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Abstract-Much research has emphasized stereo disparity as a 
source of depth information. To a lesser extent, camera vergence 
and lens focus have also been investigated for their utility in 
depth recovery. Each of these visual cues exhibits shortcomings 
when used individually in the sense that none alone can be used 
to reconstruct surfaces for real scenes that often cover a wide 
field of view and a large range of depth. This paper presents an 
approach to integration of these cues that attempts to exploit their 
complementary strengths and weaknesses through active control 
of camera focus and orientations. In addition, the aperture and 
zoom settings of the cameras are controlled. The result is an active 
vision system that dynamically and cooperatively interleaves 
image acquisition with surface estimation. A dense composite 
map of a single contiguous surface is synthesized by automatically 
scanning the surface and combining estimates of adjacent, local 
surface patches. This problem is formulated as one of minimizing 
a pair of objective functions. The first such function is concerned 
with the selection of a target for fixation. The second objective 
function guides the surface estimation process in the vicinity of 
the fixation point. Calibration parameters of the cameras are 
treated as variables during optimization, thus making camera cal- 
ibration an integral, flexible component of surface estimation. An 
implementation of this method is described, and a performance 
evaluation of the system is presented. An average absolute error 
of less than 0.15% in estimated depth was achieved for a large 
surface having a depth of approximately 2 m. 

Index Terms-Active vision, camera calibration, fixation, range 
from focus, range from stereo, range from vergence, surface 
estimation, visual cue integration, visual target selection. 

I. INTRODUCTION 

N ARBITRARY point in a 3-D scene projects onto A different locations in stereo images. When the imaging 
geometry is known, the disparity between these two locations 
provides an estimate of the corresponding 3-D position. Many 
algorithms have been developed for estimating surfaces from 
stereo images of a scene. Most of these algorithms assume 
that the images are acquired from known viewpoints with 
compatible camera orientations and, of course, with the area of 
interest in proper focus. However, for real scenes that are deep 
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and wide, no single imaging configuration can obtain stereo 
images of the entire scene suitable for surface reconstruction. 
This is because the cameras capture visual fields of limited size 
and depth. To reconstruct the surface for an entire scene, the 
camera configuration must be varied to sequentially capture 
different parts of the scene. Like human eyes, the cameras 
must pan and tilt, converge and diverge, and focus on near 
or far objects. For overall surface reconstruction, the surface 
parts estimated from different configurations must be merged. 
This implies that stereo-based surface reconstruction and the 
control of imaging must take place in a cooperative mode. 
The two processes must be interleaved in time. The surface 
reconstructed for a given part of the visual field must be 
added to the cumulative surface data, which in turn must be 
used to predict the part of the unmapped surface that will be 
reconstructed next. 

The above observations are in agreement with the tenets 
of the active, intelligent data acquisition approach Bajcsy has 
emphasized [l], [ 2 ] .  Even though there have been a number 
of computational studies on such active approaches, there has 
been only limited use made of the different cues in developing 
detailed computational approaches and implementations for 
surface estimation from stereo images, especially in a mu- 
tually cooperative mode such as that discussed in [l] and 

This paper describes an approach for active surface recon- 
struction that integrates the use of stereo with the control of 
camera focusing and vergence. Thus, image data acquisition is 
integrated with surface estimation. Our implementation of this 
method produces dense depth maps for scenes that are deep 
in extent and are wider than the field of view of the cameras. 
The system autonomously selects new locations for fixation to 
smoothly extend the evolving surface map. 

A pragmatic side effect of such active control of cameras is 
a continuous degradation of calibration due to inaccuracies 
in the mechanical control system. The method described 
here automatically compensates for this by integrating sys- 
tem calibration with the surface reconstruction, thus resulting 
in adaptive self-calibration. This also obviates the need for 
frequent calibration processes requiring special calibration pat- 
terns, which are often very elaborate and therefore infeasible 
while processing real scenes. Effectively, in such adaptive 
calibration, the role of the external calibration patterns is 
fulfilled by the partially reconstructed surface map of the 
scene. 

[31-[51. 
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The integration task in our approach is formulated as 
one of optimization. In Section 11, we discuss the stereo, 
vergence and focus processes individually as sources of 3- 
D information. Section I11 argues that these sources have 
complementary performance characteristics, and they should 
be used in an integrated mode. A control structure for such 
integrated operation is also given, which consists of two 
steps: target selection and surface reconstruction. Some pre- 
vious work on each of these steps, both in physiological and 
computational contexts, is reviewed in Sections IV and V. 
Section VI presents the basic computational approach that 
we have developed for achieving the desired integration. 
Section VI1 describes a specific integration algorithm that we 
have developed following the approach of Section VI and its 
implementation on an active camera system that we have in 
our laboratory. Experimental results for two physical objects 
are presented. For the first object (a barrel), a performance 
analysis that confirms a high level of accuracy for this method 
is presented. Over eight fixations, an average error of less than 
0.15% was observed for an object distance of approximately 
2 m. For the second surface (a chair), the camera system 
completed 36 fixations in an autonomous mode and produced a 
surface map that represents about a third of the chair. Section 
VI11 presents a summary. 

The approach presented in this paper is for a scene that 
contains a single, smooth (continuous-depth) surface, e.g., 
a single object. When there are sharp depth discontinuities 
present in the visual field (e.g., due to self-occlusion or 
multiple objects), the integration paradigm assumes greater 
complexity. In particular, when the entire surface of a fixated 
object has been scanned, a new target point, which is visible 
from both cameras, must be selected on a hitherto unmapped 
object. To select a target appropriately requires knowledge of 
the structure of the unmapped objects. However, estimation 
of the surface map of new objects is the original objective. 
This leads to a circular dependence problem wherein the 
structure of the unexplored scene is required before the same 
is acquired. This general case involving multiple objects is 
beyond the scope of the present paper. An approach to this 
general case that integrates coarse-to-fine image acquisition 
with coarse-to-fine target selection and surface reconstruction 
for unmapped scenes is introduced in [6]. Our work thus far 
on surface reconstruction from active stereo is in two distinct 
parts: multicue integration for a single object reconstruction 
as described in this paper and integration of image acquisition 
with surface reconstruction as described in [6]. Both of these 
active stereo algorithms use an extension of the passive stereo 
algorithm reported in [7] and [8] for surface reconstruction 
from stereo image pairs for each target area. 

The following, then, are some salient characteristics of the 
approach presented in this paper: 

1) It is capable of autonomously scanning and reconstruct- 
ing continuous surfaces having an arbitrary depth range. 
The capability to scan autonomously incorporates dy- 
namic control of the values of camera vergence angles, 
focus settings, aperture settings, and zoom settings. 
Except for zoom, for which only two settings (high and 
low) are used, the rest of the integrated parameters take 

on continuous values. 
It is capable of working with standard video cameras 
and with the calibration errors associated with camera 
reconfiguration. External calibration is done only once 
before the reconstruction begins; thereafter, the system 
performs self-calibration by using the partially recon- 
structed surface as a reference. The calibration process 
is an integral part of surface reconstruction, just as is the 
control of vergence, focus, aperture, and zoom settings. 
It integrates the processes of image acquisition and 
surface reconstruction, thus making the system active. 
This is ttue because imaging parameters are selected 
optimally for surface reconstruction on the basis of 
observed image data, and the resulting reconstructed 
surface is used to select new imaging parameters so that 
the cameras continue to scan the scene. 
It delivers a dense surface map as output instead of 
3-D locations for isolated feature points. As described 
earlier, a performance analysis has shown a high degree 
of accuracy for the resulting map. 

11. STEREO DISPARITY, VERGENCE, 
AND FOCUS AS DEPTH CUES 

Stereo disparity and camera vergence have long been rec- 
ognized as important binocular sources of 3-D information. 
Changes in focus directly contribute to the degree of image 
blur azd may serve as a monocular cue to distance information. 
Since each plays an important role in the approach presented 
in this paper, we will now discuss each of these individually. 

A. Depth from Stereo 

Many algorithms have been developed for estimating sur- 
faces from two stereo images of a scene acquired using a fixed, 
known camera configuration. The paradigm used by most early 
algorithms consists of three steps: 

1) Detect suitable features in each image. 
2) Find corresponding features in the two images. 
3) Determine the 3-D locations associated with correspond- 

ing pairs of image features, and fit a surface to these 
3-D points. 

The features used are typically derived from intensity edges or 
from image regions. Edge-based algorithms attempt to match 
individual edge points or linear edge segments that consist of 
chains of aligned edge points. Most area-based approaches use 
as features image regions based on absolute intensity values 
and apply cross-correlation measures to evaluate the quality 
of the match between the regions. Most of these algorithms 
complete the matching process before surface interpolation 
is performed to obtain a dense depth map. Uniqueness of 
matching is enforced only by conditions that involve simple 
local relationships among disparity values, e.g., constancy of 
disparity. 

In recent years, integration of the different steps of the stereo 
paradigm has been emphasized [7], [9]-[12]. The approach 
proposed in [ 121 integrates all three steps: feature detection, 
feature matching, and surface interpolation using an analog 
formulation. The stereo algorithm used in the work reported 
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in this paper is an extension of the Hoff and Ahuja algorithm 
discussed in [13], [8], and [14]. This algorithm integrates 
the last two steps of the stereo paradigm: those of feature 
matching and surface interpolation. Integration is performed 
using a model of the real world in which objects are viewed 
as having smooth surfaces in the sense that the normal 
direction varies slowly except across relatively rare creases 
and ridges. The surface characteristics are used to resolve 
matching ambiguities, and matching decisions are made so that 
the resulting surfaces are piecewise smooth. This is in contrast 
with previous approaches wherein matching is done without 
considering its impact on the quality of the resulting surface. 
This algorithm operates at a hierarchy of image resolutions, 
starting at a coarse level and proceeding toward levels of finer 
resolution. Each succeeding stage in the hierarchy uses the 
results of the previous, coarser stage to guide the search for 
correspondences. 

Most stereo algorithms, including this one, require an exter- 
nally specified, coarse, initial surface estimate that is refined 
using stereo analysis to obtain a more accurate surface de- 
scription. Without such an estimate, an exhaustive search for 
correspondences would be required. For example, in the Hoff 
and Ahuja algorithm, a frontal surface having a depth halfway 
between the nearest and the farthest points of the scene is 
externally provided as the initial estimate. The algorithm can 
recover the “true” surface map using stereo if the depth range 
of the scene is not too large. 

Since this reconstruction method assumes that surfaces are 
piecewise smooth, some method is needed to quantify the 
degree of surface smoothness. The square of the quadratic 
variation 

is one measure of the smoothness of a surface S .  It has been 
argued that the function S that minimizes E,  is most consistent 
with perception and is uniquely determined [15]. 

