
finer scale. This multi-scale method will also decrease 
the total amount of computation for the algorithm.  

After the optimization converges at each scale, we 
will get a set of estimated reflectance parameters. 
These parameters are based on the assumption that 
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each patch on the surface is approximated using a 
triangle facet, and therefore has a single surface normal 
and constant intensity value. The validity of this 
assumption increases as the triangle size decreases. 
However, recursive decomposition of the triangles 
leads to a stage where either the computational cost is 
too high to be acceptable, or the triangles are so small 
that their projection onto the image plane is smaller 
than a pixel. In this situation, Richardson Extrapolation 
[18] can be used to gain further accuracy. 

The idea is that if we have more than two values of 
a parameter obtained at different scales, we can 
extrapolate the data to get an estimation of the 
parameter when the scale goes to zero. Since we are 
approximating the surface normal inside a triangle 
using a single normal, the error introduced by the 
approximation is proportional to the size of the 
triangles. This size can be represented as the square 
root of the average area of all the triangles in the mesh. 
We denote this value by the scale parameter h . Then 
the estimated reflectance model parameters can be 
written as a function of h . We use a Taylor series 
expansion of this function up to the first order to 
obtain: 
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If we approximate )(hB
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 as a linear function, we 

can solve )0(B
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 by two values. Suppose we estimate 

the reflectance model at scale h  to obtain )(hB
G

. A 
subdivision of triangles will gives another estimate 

)2/(hB
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. Then )0(B
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 can be obtained by 
extrapolation 
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(12) approximates the reflectance parameters for the 
case when the scale parameter h  goes to zero, which 
means our estimation can extend beyond the size limit 
of the triangular mesh. This gives another advantage of 
using multi-scale analysis. 
 
4. Experiments 
 
4.1 The mouse surface data set 
 

The mouse surface data set was captured with a 
Sony DSC-F717 digital camera. A computer mouse 
was placed on a table together with a calibration 
pattern. All the objects were put in a dark room 
illuminated by two distant light sources to minimize 
ambient light. Images of the mouse and calibration 
pattern were taken using fixed intrinsic parameters 
from different directions (Fig. 3) 

 

       
Fig 3. Two images of the experimental setup 

 
A mirror sphere was also placed at the mouse 

position to measure the illumination distribution 
(Fig.3). Camera parameters were estimated from the 
calibration pattern using the toolbox described in [19]. 
The directions of the light sources were recovered from 
the mirror sphere using bright point clustering and 
simple geometry. Fast shutter speed was used to avoid 
intensity saturation in the acquired images of mirror 
sphere for estimating the relative strengths of different 
light sources. A method to recover the light 
distribution of a natural environment from a mirror 
sphere and how to cluster them into discreet directional 
sources is discussed in [20]. 

Because our algorithm assumes the surface is made 
of a single material, we manually identify a part of the 
mouse surface that has a single shiny finish. 3 of the 11 
input images acquired are shown in Fig. 4. 

 
Fig. 4  3 input images in the mouse surface 
data set 
  

Fig. 5 shows the synthesized images after the 
iterative optimization at first (coarse) and second (after 
the subdivision) scale. We can see that the estimated 
shape converges to the correct shape. Most of the 
surface variation is captured. The only problem area is 
the lower right corner of the segmented surface, which 
is smoothed out by the algorithm. These high curvature 
corners are difficult to reconstruct since they cannot 
generate enough image differences to push the vertices 
to the correct positions. The estimated reflectance is 
quite close to the input images. 

In Table 1., we list the estimated Phong model 
parameters at two scales and the extrapolated Phong 
parameters. 

We also synthesize 10 new views of the mouse 
surface with estimated shape and reflectance 
parameters and compare them with the captured 
images. These views are not used in the estimation. 
Fig. 6 shows the Average Absolute Image Difference 
(AAID) over the object area in each view between 



synthesized images and the ground truth. Wrong 
estimates of reflectance, as well as incorrect or missing 
parts of surface shape will lead to large AAID values. 

 
Fig. 5 Synthesized images after each 
reflectance model Optimization. 1st row: 
Optimized reflectance model with the initial 
shape. 2nd row: Optimization result at 1st scale. 
3rd row: Optimization result at 2nd scale. 
 

Table 1. Estimated Phong model parameters 
 Estimated Normalized  
 kd Ks kd Ks α  

1st scale 0.089 0.324 0.215 0.785 3.81 
2nd scale 0.094 0.357 0.208 0.792 4.18 

extrapolated 0.099 0.390 0.201 0.799 4.55 
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Fig. 6 Average Absolute Image Difference 
between intensities of objects in the 
synthesized images for 10 new views (image 
index) using the estimated shape and 
reflectance model parameters, and the 
corresponding intensities in the 10 ground 
truth images. 

 
(1)                     (2)                    (3) 

Fig. 7 Synthesized images in two new views. 
(1) Original Images (2) Synthesized images 
with estimated shape and Phong parameters 
at 2nd scale (3) Synthesized new views with the 
same shape but extrapolated Phong 
parameters.  
 