B. Depth from Vergence 

When the optical axes of a stereo-camera pair intersect, the 
point of intersection is known as the point of vergence. From 
the knowledge of the distance separating the cameras (the 
baseline) and the rotation angles, it is possible to determine 
the vergence angle and the 3-D location of the vergence point. 

When the point of vergence is known to lie on some surface 
in the scene, it is called the point of fixation, and it is then 
possible to use vergence information to estimate the location of 
the surface. To compute surface depth, therefore, it is necessary 
to verify that both cameras are in fact aimed at the same 
location. One approach to this problem is to determine the 
disparity present at the image centers and then reduce this 
disparity to zero by vergence movements. An efficient method 
is therefore needed to obtain a measurement of binocular 
disparity at a single point. 

In one method for fast vergence control [ 161, the two stereo 
images are placed side by side and processed as a single image. 
If it is assumed that the second image is approximately a 

translated version of the first image, then Fourier-transform 
techniques can be used to locate the spatial “echo” represented 
by the second image. 

Another approach to fast one-point disparity measurement is 
to use translational registration methods wherein one image is 
shifted with respect to another until the overlapping regions are 
most similar. The most common similarity measures for this 
minimize intensity differences or maximize cross-correlation 
over a window. The work reported in this paper uses a 
normalized cross-correlation measure for registration. This 
measure d2 as a function of the translation (s, t )  is given by 

where IL and 1, are left and right image intensities. 
These similarity measures may fail when the surface gra- 

dient is sufficiently large relative to the image planes. Other 
problems, such as insufficient detail, can also lead to incorrect 
registration. However, this possibility is ruled out since the 
whole approach of this paper is contingent on the availability 
of surface detail. Fixation may be impossible for another 
reason: occlusion of the desired fixation point from one or 
both viewpoints. This problem has received little attention. In 
general, it is not possible to fixate every scene point because 
an object may self-occlude its far side. An example of this 
is shown in Fig. 1. (Even though two objects are shown, the 
near object could well be connected to the more distant object, 
resulting in a single, self-occluding object.) The left optical 
axis is aimed at point p (Fig. l(a)). If the right camera is also 
aimed at this point (Fig. l(b)), point q obstructs the view. Point 
p therefore cannot be used as a point of fixation. For vergence 
information to be useful, the two cameras can either aim at 
point q (Fig. l(c)) or try to fixate another distant point r (Fig. 
l(d)). This paper refers to the active process of detecting and 
avoiding occlusions to achieve fixation as exploratory fixation. 
This will be addressed again in Section VII. 

C.  Depth from Focus 

Changes in the focus setting of a lens result in a varying 
degree of blur in the image. By minimizing the blur, the 
surface depth can be estimated. Assume that an object at 
distance U from the lens center forms an image at distance 
v on the opposite side of the lens. These two distances are 
related by the lens law, which is formulated as 

(3) 

where f is the focal length of the lens. The focusing mecha- 
nism for a lens changes the distance separating the lens center 
and the image plane of the camera. If an image point is in 
focus, and if U and f are known, then from the lens equation, it 
is possible in principle to determine the distance to the object. 
When a scene point does not satisfy the lens equation, the 
image is blurred. The effect of defocusing can be modeled, to 
a first approximation, by the convolution of the image with a 
low-pass filter. This causes the loss of high spatial frequency 
components in the image. Measures of high-frequency content 
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Fig. 1. Demonstration of occlusion using top views of verging cameras: (a) 
Initially, scene point p projects onto the center of the left image; (b) attempt 
to fixate p brings the image of point q on the circular object into the center 
of the right image. Because of this occlusion, the system could now attempt 
to fixate either (c) the near point q or (d) a point r on the distant surface. 

can therefore be used to develop an objective function that 
assumes its optimum value when the image blur is minimized, 
and the image is therefore in sharpest focus. 

Several autofocus methods have been proposed in the past. 
Horn [17] describes a Fourier-transform method in which the 
normalized high-frequency energy from a 1-D FFT is used as 
the objective criterion. Sperling suggests the squared Laplacian 
as a measure of image blur [3]. Tenenbaum uses a thresholded 
gradient magnitude method in which Sobel operators are used 
to estimate the gradient [18]. The criterion function used is 
the sum, over some image window, of the gradient energy 
that exceeds a certain threshold. This has also been used by 
Krotkov [ 191. Jarvis suggests sharpness measures based on 
entropy, variance, and gradient [20]. A survey and comparison 
of several criterion functions for focus is presented in [21]. The 
criterion functions described there make use of such measures 
as signal power, gray-level standard deviation, thresholded 
pixel counts, and summation of squared gradient in 1-D. Most 
focus-ranging methods search the set of possible focus settings 
to minimize the image blur and then use the lens equation 
to calculate the range to the imaged surface. The algorithms 
presented in this paper use a gradient method similar to that 
of Tenenbaum, based on the energy of the brightness gradient 
in the images: 

J J  
(4) 

In the ideal, noiseless case, this objective function is unimodal. 
Focus is an attractive source for depth information since 

it is monocular, having no analog to the correspondence 

problem of stereopsis,' and because it is relatively simple to 
use. However, any physical imaging system has limitations 
in resolving details. In particular, it may not be possible to 
detect small changes in image sharpness. This gives rise to 
the phenomena of depth of focus and depth offield. The image 
of a point may blur into a circle of diameter C before a loss 
in sharpness is detected. The circle having this diameter is 
known as the circle of confusion. For an object at a distance 
uo, the image is theoretically formed at 110, as determined 
by the lens equation. Because of the limited ability of the 
system to discern image features, however, the image plane 
can move through a range of locations about the distance 210, 

and the image will appear equally sharp. This range is the 
depth of focus. Conversely, for a given location 210 of the 
image plane, objects within the range of depths [ul, u2] will 
appear equally sharp in the image. This interval is the depth of 
field. Object points at the two extremes of this interval form 
perfectly focused images at image locations 211 and w2, and 
both objects at these two extremes form circles of diameter 
C on the image plane at 210. The size of the depth of field 
depends on the aperture A, the focal length f, and the image 
plane location 210 and is given by 

(5 )  

In this equation, uo is determined by the focus distance 210. 

The.effect of depth of field is to provide an upper bound on 
the accuracy that is possible for depth estimates from focus. 
To see this, observe from (5) that the depth of field becomes 
infinite when 

111. THE NEED FOR INTEGRATION 

Each process described in the previous section can provide 
an estimate of scene depth independently. This section dis- 
cusses the benefits of cooperation among these processes, and 
the need for camera movements in surface reconstruction for 
real scenes. Thus, this section presents the basic motivation 
for the approach to active surface estimation presented in this 
paper. 

A. Strengths and Limitations of Individual Cues 

If fundamental limitations of one depth cue can be offset by 
depth information from a different cue, then the two cues can 
be used as complementary sources of surface information. This 
section takes a comparative look at each cue in this regard. 
The criteria for comparing their performances include required 
image characteristics, capability, complexity, and accuracy. 

1) Required Image Characteristics: Point feature-based 
(e.g., edge-based) stereo methods require localized features or 
high-frequency detail in the images. This occurs only when 
scene surfaces are properly focused and implies that such 

'In fact, changes in the focus setting result in a magnification change 
in the image, and therefore, correspondences need to be determined. This 
magnification effect may be neglected if sharpness is measured within a small 
window near the image center. 
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stereo methods benefit from larger depths of field since this 
will cause sharp image features over larger ranges of depth. 
In contrast, range estimates from focus are more accurate 
when the depth of field is shallow. Further, because stereo 
and vergence both derive depth information from binocular 
correspondences, they can be misled by spatial periodicities in 
the two images. Since focus is monocular, no problem exists 
in this regard. 

2) Capability and Complexity: Camera vergence move- 
ments serve as a gross initial attempt to reduce the stereo 
disparity, thus reducing the size of the search space for finding 
correspondences. To achieve suitable camera movements 
requires an initial estimate of the location of the scene point 
that is to be the center of both stereo images. Focus methods 
can also benefit from an initial surface estimate since, given the 
estimate, the search for the final focus setting could be made 
efficient. Further, neither stereo nor vergence can derive depth 
estimates for such parts of a surface that are not visible to both 
cameras. However, monocular cues such as focus can yield 
the depth information whenever the surface is visible from 
at least one viewpoint. Both focus and vergence are “line-of- 
sight” methods and provide depth estimates for single points 
in the scene. Stereo processing, on the other hand, yields depth 
estimates for many image points simultaneously. 

3) Accuracy: Focus methods are fundamentally limited by 
the depth of focus for the lens, which typically depends on spa- 
tial sensor-array quantization. Stereo accuracy also depends on 
the sensor quantization. The accuracy for stereo and vergence 
greatly depends on accurate knowledge of imaging parameters, 
particularly relative camera position, but can provide depth 
data with subpixel accuracy. The theoretical accuracy for each 
cue decreases with increasing object distance but at different 
rates. 

B. The Role of Integration 

From the above discussion, we see that each of the different 
cues may yield an estimate of scene depth independently. 
However, they have different requirements and performances. 
In this section, we will compare these cues with respect to the 
above three characteristics. We will argue that the strengths 
and weaknesses of the cues are indeed complementary and 
that it is possible to use them together such that in any given 
situation, the most useful cues are automatically selected and 
used to provide only such scene information as they can 
most reliably extract. Thus, we will discuss the benefits of 
cooperation among the surface estimation processes associated 
with different cues and the need for camera movements 
during surface reconstruction for real surfaces. To highlight 
their interrelationships, we first summarize the input/output 
characteristics of the cues, which follow from their description 
in the previous section. 

I )  Stereo: Surface estimation from stereo requires the fol- 
lowing: 

i) Visibility of the surface part of interest from both cam- 
eras, or alternatively, limited range of stereo disparity 

ii) knowledge of the camera positions and orientations 
iii) in-focus images 
iv) initial, coarse surface estimate for efficiency. 

If the surface has a large depth range, it may not suffice 
to have, for example, a constant-depth surface as a coarse 
surface estimate. Stereo delivers a surface estimate over a large 
region, whose accuracy depends on, among other factors, the 
sharpness of image features. 

2) Focus: Surface estimation from focus requires i) vis- 
ibility, ii) a (coarse) estimate of depth for computational 
efficiency, and iii) a narrow depth of field for accuracy. Focus 
delivers i) sharp images and ii) a depth estimate at the point 
of interest. The accuracy of the depth estimate decreases with 
increasing object depth. 

3) Vergence: The capability to verge requires i) an estimate 
of the location of the point of vergence and ii) visibility of the 
point of vergence from both cameras. Vergence delivers i) a 
depth estimate for the point of vergence and ii) a reduced range 
of stereo disparity in the images. The depth estimate provided 
is quite accurate for large vergence angles, but the accuracy 
decreases as object depth increases. 

To reconstruct surfaces for real scenes, none of the above 
cues is sufficient by itself since either its requirements are not 
met, or it does not give sufficiently accurate reconstruction. 
However, a closer look reveals that the requirements and 
deliverables of the different cues have interesting correspon- 
dences. The input of one is often the same as the output 
of another (see Fig. 2). Thus, if the cues can be boot- 
strapped as a system, accurate surface estimation is possible 
due to their combined strength. This is the central idea of 
the proposed integration approach. To illustrate, observe that 
stereo disparity can provide accurate surface reconstruction, 
but it requires a coarse initial surface estimate; such an 
estimate can be provided by focus and/or vergence although 
they may themselves not be as accurate as stereo (e.g., 
for large distances). Further, depth estimation of a scene 
point from vergence is valid only if it is ensured that both 
cameras are actually fixated at that point. This is not a serious 
problem for distant objects since occlusion then becomes 
insignificant. However, for relatively close objects, fixation 
needs to be ensured or verified (e.g., by ensuring that the 
depth estimates for the image centers are for the same 3- 
D point.) On a more practical note, the vergence process 
is more difficult for nearer objects because of the greater 
likelihood for occlusion and because of increased perspective 
distortion in the images. However, the near field is precisely 
where focus methods are most accurate. Therefore, when 
used cooperatively, focus can be used to guide vergence 
movements. 

Another example of the mutual interdependence of the cues 
results from the visibility requirement that all cues have. Thus, 
an estimate can be obtained for only a limited part of the 
complete surface of interest. The part that can be imaged and 
analyzed is limited both along the lateral dimensions and along 
the depth dimension. The former limitation occurs because of 
the limited field of view of the cameras and may be remedied 
through vergence control by changing the orientations of the 
two cameras so that their optical axes intersect at different 
lateral locations on the surface. The latter limitation arises 
for two reasons. First, the entire surface may not be in focus 
simultaneously over its large depth range. Second, the entire 
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Fig. 2. Complementary nature of the focus, vergence, and stereo cues. Here, 
the prerequisites for a cue are shown by incoming arrows, and the estimates the 
cue can produce are shown by outgoing arrows. With integration such as that 
described in this paper, the cues cooperate to meet each other's prerequisites, 
as shown by the interconnecting (dotted) lines. Integration thus combines the 
strength of the cues. 

surface may not give disparity values in a workable range; 
for example, the parts of the surface that are much closer 
than the point of fixation may give disparity values on the 
order of image dimensions, whereas those parts that are much 
farther may give disparities that are too small (less than a 
pixel) for depth recovery. This problem may be remedied 
by fixating at different parts of the scene through vergence 
control and obtaining depth estimates of the surfaces a small 
depth range at a time. These local surface patches can be 
imaged by changing the vergence angles of the cameras so 
that the point of fixation moves along the depth dimension 
while simultaneously adjusting focus to obtain sharp images. 

Another aspect of the complementary nature of the cues 
involves the optimal imaging conditions for each cue. For 
example, stereo provides more information when the images 
represent wide fields of view; in contrast, focus and vergence 
work best with narrow fields of view so that these line-of-sight 
mechanisms are less likely to encounter large depth ranges. 
When zoom lenses are available, one solution is first to invoke 
the focus and vergence mechanisms, using the narrow field of 
view of a lens at full zoom, and then to obtain stereo-based 
depth separately from images taken at a smaller focal length. 
This method has added advantages in terms of depth of field; 
the accuracy of focus is best when the depth of field is low, and 
this is true when larger focal lengths are used; stereo ranging 
is most accurate with large depths of field, which is the case 
for smaller focal lengths. 

The above argument suggests a surface-reconstruction 
scheme in which camera vergence, focus, zoom, and stereo are 
controlled in a coherent and integrated way, and the surface 
reconstruction takes place incrementally (small parts at a time). 
The focus and vergence processes serve the stereo cue in the 
sense that their goal is to fulfill the requirements of stereo, 
which then yields the final surface map. Stereo is assumed to 
be the most accurate cue (although it is assisted with initial 
estimates from the other cues). Stereo-based depth estimates 
supercede estimates of depth from other cues. The surface map 
that results can be used to guide focus and vergence control 
for subsequent fixations. Further, the surface map can be used 
to infer occluded parts, and the focuslvergence processes can 
be directed to avoid these parts. 

The discussion of this section (and this paper) assumes the 
presence of a continuous-depth surface in the scene with no 
sharp depth discontinuities. When the visual field contains 
multiple objects or surfaces, the integration paradigm assumes 
greater complexity. For example, at the stage when the en- 
tire surface of a fixated object has been scanned, and thus, 
the acquired surface map does not smoothly extend, surface 
reconstruction must be resumed by fixating on a new object. 
However, 3-D information about a new object is unavailable 
by definition. (Otherwise, why would we want to fixate?) An 
approach to treat this general case is introduced in [22] and [6]. 

C. A Control Structure for Integration 

The analysis of the previous section leads to a paradigm for 
active surface reconstruction, which can be represented by the 
following repeating pair of operations: visual target selection 
and surface estimation in the target area. This paradigm is the 
basic theme of the of the work presented in this paper. In 
the first step, a 3-D scene target is chosen to attempt fixation. 
The target is chosen based on the current global surface map. 
After selection of a target, the cameras are aimed at the target, 
and local surface estimation is performed in the vicinity of 
the fixation point. The newly obtained surface is added to the 
accumulating composite surface map before iterating back to 
the first step. 

IV. BACKGROUND-VISUAL TARGET SELECTION 
Every active-vision mechanism must be able to decide 

where to look. This is the problem of target selection, which 
is addressed in this section. After choosing areas of interest in 
the scene, gaze directions can be directed toward the chosen 
target. The target selection criteria determine how the scene 
is scanned as a surface map is accumulated. These criteria 
are used to select a point in the visual field where surface 
information should be acquired next. This is relevant to eye 
movements in human vision for which slow eye movements 
interspersed by frequent jumps (saccades) characterize the 
continuous search for target points. Before we devise compu- 
tational criteria for this purpose (Section VI), it will be useful 
to review some facts concerning human eye movements and 
consider other computational research in this domain. 

A. Psychological and Physiological Studies 

Human eye movements occur so that the image of a scene 
area of interest falls on the fovea, where retinal resolution 
is highest. The selection of a point for fixation is a complex 
and highly goal-dependent process, which usually takes place 
below the level of conscious thought. The psychological 
literature contains a large number of eye-movement studies. 
The purpose of these studies is typically to infer properties 
of higher level cognitive activity that govern the movements. 
Very few studies deal with 3-D domains, and these are 
often concerned with ergonomics or vehicle operation. Several 
relevant studies are reported in [23]-[25]. 

Our interest in the psychological studies is to learn about 
target selection criteria used by humans and to evaluate their 
relevance to a computational formulation. The following are 
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some significant findings from various 2-D psychological 
studies in which subjects exhibited strong tendencies during 
the selection of new fixation points: 

Sequences of visual targets are often selected in a 
centrifugal order, beginning at the departure point (initial 
fixation point) [26]. This implies that proximity to the 
original point of fixation is an important criterion. 
Upward eye movement is preferred over downward 
movement [26]. 
Eye rotation either to the left or the right is preferred, 
depending on the person [26]. This tendency was seen 
in children under of 5 years of age, implying that these 
preferences are not acquired through reading habits. 
For several potential targets in the visual field, those 
lying closer to the fovea are more likely to be selected 
for fixation [27]. This effect may depend partially on the 
change in resolution from fovea to periphery. 
When scanning random 2-D polygonal forms, eye fixa- 
tions tend to concentrate near vertices [28]. 
During examination of pictures, saccades are directed 
to peripheral areas of “informative detail,” [29] which 
involves higher level recognition of image objects (e.g., 
features of human faces). 
When symmetry is present in 2-D displays, subjects tend 
to concentrate fixations along the axes of symmetry [30]. 

h) When peripheral stimuli are presented suddenly, the 
resulting strong temporal cue often leads to a saccadic 
eye movement toward the target [27]. 

As we will see in Section VI, the computational criteria we 
have used in our work are consistent with several of the 
above biological criteria, although our adaptation of them is 
motivated by the purely computational advantages they offer. 

B. Computational Studies 

We now summarize some computational studies that involve 
target selection. These studies incorporate a range of target 
selection criteria. Our goal in the approach presented in this 
paper is to concentrate only on surface reconstruction without 
any higher level objectives such as recognition. 

Koch and Ullman describe a mechanism for the selection 
of visual targets based on an abstract measure of saliency 
[31]. Clark and Ferrier describe an implementation of a two- 
level control system for the control of tilt, pan, and coupled 
vergence movements [32]. Krotkov describes the use of a 
computer-controlled camera system that extracts a sparse set 
of line segments as stereo features [4]. This system aims 
the cameras at locations predicted by candidate line matches. 
Ballard and Ozcandarli discuss the use of eye movements 
within the context of object recognition [5]. Coombs and 
Brown discuss the control issues of gaze stabilization for an 
active camera system [33]. Burt has considered hierarchical 
approaches to the selection of targets for attention [34]. Shmuel 
and Werman have proposed a mathematical model that uses 
iterative Kalman-filtering techniques to predict a new camera 
pose for optimal reduction of uncertainty of an evolving depth 
map [35]. 

V. BACKGROUND-~OOPERATIVE SURFACE ESTIMATION 

The previous section discussed identification of a location of 
interest in the scene, followed by direction of gaze towards the 
location. After this fixation process, the point of interest will 
project onto the centers of the stereo images. The presented 
approach is called “active” because of such scanning of the 
scene. Once fixation is achieved, the resulting stereo pair of 
images is used for surface reconstruction in the vicinity of the 
point of fixation. As in the previous section, it will be useful to 
first review some aspects of biological vision before presenting 
(in Section VI) the computational model for integrated surface 
reconstruction used in our work. Some of the physiological 
studies have significant computational ramifications. 

A. Physiological Studies 

Much work in biological vision has been concerned with 
modeling eye vergence movements in response to changes 
in the visual field. Other physiological research concerns the 
interactions that exist among different visual cues. These latter 
interactions are of particular relevance for the computational 
approach presented in this paper. 