Fig. 7 shows two synthesized new views for visual 
verification. Note that the surface reflectance is not as 
sharp as the original image, which means the estimated 
Phong exponent is smaller than the actual value. 
Similar blurring effect can also be observed in other 
work [12] when they estimate the reflectance model of 
a shinny surface. The light estimation error and camera 
calibration error can be two major reasons for this. The 
approximation of the surface normals inside a triangle 
with a single one in our algorithm also contributes to 
the blur. We can see from Table 1 and Fig. 7 that 
Richardson extrapolation makes the specular part a 
little bit sharper.  
 
4.2 The enfant data set 
 

 
Fig. 8  3 input images in the enfant data set 
 
The enfant data set consists of 12 views placed 

around a computer-rendered human head model made 
from a single material. 3 of the input images are shown 
in Fig 8. There are a total of 20 directional light 
sources which comprise a fairly complicated lighting 
environment. Note there are shadow areas on and 
under the nose, and around the eyes. We assume the 
camera parameters and lighting distributions are 
known. 



We ran the minimization process at two different 
scales and the optimization results at first (coarse) and 
second (after the subdivision) scale are shown in Fig. 
9. We can see that the estimated shape converges to the 
correct model, and at the finer scale more face features 
can be recovered. Also the shadows on and under the 
nose area are correctly synthesized. The reader may 
notice that the ears are not well reconstructed. This is 
again due to the high curvature of the ears. Also the 
concavity in the back of the ear does not follow the 
star-shape constraint we assume. 

 
Fig. 9 Synthesized images after each 
reflectance model optimization. 1st row: 
Optimized reflectance model with the initial 
shape. 2nd row: Optimization result at 1st scale.  
3rd row: Optimization result at 2nd scale. 
 

Table 2. Estimated Phong model parameters 
 Estimated Normalized  
 kd ks kd ks α  

1st scale 1.099 1.415 0.437 0.563 24.4 
2nd scale 1.083 1.661 0.395 0.605 28.1 

extrapolated 1.067 1.907 0.359 0.641 31.8 
Ground Truth - - 0.364 0.636 32.0 

 
Table 3. Estimated Phong parameters using 
different mesh sizes (Exp. 1 is 25% larger, and 
Exp. 2 is 25% smaller) 

Estimated Normalized  Experiments 
kd ks kd ks α  

1st scale 1.102 1.366 0.447 0.554 25.4 
2nd scale 1.087 1.696 0.391 0.609 29.8 

1 

Extrapolated 1.073 2.026 0.346 0.654 34.1 
1st scale 1.099 1.443 0.432 0.568 24.4 
2nd scale 1.080 1.701 0.388 0.612 28.1 

2 

Extrapolated 1.062 1.958 0.352 0.648 31.7 

The estimated and the ground truth values of Phong 
model parameters are listed in Table 2. We can see that 
with the decrease of triangle size, the estimated Phong 
parameters get closer to the ground truth. Richardson 
extrapolation gives even better estimates. 

To test the effectiveness of the Richardson 
Extrapolation, we performed two additional 
experiments using two different initial mesh sizes: one 
was 25% larger and another was 25% smaller than 
used in the previous experiment. Recovered Phong 
parameters at each scale as well as the extrapolated 
results are shown in Table 3. In both experiments, the 
Richardson extrapolation gives noticeable 
improvements. 
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Fig. 10 Average Absolute Image Difference 
between intensities of objects in the 
synthesized images for 10 new views (image 
index) using the estimated shape and 
reflectance model parameters, and the 
corresponding intensities in the 10 ground 
truth views. 

 
(1)                    (2)                     (3) 

 Fig. 11 Images from a new viewpoint but 
using the same illumination (1st row) and 
under a different illumination (2nd row) 
compared with ground truth. (1) Ground truth 
images (2) Synthesized images using 
estimated shape and Phong parameters at 2nd 
scale (3) Synthesized image with the same 
shape but extrapolated Phong parameters. 



We synthesized images with estimated shape and 
reflectance model parameters from 10 new viewing 
directions, using the same illumination as well as a 
new illumination. The results are compared with the 
ground truth and summarized in Fig. 10. Fig. 11 Shows 
images from one of these views for visual comparison. 
 
5. Conclusion and future work 
 
We have proposed an algorithm that can estimate 
shape and reflectance parameters simultaneously from 
multiple views of an object made of a single material 
with lighting known or measured separately. We 
represent the object shape using triangular mesh and 
use the Phong reflectance model to compute the 
reflectance of each triangle. We proposed an iterative 
method to find optimal shape and reflectance 
parameters to minimize the difference between 
synthesized images and the observed images. The 
algorithm can handle self-occlusion and self-
shadowing. We also propose the use of Richardson 
extrapolation to refine the reflectance model estimation 
beyond that allowed by recursive triangle subdivision. 
Experiment results on synthetic and real data show that 
the algorithm is effective in recovering both the 3D 
shape and reflectance parameters of non-lambertian 
objects. 

Our future work will focus on extending the 
algorithm to objects that consist of multiple materials. 
Also we are attempting to eliminate the need for 
explicit lighting estimation. 
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