Biological vergence movements are traditionally decom- 
posed into four components according to the cause or goal 
of the movements [36]. The following two components are 
of interest in this paper. The first is disparity (or fusional) 
vergence, which tends to reduce binocular disparities at the 
center of the retina. This is probably the dominant component 
of vergence, without which stereoscopic fusion cannot take 
place. Accommodative vergence is the second component and 
is assumed to result from image blur.2 This represents a 
link between the accommodation and vergence mechanisms. 
Analogs of these components have been incorporated into 
the computational model described in Section VI. Foley has 
considered vergence as an independent depth cue [37]. In 
the absence of other depth cues, his findings indicate that 
perceived depth increases linearly with vergence angle, which 
yields reliable perception of relative depth, but the perception 
of absolute depth is inaccurate. Krishnan and Stark present 
a system model of the disparity-vergence component, which 
accepts a disparity signal as input and produces vergence 
control signals as output [38]. Similarly, Hung and Semm- 
low describe an analytical model that integrates the accom- 
modation and disparity-vergence subsystems [39]. Another 
quantitative model is presented by Schor [40]. In this model, 
image blur and disparity both serve as stimuli that drive the 
accommodation and vergence control signals. The goal in 
each case is to model the physical dynamics for physiological 
vergence. The means by which the control signals might be 
derived from a stereo pair of images is not discussed. 

Sperling presents a model that characterizes the interactions 
of accommodation, vergence, and binocular fusion for a bio- 
logical system [3]. His is an “energy” model in which each of 
these three visual information sources contributes a separate 
energy component based directly on the visual input. TWO 
vergence components (disparity vergence and accommodative 
vergence) are incorporated into the model. 

’Accommodation is the physiological term for changes in focus for the eye. 
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This model differs from others in that it discusses methods 
for deriving the control signals from images and considers 
binocular fusion as a separate visual cue. It is formulated such 
that three independent state variables representing accommo- 
dation a, vergence U, and fusion U are permitted to vary so 
that an objective function is minimized. The overall objective 
is to minimize three separate energy measures e,, e,, and e,, 
which are defined as follows: 

Sperling refers to the first term g; in each of these three 
equations as an “internal energy” component and to the second 
term h; as an “external energy” component. Each function g; 
represents a penalty for disagreement between two different 
distance cues and is formulated as a convex-upward function 
of its argument. The functions hi in the equations represent 
the effects of the retinal images to induce change in the 
state variables. The units of a and U are given as diopters 
and degrees, respectively. The functions wi(z, y) are weights 
that emphasize particular retinal locations. The first energy 
component e, balances the need to reduce image blur with 
the need for a and v to be in agreement. The second energy 
component e, provides a measure of the spatial similarity 
of the two images, which is similar to (2), and reflects the 
“quality” of the vergence angle. The external energy term is 
expected to be a minimum when both image centers are in 
registration, which should occur when the eyes are aimed at 
the same scene location. Sperling defines the last, or fusion, 
component e,  identically to that of vergence, with a single 
difference: The summation is performed only over foveal 
areas having disparities small enough that fusion can take 
place. These disparities correspond to objects lying within 
Panum’s fusional area. The variables a ,  w, and U can be taken 
to represent the state of the fixation system. The intent is that 
these state variables are permitted to vary smoothly until a 
minimum energy state is found. 

Most of the physiological models discussed above are 
clearly not intended for surface estimation. Indeed, these 
models consider only point or area operations rather than 
emerging surface characteristics. As a result, many issues 
relevant to surface reconstruction are unaddressed or unre- 
solved. For example, the question of occlusion from one 
eye is never raised. The model of Sperling is the most 
comprehensive known to us since it incorporates the stereo 
fusion phenomenon and discusses the derivation of control 
signals directly from the retinal images. Although the model is 
presented in analytic form, it is not intended as a computational 
paradigm. Nonetheless, the modeling of interaction among 
different cues is extremely pertinent for the integration of 
information derived from these cues. The model of Sperling 
has partly motivated the computational model reported in this 
paper. 

B. Computational Studies 

Tenenbaum was an early advocate of a computational active- 
vision approach [18]. He presents methods for a vision system 
to “accommodate” the environment by changing imaging 
parameters, based on an analysis of information obtained from 
the sensors themselves. Bajcsy has strongly advocated the 
approach of active vision; she argues that feedback from partial 
visual processing should be utilized to guide the selection of 
new imaging parameters [l], [2] .  Krotkov describes the use 
of a computer-controlled camera system that integrates focus, 
vergence, and stereo for range estimation [4]. The approach 
is cooperative i n  that focus and vergence are used initially to 
obtain estimates for stereo matching and then to verify a sparse 
set of matches. In their analysis of surface reconstruction 
from stereo images, Marr and Poggio point out the role of 
eye movements in providing large relative image shifts for 
matching stereo images having large disparities, thus implying 
the need for active data acquisition [41], [42]. Ballard and 
Ozcandarli argue that the incorporation of eye movements 
radically changes (simplifies) many vision computations; for 
example, the computation of depth near the point of fixation 
becomes much easier using object-centered reference frames 
[5]. Aloimonos et al. consider the analytical implications of 
active vision methods [43]. They show that mathematically 
ill-posed, nonlinear, or unstable problems for a passive ob- 
server can become well-posed, linear, or stable under active 
obsefvation. Bandopadhay et al. consider tracking by a moving 
observer in a static environment as a means to reduce the 
complexity of computing the motion parameters [44]. Geiger 
and Yuille describe a method for using small vergence changes 
to help disambiguate stereo correspondences [45]. 

An important consequence of integration of depth cues via 
active vision is the need to fuse depth maps obtained using 
different viewpoints and imaging configurations. This also 
requires camera calibration. Some such algorithms for fusion 
of depth maps and camera calibration are now mentioned. 

Ferrie and Levine describe a hierarchical approach to feature 
matching across images obtained from several viewpoints 
[46]. Kamgar-Parsi et al. present a method for registration 
of overlapping range images within the context of terrain 
mapping [47]. Ayache and Faugeras describe a method for 
registering and fusing depth maps obtained using passive 
stereo [48]. As stereo image pairs are extracted for new 
camera poses, depth and uncertainty information is refined 
recursively through sequential optimization using extended 
Kalman filtering. Takahashi and Tomita present a method for 
self-calibration of stereo camera orientations [49]. The method 
assumes that the cameras are initially calibrated, but with 
time, the orientations of the cameras may differ from the 
calibrated angles. The difference between the observed feature 
locations and those expected from calibration is used to guide 
the calibration of the relative camera orientations. 

The assumption that the locations of measured depth points 
(or feature locations in the images) are perturbed with Gauss- 
ian noise is made fairly often for mathematical tractability. It 
facilitates recursive approaches, such as Kalman filtering, since 
data acquisition is assumed to be serial. The utility assumption 
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of Gaussian noise is useful only when it is known that the 
correspondences are correct. However, the most serious errors 
in stereo surface reconstruction arise from feature mismatches 
across stereo images. Therefore, in the work reported in this 
paper, the individual 3-D points obtained for each viewpoint 
are replaced by a surface through them. The surfaces for 
different viewpoints are then used for registration, calibration, 
and fusion across viewpoints. When two estimated surfaces 
overlap, for example, they are assumed to belong to the same 
object. A n  error term is computed from the differences in 

image gray-level structure or involve any temporal changes. 
This model incorporates criteria l), 4)-7), but excludes the 
more complex criteria 2) and 3), which are topics for further 
research. Thus, this current model stresses proximity: angular 
proximity of a potential target to the original fixation point 
po and to the current fixation point pPoF and distance of the 
target from the camera position pc.4nr. The target p is chosen 
so that the following weighted average is minimized: 

depths between the estimated surfaces, and this is used to 
guide corrective mechanisms. In addition, since the method 
described here deals with dense depth maps that contain large 
numbers of surface points, feature points are not retained 
across separate fixations because of the high computational 
cost that would result. 

The weights U ,  balance the three terms of E.  The value 
A ( p ,  , p , )  represents the angular separation between two 3- 
D points relative to the point of projection for the current 
camera location. Candidate targets p are constrained to lie on 
the border of the composite surface map and must be within 
camera travel limits. 

VI. A COMPUTATIONAL APPROACH TO 
INTEGRATED ACTIVE SURFACE RECONSTRUCTION 

At the end of Section 111, a two-step control structure for 
surface reconstruction that meets the need for integration, as 
presented in that section, was described. This section describes 
the computational formulation for each of the two steps. 
Section VI-A is concerned with the first step, target selection. 
Section VI-B discusses the representations and notation needed 
in Section VI-C to describe the formulation for integrated 
surface reconstruction. 

A. A Computational Model for Visual Target Selection 

The psychological results summarized in Section IV-A (and 
referenced in brackets) suggest that the following factors are 
important in the selection of the next point for fixation: 

1) Absolute distance and direction [ a w )  above] 
2)  2 - 0  image characteristics [e)-g)] 
3) Temporal change [h)]. Additional criteria may be iden- 

tified based on purely computational considerations. 
4) Surface smoothness: The selected point should smoothly 

extend the known surface unless the point lies beyond 
an object boundary. 

5 )  Occlusion regions: The system should not attempt to 
fixate the parts of the visual field that are not visible from 
both cameras; thus, to maximize the rate of growth of 
the image area analyzed and the likelihood of correctly 
predicting occlusion regions, the scan should proceed 
from near to far. 

6) Compactness: Successive fixation points should be se- 
lected to grow a surface outwards from an initial fixation 
point since most objects yield compact regions in the 
images. 

7) Complexity: The total number of fixation points should 
be minimized. This minimizes the total camera move- 
ment, which in turn minimizes the time taken to map 
the entire scene. This is a significant factor since camera 
movement is a mechanical (and therefore slow) process. 

The model for the approach presented in this paper incorpo- 
rates only those criteria that involve surface geometry and does 
not take into account any criteria that require an analysis of 

The first term of E favors scene points that lie near the 
imaging apparatus (criterion 5)). The second term biases the 
choice of target to scene points that lie near the current 
fixation point (criterion 1)). This tends to minimize short- 
term large camera movements. The third term ensures that 
an evolving surface description will tend to develop outward 
(“centrifugally”) from the point of departure (criterion 6)). 
Criterion 7) is met, in a simple way, by choosing the next 
fixation point on the border of the current surface map that 
uncovers as much as possible of the currently unknown part 
of the visual field, subject to the condition that fixation is 
not attempted outside of the current map. This latter condition 
ensures that a selected target point exists on the object surface. 
Further, meeting this condition guarantees overlap between the 
current surface map and the surface patch to be reconstructed 
next, which is required for self-calibration, as will be explained 
in Section VI-C. More sophisticated algorithms for choosing 
the next fixation point could be used, which could further 
reduce the overlap without sacrificing surface quality. It should 
be noted here that when a scene contains multiple objects, 
additional criteria to select the next object for fixation will need 
to be developed. However, this significantly more complex 
case is beyond the scope of this paper. (See [22] and [6] for 
an approach to this problem.) 

B. Representation for Active Control of Imaging Parameters 

The goal of this section is to present concepts and terminol- 
ogy for our formulation of integrated surface reconstruction 
described in Section VI-C. Our formulation views active 
surface reconstruction as the output of an active system whose 
dynamics capture the characteristics of camera movements. In 
general, a dynamic system may be defined by the specification 
of the following quantities: 

1) A description of the input to the system: If some of the 
input values depend on the output of the system, the 
system is said to employ feedback. Other forms of input 
may include disturbances and external control signals. 

2) Prior knowledge: This includes system parameters and 
fundamental assumptions. 

3) A system state specification: The state of a system is 
a function of inputs to the system and of internal 
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system parameters. The specification often includes a 
specification of system dynamics, characterizing changes 
that occur in the system state as a function of the above 
quantities. 

4) A description of the output of the system: This is specified 
as a function of the items listed above. 

5) A statement of the goal of the system: This is often given 
as an error function to be minimized. 

The integrated surface reconstruction in our formulation may 
be viewed as the output of a dynamic system that is a particular 
instance of the general model given above. The components 
of such a system are described in the following: 

The primary input is stereo images I L  and IR and a 
shaft-encoder vector 9. The vector of shaft-encoder read- 
ings @ = [&, 41,. . . , 4 ~ - 1 ] ~  reflects the current state of 
physical effectors that control the imaging characteristics 
of the system. For example, an encoder, when attached 
to a dc motor that controls the focus setting for a lens, 
can provide the system with knowledge of the physical 
setting of the focus ring. 
Prior knowledge for the system is represented by the 
vector of initial system parameters 0. This represents 
prior knowledge provided to this system and includes 
calibrated system constants. For example, the mapping 
from a particular actuator setting to a physical angle may 
depend on several constants. These are contained in 0. 
The state of the system is contained in several system 
vectors and matrices. The most fundamental of these 
are the actuator vector q, the system parameters B, and 
the surface maps S and S,. Each is now described 
separately. 

The actuator vector q = [qo ,  41,. . . , qM-1IT  repre- 
sents M degrees of freedom by which the processor 
controls the physical characteristics of the imaging sys- 
tem. Each element qi is a particular “axis setting” to 
which a motor is driven corresponding to the input 
i$ described above.3 The motors control both camera 
position and lens parameters. Limitations of the physical 
system determine constraints on the values that q can 
attain. 

The vector /3 represents current values of system 
parameters. These are upd?ted values of the externally 
supplied constant vector @ and are used in the local 
optimization of camera-calibration parameters. Together, 
the vectors p and q are used to define the imaging 
model. Functions of these quantities map to such system 
parameters as focal length, vergence angle, and camera 
position. In particular, the camera projection and trans- 
formation matrices can be represented as functions of q 
and 0. Details of the mapping used in this work and of 
the initial calibration procedure are described in [50]. 

The functions S and S, are the local (for one view- 
point) and composite surface maps constructed by the 
system, respectively. Each is a map z = f (x ,y)  of 

3Because this work is not concerned with modeling the dynamics of the 
physical system, we assume that q always reflects the state of the physical 
actuators. It is implicit that lower-level control operates to bring the input 
shaft-encoder readings q to the same values as the control settings q. 

estimated surface points with respect to a reference 
coordinate system. 

4) The outputs of this system are the surface maps S and 
Sc, and the actuator control vector q (described above). 
Clearly, the output of ultimate interest is SC, with S and 
q being outputs of intermediate interest. q represents the 
result of Step 1, namely, target selection. 

5) Finally, the goal of the system is to extremize each of 
a set of objective functions through the manipulation of 
the variables q,& and S. In terms of the active system 
representation, the two steps of fixation and surface 
reconstruction can be described as follows. 

To represent the sequential fixation process, assume that the 
system acquires a sequence of stereo image pairs { ( I ~ ( t i ) ,  
I ~ ( t i ) )  I i = 0, 1 ,2 , .  . .}. Each image depends on the state of 
the physical imaging system, which is given by system control 
values q(t i )  at time ti. The values q ( t i )  are used with system 
parameters to derive a set of transformation matrices that can 
be used to estimate 3-D locations from stereo correspondences 
in the images I ~ ( t i )  and IR(ti). The system uses these images 
and transformation matrices to create a surface map S(t,), 
which is then merged with the previously obtained composite 
surface map S,(ti - 1) to form the new composite map S,(ti). 
The system then selects new actuator control values q(t;+l)  
based on properties of the images and the composite map, and 
the sequence continues. 

To represent surface information obtained from different 
fixations, the map S,(ti) incorporates the information ob- 
tained for fixations 0 through i. In the model for surface 
estimation developed here, it is assumed that local surface 
maps S(t i )  are discarded after each fixation. Information about 
individual image features is not retained after they have been 
used to derive the composite surface representation S,(ti). 
This means that S,(ti) is constructed only from the maps 
S( t i )  and Sc(t i - l ) .  This is motivated by computational and 
biological considerations. Computationally, since the stereo- 
reconstruction method described here utilizes a large number 
of scene features and since the number of fixations can grow 
without bound, the cost involved in maintaining these features 
separately for all fixations is considered to be too large. This 
approach may correspond to the physiological case for which 
it is assumed that transsaccadic fusion does not occur. 

C. Integrated Surface Reconstruction 

This section develops an analytical formulation that guides 
the surface estimation process. As is the central theme of the 
desired approach, this model allows the integration of infor- 
mation from several visual sources. The integration model is 
formulated in terms of an objective function to be minimized. 
The parameters varied to perform this minimization are of 
three types: actuator settings, which are represented by the 
vector q, calibrated system parameters, which are represented 
by the vector 0, and the derived local surface S. The objective 
function is defined as a linear summation of several criterion 
terms or components described below. The role of each 
component is clear from its name, and the motivation for its 
use follows from the discussion in the previous sections. 
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1) Normalize Image Contrast: Clearly, the use of the dif- 
ferent visual cues requires that sufficient image detail be 
present in the images. This corresponds to an adequate degree 
of image contrast, which is possible only when the lens 
aperture is set appropriately, matching the level of image 
irradiance to the sensitivities of the sensors. This can be 
done by controlling the aperture setting of each camera to 
bring the average image brightness to a predetermined level. 
Such consistency of the image contrast can be achieved by 
independently controlling the aperture of each camera so that 
the following criterion is minimized: 

(9) 

The constant EcO is the desired sum of brightness values for 
the image region, and the function wc(x, y) emphasizes the 
centers of the two images. Because the aperture setting for 
one camera does not affect the image of the opposite camera, 
the error terms can be combined into the single function E,. 

A n  error term E f  is defined; it 
tends to minimize the amount of blur in the image: 

2) Minimize Image Blur: 

When a camera is in sharp focus, the energy of the intensity 
gradient summed over the image will tend to be a maximum, 
and E f  will be at a minimum. The weight function wf(x,  y) 
is used to emphasize the central region of each image. With 
this definition, the minimum of E f  is attained only when both 
cameras are in sharp focus. 

3) Minimize Disparity at Image Centers: Cross-correlation 
measures may be used to quantify the degree of similarity 
between two image regions and may therefore be used to 
obtain a disparity measure for the image centers. When 
the following function E, is minimized, the vergence angle 
should be optimal when both cameras are aimed at the same 
scene point. The term E, uses a normalized cross-correlation 
measure similar to that of (2): 

The weight function w, emphasizes the centers of the images. 
4) Maximize Surface Smoothness: Scenes are assumed to 

be piecewise smooth. The following criterion function E, 
uses the square of the quadratic variation in depth to measure 
surface nonsmoothness. Thus, minimization of E, maximizes 
surface smoothness. 

5)  Minimize Differences in Depth Estimates Among Individual 
Depth Cues: The cues of focus, vergence and stereo provide 
four different estimates of the location of the point of fixation. 
Typically, when the system is properly fixated, the depth 
estimates for all visual cues should agree. The degree to which 
these depth estimates differ is added as a penalty Ep within 
the overall objective function. 

Some metric is needed so that any two of these depth 
estimates can be compared. Although Euclidean distance might 
seem most reasonable, f(z1, z2) = I  z1 - 22 1, further consid- 
eration suggests a different method of comparison. Since the 
accuracy of each cue decreases with distance, a better metric 
is one offering a greater penalty for near distances than for far 
distances for a given value of (z1 - z2). The method chosen 
is a comparison of the reciprocals of depth using the criterion 
function f(z1,zz) =) $ - $ 1. This is similar to the model 
of Sperling, in which depths are measured in diopters and by 
vergence angle, each of which is inversely related to depth. 
Each of these measures therefore tends to zero as distances 
increase without bound. 

Notationally, assume that the function 6(p,  , p 2 )  maps the 
two 3-D points to the absolute difference of the reciprocal 
of the depths in a common coordinate frame. If the four-point 
estimates are denoted p L f  , p R  f ,  p, ,  and p, ,  for left focus, right 
focus, vergence, and stereo, then the agreement among them 
can be maximized by minimizing the following function: 

Of the six comparisons possible for these four depth estimates, 
only four are used in the formulation of E p .  The first com- 
ponent is instrumental in detecting the presence of occlusions. 
The second two components are used to verify that the point 
of vergence agrees with the estimates from focus. The final 
term is used to compare depth from the stereo process with 
the point of vergence. 
6) Maximize Agreement of Surface Estimates Across Fixations: 
The surface S obtained for the vicinity of the current fixation 
point should agree with any overlapping portions of the 
previously obtained composite surface map S,. This agreement 
can be based on the differences of depths between surfaces as 
well as on the differences of surface-normal directions between 
the two surfaces. 

The mechanical nature of the camera movement system and 
the associated lack of precise knowledge about the imaging 
parameters may result in poor agreement between S and S,. 
In particular, there are several reasons to expect such lack of 
agreement: 

1) The actual configuration of cameras is represented by a 
mathematical model, and no such imaging model will 
perfectly represent the imaging system. 

2) A physical imaging system must undergo an initial 
calibration procedure, during which imaging parameters 
(represented by 0) are determined. This initial system 
calibration is typically optimal in the least-squares sense, 
i.e., it will be most accurate, for the limited set of 
actuator-variable settings q, which were used to perform 
the calibration but may not be correct for other settings. 

E, = 1 lw, [ + 2(”)’ dxy + ( $)2] dxdy. 

(12) 
The integration is performed over the domain r of S. The 
weight function w, favors the center of the image over 
peripheral regions. 
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3) The values of the imaging parameters fi  indicated by 
the shaft encoders are unreliable due to such factors as 
component wear, component replacement, and varying 
lighting conditions. Thus, there may be disagreement 
between S and S,. The system should be able to cope 
with such errors without having to perform a new, initial 
system calibration. 

Not all of the above factors are equally serious. Typically, 
the worst errors will tend to result from incorrect values of 
system parameters. The other two factors yield much smaller 
errors than those caused by stereo mismatches, which is a ma- 
jor source of errors. In regions where stereo correspondences 
are assumed to be correct, the discrepancies in the depth values 
for the surfaces can be attributed to loss of calibration (errors 
in p), which may Ciffer by a small amount from the originally 
calibrated values 8. These observed discrepancies may used 
to find improved estimates of system parameters p to yield 
the best possible fit of the newly derived surface patch to the 
previously obtained composite map. 

Thus, a method that could be used for improving agreement 
between S and S, is to permit small changes in the imaging 
parameters j3 during the process of surface reconstruction. This 
changes the surface map S. Let r and rc denote the regions 
over which S and S,, respectively, are defined; then, I? n T', 
denotes their overlap region. Let A denote the area of this 
overlap region. 

Using the area as a normalizing factor, the following term 
can be used as a measure of mean-squared depth difference 
per unit area for S and S,: 

It is also possible to utilize differences in surface orientation 
as a measure of disagreement. Let n and n, denote the surface 
normals for S and S, at some point. These are specified by the 

T T 
equations n = [-El -%, 11 and nc = [-%, -%1 11 . 
Using this notation, a measure of disagreement based on the 
angle between the surface normals is 

wapl cos-'(n. n,) I2dxdy. (15) 

Together, the above two error terms can be used to express 
the disagreement between S and S, and, thus, to select new 
values for 0. However, the estimates p may have associated 
tolerances, i.e., the errors in p may not be arbitrarily large. 
Therefore, large deviations in B should be appropriately pe- 
nalized. This penalty can be based on the Euclidean distance 
between the two parameter vectors given by the expression 

II s - s 1 1 2  = I Pi - 82 l2 
a 

Since it may be desirable to penalize changes in individual 
parameters differently, the following penalty term is more 
appropriate: 

Then, the final objective-function component for self- 
calibration is 

a 

The overall self-calibration term is therefore based on the 
differences of depths between surfaces, on the differences of 
surface-normtl directions between the two surfaces, and on 
a term that penalizes large departures in system parameters 
from originally calibrated values. 

The relative weights for the components of Ea(UJa1, wa29 

and wpi) determine the degree to which each contributes in the 
overall optimization. In particular, the weights wpi in the third 
term determine the willingness of the system to permit_changes 
in the calibrated values for the imaging parameters 0. Large 
values of wpi relative to w,l and w,, indicate confidence in 
the original calibration, meaning that little change is permitted 
in the parameters, and thus, limited optimization over p 
is performed. A very small weight indicates the system's 
willingness to permit large changes in 8. It is required that 
the weights sum to unity. 

The values of the weights wpi relative to wal and w a 2  are 
determined by the actuator settings q. When q is near a setting 
tharwas used during the original calibration procedure, there 
is high confidence in p, and hence, i i ~ p i  are large relative to 
wal and wa2. The weights are varied according to the function 

where z is the distance to the nearest actuator variable used 
during the original calibration process. The value of this 
function lies between 0 and 1 and can be interpreted as a 
measure of confidence in the initial system calibration. The 
constant IC determines the rapidity with which the confidence in 
the originally calibrated values 0 diminishes with the distance. 

At this stage, it may be observed that enforcing the agree- 
ment of surface estimates does not involve another depth cue, 
but rather, it amounts to the integration of camera calibration 
with surface estimation. 

7) Composite Criterion Function: Having described the in- 
dividual criteria that should be optimized, we are ready to 
specify the composite objective function E for optimization. 
As stated earlier, a first definition of E is a weighted sum 
( E  = ACE, + A f E f  + A,E, + A,E, + APEp + A,E,), which 
incorporates all of the individual objective functions. This 
composite objective function must be minimized by suitably 
choosing the values of q,o, and S. Thus, the optimization 
problem becomes 

min (ACE, + A f E f  + X,E, + L E s  + APEp + A,Ea) (20) 
q k b  

where weights X i  are constrained to satisfy 
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It is desirable to decouple control of the lens apertures from 
the rest of the system, so that the aperture settings depend 
only on the contrast function E,. Unless this is done, the 
system will attempt to manipulate image brightness through 

Changes in any actuator setting can indeed lead to variations 

the following equations: 

min E, (234  
41,42 

the control of other actuators, such as focus or camera rotation. min (m;n(XfEf + X,E, + X,E, + APEp + XaEa) 
B>slq* 

in average image brightness, whereas it should be solely the 
task of aperture control to compensate for brightness changes 
when they occur. This rationale leads to the decomposition 
of the optimization problem in (20) into two optimization 
subproblems: 

The second operation has been separated into two minimiza- 
tions, where the inner minimization is to be performed first. 
Further modularization of the inner optimization is possible. 
To see this, recall that the goal of the terms in (23) involving 
only focus and vergence cues is to ensure sharp and registered 

min E, 
41 r42 

min ( X f E f  + X,E, + &E, + APEp + X,Ea). 

(22a) 

(22b) 

images, and these terms alone can achieve that goal. Stereo 
is performed on the resulting images, and it does not involve 
any tradeoff with the actuator controls for focus and vergence. 
Thus, the stereo term acts as a constant during optimization q* >O,S 

over q* .  The agreement term involving E, is obviously a con- 
stant during optimization over q* . Therefore, the optimization 
problem in (23b) can be further decomposed: 

These two minimizations are to be performed independently. 
The variables q1 and q2 represent the lens aperture controls. 
The symbol q* represents the remaining actuator variables that 
control focus and camera orientation. 

In the above formulation, it is important that an appropriate 
set of weights { X i }  is chosen. The selected values should 
ensure reasonable tradeoffs between the separate criteria when 
conflicts occur. If any single value X i  is too low or too high, 
the corresponding cue will not be appropriately represented in 
the total cost. One possibility is that the weights are chosen to 
normalize the components so that each has equal representa- 
tion when the overall function is optimized [51]. Alternately, 
the weights themselves may be determined dynamically by the 
nature of the images. This latter approach is being pursued in 
our ongoing work. 

When the objective function is minimized for a given scene 
target, the result is the final selection of a point of fixation, 
the extraction of focused images, and the estimation of a local 
surface map derived from stereo analysis. The system must 
then obtain an enhanced composite surface description S, by 
merging the local surface description S with the composite 
map. 

VII. ALGORITHM, IMPLEMENTATION 
AND EXPERIMENTAL RESULTS 

A. An Integration Algorithm 

An algorithm is now presented for achieving the integra- 
tion described in the previous section. Both components of 
the active surface-estimation paradigm (target selection and 
surface estimation) are described. The implementation of this 
algorithm (Section VII-B) demonstrates significant improve- 
ments in estimated surfaces over those possible without such 
interaction. 

First, we will point out a matter of practical difficulty with 
the use of the optimization problem in (22); there is a high 
computational cost associated with the computation, during 
minimization, of those terms involving E, because of the 
high cost of the stereo reconstruction process. Therefore, it 
is desirable to optimize with respect to variables that are not 
incorporated into this reconstruction process. This is shown in 

min E, 
41,42 

This is also an important decomposition because the opti- 
mization over {B,  S} can be very expensive computationally. 
Indeed, this decomposition is responsible for separation of tar- 
get fixation (not selection) from surface reconstruction around 
a target, thus greatly reducing the computational complexity. 

The second component of this model (see (24b)) exhibits 
several similarities to the Sperling model. The term Xf E f  , 
for focus, is similar to Sperling’s accommodation measure, 
except that the gradient norm is used instead of the Laplacian 
as the criterion to minimize image blur. The term &,E, mea- 
sures similarity of the two image centers and corresponds to 
Sperling’s calculation for vergence, except that the normalized 
cross-correlation measure for registration is used here rather 
than Euclidean distance. The term X,E, computes the quality 
of stereo fusion in terms of the smoothness of the resulting 
surface, rather than in terms of intensity differences among 
corresponding pixels related by a fixed disparity value. The 
term A, Ep penalizes disagreement among different depth cues 
and is analogous to the separate internal-energy components 
used by Sperling. 

A difference from the Sperling model is the term X,E,, 
which reflects the evolving nature of the composite map. After 
a local surface patch has been estimated, this is integrated with 
a composite surface description. The evolving, global surface 
map is a product of the aggregation of many such local patches. 

The steps in the algorithm are outlined in the statement of 
the algorithm (which is given below) and is followed by a 
discussion of each of the steps. 

Surface-Reconstruction Algorithm 
Repeat until entire scene has been mapped 
1. Select target 

1.1 Locate previous fixation point on composite map 
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1.2 

1.3 

1.4 

2. Fixate 

2.1 
2.2 

2.3 

2.4 
2.5 
2.6 
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Beginning at fixation point, search map for a 
nearby point on boundary of known depth region 
Traverse this entire boundary, evaluating target- 
selection criterion at each location 
Select boundary point having minimum criterion 
value as new target 

Set lenses to full zoom 
Repeat until both image 
scene area in focus 

2.2.1 
2.2.2 

2.2.3 

2.2.4 

Aim both cameras 

centers show the same 

at target 
Adjust lens apertures to normalize image 
contrast 
Obtain range estimates using focus for both 
cameras 
If the difference in range values is too great, 
as compared with the depth of field, assume 
an occlusion is present, and redefine the 
target to be the nearest point detected with 
focus 

Adjust the vergence angle to register image cen- 
ters 
Set lenses to intermediate zoom setting 
Adjust lens apertures to normalize image contrast 
Obtain stereo images in focus at the image centers; 
also obtain defocused images for later segmenta- 
tion 

3. Obtain integrated estimate of local surface 

3.1 Obtain depth estimates using focus information 

3.1.1 Detect the in-focus region about the image 
center for the focused images by comparing 
these images with the defocused images 

3.1.2 Within the entire in-focus region, obtain 
focus-based range estimates 

3.2 Detect image features to be matched 

3.2.1 Apply Laplacian-of-Gaussian filters to the 
focused stereo image pair at several levels 
of resolution 

3.2.2 Detect zero-crossings in the filtered images 
3.2.3 Mask out any features that are not within 

the in-focus regions of the original focused 
images 

3.3 Invoke a modified Hoff-Ahuja stereo algorithm to 
detect stereo correspondences (not surface map) 

3.3.1 

3.3.2 
3.3.3 

Use the range estimates from Step 3.1.2 to 
locate candidate matches 
Cluster resulting 3-D points 
Reject false matches and disambiguate mul- 
tiple matches based on emerging surface 
characteristics and on values in the com- 
posite surface map 

3.4 To self-calibrate, repeat until optimum fit is 
reached 

3.4.1 Adjust system-calibration parameters for 

3.4.2 Fit quadratic patches to the resulting 3-D 
best fit of 3-D points to composite map 

locations 

3.5 Interpolate quadratic patches to produce a dense, 
local depth map 

4. Merge local map with composite map 

4.1 For areas of the local map that do not overlap the 
composite map, range values are simply added to 
the composite map 

4.2 For areas that overlap, replace the current depth 
value in the composite map by the mean of 
overlapping values 

Discussion: Step 1 of this algorithm selects a visual target 
to be fixated, as discussed in Section IV. Targets are con- 
strained to lie on the border of s,. Typically, the resulting 
new camera orientations will extract new parts of surfaces 
that overlap partially with the current global surface map. The 
objective function to be minimized is given in (8). 

Step 2 implements the exploratory fixation process. At 
the end of this step, focused stereo images are obtained. 
In addition, defocused images are extracted to be used in a 
segmeptation process. These images are obtained by focusing 
the lens sequentially at different depths so that successive 
depths of field are adjacent in depth. For example, if a lens 
is to be focused at three different depths uo,uon, and uof 
in sequence, these depths can be chosen so that the associated 
depths of field border one another. Since the extremes for these 
adjacent depths of field coincide, uon and uof may be written 
in terms of uo as follows: 

These adjacent depth intervals are useful for segmentation. 
When the depth of field is not large, images may be obtained 
for these three focus settings that correspond to object depths 
of u0,uon, and uof. The first of these images is called the 
"in-focus'' image; the goal is to remove from this image 
all portions that are not within the depth of field for this 
focus setting. The focus-based objective function is evaluated 
for windows at corresponding locations in each of the three 
images. If the in-focus image yields the maximum response 
to this criterion, this location is retained within the resulting 
segmented image. Otherwise, the location is rejected. 

For Step 3, the stereopsis process accepts initial surface 
estimates and produces a surface patch about the point of 
fixation as described in Section 11-A. The derived surface patch 
will be for a part of the scene that is common to the visual 
fields of both the left and the right cameras. The surface is 
made to agree with overlapping areas of previously acquired 
composite-map surfaces (see (18)). To achieve this agreement, 
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small changes in the camera parameters are permitted. Step 
3, therefore, corresponds to the performance of the outer 
minimization of (24b). 

The merging of local surface patches with the cumulative 
surface map (Step 4) is integral to this process. Since the newly 
obtained surface patches typically have partial overlap with 
previously mapped scene areas, the surface should smoothly 
extend beyond previously mapped parts. The method used in 
this work is simply the assumption of the mean range values 
for areas of overlap when these maps are merged. The next 
section describes an implementation of the above algorithm. 

B. Implementation Details 

The algorithm was implemented on the University of Illinois 
Active Vision System [SO] (Fig. 3(b)). This system acquires 
high-resolution stereo images from cameras that can tilt, pan, 
and verge under computer control. The lenses are motorized, 
and the processor can control settings of focus, aperture, 
and zoom. All computations are performed by a Sun 31160 
workstation. The vergence movements of the cameras can 
be driven independently, but the implementation utilizes only 
symmetric vergence so that both cameras verge by the same 
amount to aim at the point of fixation. This was done for 
ease of algorithm implementation and should not represent a 
loss of generality of the method. Two different focal lengths 
(determined by the zoom settings) are used by this system 
during surface reconstruction: approximately 105 mm for 
focus ranging, and approximately 47 mm for stereo surface 
estimation. The former setting is used to reduce the depth of 
field and the field of view during the fixation process. The 
latter setting widens the field of view for stereo processing. 

The implementation consists of several independent soft- 
ware modules that correspond to the individual steps of the 
surface-reconstruction algorithm given in the previous section. 
The system runs autonomously, but it can be stopped and 
later restarted where it left off. This is useful because of 
the long time required by the surface-reconstruction modules. 
In developing the algorithm/implementation reported in this 
paper, we have neglected issues of computational speed. 
The current implementation on a Sun 3/160 takes 2-4 hr 
per fixation. Clearly, this is far too long for any practical 
utility of the algorithm. Several ways in which this speed 
can be increased significantly include using newer and faster 
machines, parallelizing the computation, and using a faster 
passive stereo algorithm. We have begun work on addressing 
all of these methods. For one version of the passive stereo 
algorithm, a speedup of 15 to 20 has been obtained (relative 
to the Sun 3) as a result of a parallel implementation on an 
eight-processor Intel HYPERCUBE [ 141. 

C.  Experimental Results 

Experiments were conducted with two scenes. In the first 
scene, the surface to be reconstructed is that of a barrel oriented 
vertically and resting on a table. The second scene contains a 
chair for which the surface is to be reconstructed. 

1) Scene I, A Barrel: A diagram of the imaging environ- 
ment is shown in Fig. 3, and an overview, as seen from 

Wall 

r 

.39 m 1.98 IT 

~~ : i. Cylindrical object 

(b) 

Fig. 3. (a) Top view of imaging environment for scene 1 (not to scale); (b) 
the University of Illinois Active Vision System. 

the right camera, is shown in Fig. 4. The barrel is conical 
(approximately cylindrical). Textured surfaces were used so 
that the images contain a high degree of visual detail. 

2) Scene I, First Fixation: The system accepts an exter- 
nally specified initial target for fixation. The system then 
calculates actuator settings and aims both cameras at this 3- 
D location. The focal lengths are set to 47 mm, and the lens 
apertures are adjusted to the scene illumination. The stereo 
image pair acquired at this stage are shown in Fig. 5. The initial 
target was deliberately chosen so that when both cameras are 
aimed at it, the line of sight for the left camera intersects the 
wall, and the line of sight for the right camera intersects the 
barrel (which is similar to Fig. l(a)). The fixation process now 
begins. Both lenses are set to a focal length of 107 mm, and 
the system manipulates the focus setting of the left camera to 
obtain a depth estimate for the line of sight of this camera. The 
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Fig. 4. Overview of scene 1 

(a) (b) 

Fig. 5. Initial left and right stereo images. The scene point that appears at 
the center of the (a) left image is not visible in the (b) right image. 

procedure is to minimize the objective function E f  for a small 
(49 x 49) window at the image center. To reduce image noise, 
ten images are acquired at each focus setting and temporally 
averaged. After the optimal focus setting is found, the system 
uses a precalibrated equation to map that setting to a distance 
estimate. From this estimate, a 3-D point in world coordinates 
is obtained, and the system attempts to fixate that scene point 
by panning the camera platform and causing the cameras to 
verge (rotate) inward. This causes the right camera's view of 
the desired scene point to be obstructed by the barrel; by using 
focus ranging to estimate the distance along the optical axis of 
the right camera, the system detects this situation (Fig. l(b)). 
The resulting focused images are shown in Fig. 6. 

The system reacts to the occlusion condition by attempting 
to fixate the nearer scene point corresponding to the center 
of the right image (Fig. l(c)). The platform and cameras are 
rotated so that both cameras aim at this point, and a depth 
estimate from focus is obtained with the left camera to verify 
the distance. The resulting images are shown in Fig. 7. In 
this case, the two depth estimates from focus agree closely 
with one another, relative to the estimated depth of field, and 
the corresponding 3-D locations are in agreement with the 
calculated point of vergence. The system therefore assumes 
that no occlusions are present. 

The system now improves the accuracy of the vergence 
angle through a registration procedure. Using a 49 x 49 
window at the center of the left image as a reference, the 

(a) (b) 

Fig. 6.  Initial attempt at fixation. Both cameras are aimed at a point on the 
distant wall. (a) This point is visible in the left image but (b) is occluded by 
the barrel in the right image. 

(a) (b) 

Fig. 7. Focused images of barrel: (a) In the left image, the center is enclosed 
by a rectangle; (b) two windows are highlighted in the right image. 

(a) (b) 

Fig. 8. Fixated images of scene for stereopsis. Calibrated focal lengths for 
the left and right cameras are (a) 47.7 and (b) 47.2 mm, respectively. 

system computes the normalized cross-correlation function 
E,  for 32 windows on each side of the center of the right 
image and selects the one yielding the highest cross-correlation 
measure. The location of the best match in the right image, 
corresponding to a horizontal disparity of 8 pixels, is high- 
lighted in Fig. 7(b). (The vergence process controls horizontal 
disparity. A vertical disparity is also seen in the figure because 
the cameras are not perfectly aligned. The calibration process 
accounts for this small misalignment.) From the location of 
this window, a correction to the vergence angle is calculated, 
and the cameras are rotated appropriately. This process repeats, 
where each time there are half as many correlation windows 
in the right image, until the horizontal disparity at the image 
centers is, at most, one pixel. 



AHUJA AND ABBOTT: ACTIVE STEREO 

I U - -  

1023 

Image column 

Fig. 9. Segmented 256 x 256 images for first fixation. 

1.8.- 

The system then causes the lenses to return to the shorter 
focal length (47 mm), acquires stereo images (Fig. S), and 
determines the imagelscene region in the vicinity of the point 
of fixation over which a stereo estimate is to be obtained. 
To segment out such a region, the two lenses are defocused 
relative to the fixated surface. Ordinarily (Section VII-A), de- 
focused images corresponding to nearer and further distances 
relative to the object would be obtained. However, because 
of the near proximity of the scene object to the cameras, only 
"far-focused'' images are obtained in this instance. This is done 
by focusing the two cameras to points more distant than the 
fixation point such that the new depth of field is just beyond the 
current depth of field. Using the resulting defocused images, 
a segmentation process compares the focused and defocused 
images separately for the left and right cameras. For each 
location in the images from one camera, the minimum value 
of E f  determines the image for which the corresponding scene 
point is most in focus. The resulting segmentation for the 
focused images is shown in Fig. 9. 

The estimated depth of the point of fixation is used as an 
initial estimate over the segmented parts of the images. The 
stereo module is then invoked with these depth points as initial 
estimates for corresponding scene regions. Depth maps are 
obtained using the modified Hoff and Ahuja algorithm [SI. 
The resulting surface map for resolution level 256 x 256 is 
shown in Fig. 10. Depth values corresponding to a single row 
of this surface map are plotted in Fig. 11. 

3) Scene 1, Second Fixation: The next goal is to select a 
new target to extend the scene description, which at this stage 
consists solely of the initial patch. As described earlier, the 
system examines the border of the current surface map and 
selects an edge point that is optimum with respect to the target- 
selection criterion function. For the surface map at hand, the 
optimum edge point lies along the lower edge of the surface 
map (Fig. 10) and is located approximately on the surface 
of the barrel. The system now attempts to fixate a surface 
location in the vicinity of this target. 

From this stage on, the cycle repeats. The system attempts 
to fixate the new scene point, based on depth estimates from 
focus and vergence. The system aims the cameras at the new 
target and estimates a distance along the line of sight of the left 
camera. The estimated distance does not precisely correspond 
to the target location, and the aim of the right camera is 
corrected for this. The right camera then obtains a focus- 
based range estimate, and no occlusions are detected in this 
instance. The registration process causes a fine adjustment to 

Image column 

Fig. 10. Surface map for first fixation. 

the vergence angle. Final stereo images are shown in Fig. 12. 
The goal is now to use these images to build a local 

depth map (a second surface patch) that can be merged with 
the map from the previous fixation (Fig. 10). Furthermore, 
depth information from the previous fixation is to be used 
where possible to assist in the construction of the new local 
map. Recall that this method does not attempt to match 
features in the current image pair to features from previous 
fixations. Instead, the system accesses only the previously 
obtained surface map. Equation (18) presented a criterion for 
enforcing agreement of two surface maps. The optimization 
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Fig. 12. Final stereo image pair for second fixation of barrel. 

Fig. 13. Optimized local surface map for second fixation (level 256). The 
local surface has been constructed using the squared difference in absolute 
depth as an error measure. 

procedure implemented here does not use the second term 
in this equation, effectively setting its relative weight 7Ua2 

to zero. The vector 0 is initialized to 0 and is then used 
along with the surface-smoothness constraint to identify stereo 
correspondences (and thus 3-D point estimates). Using these 
correspondences, optimization is performed so that the result- 
ing surface will yield the most agreement with the previously 
obtained composite map. The quantity to be minimized is 
the sum of squared distances between the stereo 3-D point 
estimates and overlapping points in the composite map S,. The 
optimization variable is the vector /3. A full-scale nonlinear 
search is performed, using a modified Levenberg-Marquardt 
algorithm. The result of this procedure is a locally optimum 
set of calibration parameters (0). Using these parameters, a 
local surface patch S is calculated (Fig. 13), which must be 
merged with S,. 

Before merging, the system compares the overlapping re- 
gions and obtains a measurement of the differences between 
the depth values. The RMS error is computed per composite- 
map range element using all difference values and has the 
value 5.292 mm for these two depth maps. Fig. 14 shows 
the composite map that results by merging the local maps 
for the first two fixations. For areas where the maps overlap, 
the merge process normally retains the mean of any two 

Y 

(b) 

Fig. 14. Composite surface map after second fixation: (a) View from above: 
(b) view from the left side. 

A h 

Fig. 15. Merge of the two surface maps without optimization 

overlapping z values, as shown here. Without optimization 
involving calibration parameters, the quality of fit for the two 
surfaces degrades (Fig. 15). The RMS error here is 8.426 mm, 
which is a degradation of approximately 59% over the error 
for the optimized case. 

To illustrate the effectiveness of the optimization process, 
the method was tested in the presence of a deliberate error. 
The right camera was rotated outward by a small amount, 
effectively introducing a global horizontal disparity increment 
in the image. This method was chosen since depth estimates 
are most sensitive to changes in the vergence angle. The 
amount of rotation was six motor steps, corresponding to 
0.06', and introduced a depth error of approximately 1 cm. 
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(b) 
Fig. 16. Composite surface map with deliberate vergence error in second 

fixation: (a) View from above; (b) view from the left side. 

The resulting composite map, without optimization, is shown 
in Fig. 16. The RMS error for the overlapping regions is now 
19.0 mm, or approximately 3.59 times the error of the original, 
optimized case. If the optimization algorithm is now applied, 
the second surface is “drawn” toward the first as shown in 
Fig. 17. Two different rows for these surface maps are shown 
in Fig. 18. The error for these overlapping regions drops to 
11.358 and 4.123 mm as the coefficients wai are decreased 
relative to w,1 and w,2 in (18). 

4)  Scene 1, Subsequent Fixations: The algorithm now con- 
tinues, automatically selecting scene targets, fixating in the 
vicinity of the targets, building a local surface map, and 
merging it with the evolving composite surface map. Fig. 19 
shows the state of the composite map after each of several 
fixations. 

As discussed in Section 111, a major motivation for this 
work comes from the observation that for scenes with large 
depth ranges, a single imaging configuration cannot yield 
an accurate and complete surface map. One reason is that 
no single, constant-depth initial estimate may suffice. To 
demonstrate this, the algorithm was invoked several times 
with the same image pair (Fig. 8) but with initial estimates of 
decreasing accuracy. Four resulting depth maps are shown in 
Fig. 20. The depth maps “collapse” after the estimates reach 
a certain threshold. This is because the search windows for 

\ V Y 

(b) 
Fig. 17. Composite surface map with deliberate vergence error with opti- 
mization of calibrated imaging parameters: (a) Confidence measure of 0.85; 
(b) confidence measure of 0.5. 

correspondences are derived directly from the initial estimates. 
When these windows no longer contain the correct matches, 
any candidate correspondences tend to be random and will 
support a surface only by chance. 

5) Scene 2, A Chair: The barrel in Scene 1 is now replaced 
by a sofa chair, and the system performs a sequence of fixa- 
tions on this object. Fig. 21 is an overview of this scene with 
the camera system shown in the foreground. The operation of 
the system is similar to that for the previous scene. The system 
first fixates a location on the backrest of the chair. The resulting 
surface map is shown in Fig. 22(a). The remainder of Fig. 22 
shows the state of the composite map at several instants during 
the scanning process, illustrating the evolution of the map for 
this object. After the final (36th) fixation, approximately one 
third of the visible surface area of the chair has been mapped. 

D. Performance Evaluation 

In order to assess the quality of reconstructed surfaces 
obtained with this method, we compared the depth values 
obtained for the barrel scene (Scene 1) with a model of a cone 
assumed to approximate the barrel. For the entire composite 
map, resulting from eight fixations, there are 28 782 range 
points; the mean absolute error over all range points is 3.156 
mm, and the RMS error is 5.006 mm. 

These numbers improve if the border regions of the com- 
posite map are ignored in the error analysis. This is true 
because stereo reconstruction is least reliable near occluding 
boundaries, particularly if the object curves away from the 
cameras. For a rectangular window of 17 985 range points 
from the center of the composite map, the mean absolute error 
is 2.137 mm, and the RMS error is 2.733 mm. Since the visible 



1026 IEEE TRANSACTIONS ON PAITEA !N ANALYSIS AND MACHINE INTELLIGENCE, VOL. 15, NO. 10, OCTOBER 1993 

h I 

Image mlumn 

loo. 200. 300. 400. 500. 

(a) 

I .-.. 

Image column 

100. 200. 300. m. 500. 

(b) 

Image column 

100. 200. 300. 400. 500. 

(c) 

Fig. 18. Single rows of surface maps with deliberate vergence error: (a) 
Confidence measure of 1 .0 (no optimization); (b) confidence measure of 0.85; 
(c) confidence measure of 0.5. 

portion of the barrel lies in the approximate depth range of 
1.8 to 2.0 m, these average error measurements correspond to 
approximately 0.15% of the depth range. This figure includes 
the error due to incorrect knowledge of the ground truth as 
discussed next. 

During this evaluation of performance analysis, a 2-D array 
of error values was generated. If this is displayed as an image, 
visual analysis confirms a good fit of the composite map with 
the model of the barrel. There are, however, several notable 
factors contributing to the observed errors. A small, global 
offset is apparent, which implies that the barrel does not 
possess a perfectly vertical axis. Since our model assumes 
a right circular cone with a vertical axis, this small mismatch 
contributes to the overall error. There are also small, higher 
frequency components visible in the error image, resulting 
in several local maxima and minima. These small ripples 
appear to result from the fact that the barrel is not perfectly 
conical in shape. (This was illustrated in Fig. 11.) The effect is 
enhanced by paper that has been used to wrap the barrel. Close 
examination of the visible surface of the paper clearly shows 

(g) (h) 

Fig. 19. Evolving scene description: (a) Surface map after first fixation; (b) 
resulting composite surface map after two fixations; (c) after three fixations; 
(d) after four fixations; (e) after five fixations; (f) after six fixations; (9) after 
seven fixations; (h) after eight fixations. 

small ripples in the shape. Finally, artifacts that result from 
the method used to merge local depth maps into the composite 
map are visible. After the optimization process is complete for 
one fixation, simple averaging is used to merge overlapping 
portions of these two maps into an updated composite map. 
Additional accuracy could be gained if a more sophisticated 
method were used. 

Overall, the resulting surface map (except for a few loca- 
tions near the border of the map) is sufficiently accurate that 
we could not detect any errors by hand measurement, such as 
by using a ruler. 

VIII. SUMMARY 

We have argued that individual depth cues such as stereo 
disparity, camera vergence, and focus are not sufficient by 
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(c) ( 4  

Fig. 20. Impact of inaccurate initial depth estimates: (a) Initial estimate is 1.9 m, which is 10 cm more distant than the closest portion of the object; 
(b) initial estimate incorrect by 20 cm; (c) initial estimate incorrect by 30 cm; (d) initial estimate incorrect by 40 cm. 

themselves for surface reconstruction of large scenes having 
large depth ranges. Rather, these cues must be used in a tightly 
integrated mode to exploit their complementary strengths 
while eliminating their weaknesses. Doing so yields a more 
powerful and complete mechanism for surface estimation 
than provided by any of the individual cues. The method 
of integration described in this paper depends on the active 
selection of imaging parameters (vergence, focus, aperture, 
and zoom) based on the evolving scene description. This 
makes the system active in the sense that image acquisition is 
tightly coupled with image analysis for the purpose of surface 
estimation. 

There are two distinct phases in the approach described here: 
visual target selection and surface reconstruction. Each phase 
is formulated as an optimization problem by devising suitable 
objective functions to be minimized. Each objective function 
incorporates and balances several individual criteria. As a part 
of the surface-reconstruction process, this method implements 
a phase of exploratory fiation, during which occlusions are 
detected and avoided using focus and vergence information. 

The approach does not require rigid values of calibrated 
imaging parameters. Instead, these parameters are consid- 
ered to be somewhat flexible when local surface maps are 
constructed. This “elasticity” permits small adjustments in 
these values; these adjustments are used to to minimize 
the discrepancies in depth between overlapping portions of 
surface maps obtained from different fixations. Such self- 
calibration represents integration of camera calibration with 

Fig. 21. Overview of scene 2: a stuffed chair. The chair is in the background 
and is to be scanned by the camera system, which is shown in the foreground. 

surface reconstruction and avoids a constant need for user- 
supplied calibration targets or distinctive features (such as 
ridge boundaries) that are often required by camera calibration 
algorithms. 

This method is intended for scenes which contain a single 
continuous surface which is free of depth discontinuities. 
Dense composite surface maps are automatically constructed 
by exploiting the benefits of integration, as described above. 
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Fig. 22. Composite surface map of scene 2. The initial maps represent a 
portion of the backrest of the chair: (a) Surface map after first fixation; (b) 
after three fixations; (c) surface map of chair after six fixations; (d) after 10 
fixations; (e) after 25 fixations; (f) after 36 fixations. 

A n  implementation of this method has been tested and has 
proven to be highly accurate for surfaces which are smooth 
and which have adequate visual detail. A performance analysis 
has shown an average error of less than 0.15% at a distance of 
approximately 2 m. Active surface reconstruction for scenes 
containing depth discontinuities involves significant additional 
complexity, and is the subject of another paper [6]. 
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