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A Transform for Multiscale Image 
Segmentation by Integrated 
Edge and Region Detection 
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Abstract-This paper describes a new transform to extract image regions at all geometric and photometric scales. It is argued that 
linear approaches such as convolution and matching have the fundamental shortcoming that they require a priori models of region 
shape. The proposed transform avoids this limitation by letting the structure emerge, bottom-up, from interactions among pixels, in 
analogy with statistical mechanics and particle physics. The transform involves global computations on pairs of pixels followed by 
vector integration of the results, rather than scalar and local linear processing. An attraction force field is computed over the image in 
which pixels belonging to the same region are mutually attracted and the region is characterized by a convergent flow. It is shown 
that the kansform possesses properties that allow multiscale segmentation, or extraction of original, unblurred structure at all 
different geometric and photometric scales present in the image. This is in contrast with much of the previous work wherein 
multiscale structure is viewed as the smoothed structure in a multiscale decimation of image signal. Scale is an integral parameter of 
the force (computation, and the number and values of scale parameters associated with the image can be estimated automatically. 
Regions are detected at all, a priori unknown, scales resulting in automatic construction of a segmentation tree, in which each pixel 
is annotated with descriptions of all the regions it belongs to. Although some of the analytical properties of the transform are 
presented for piecewise constant images, it is shown that the results hold for more general images, e.g., those containing noise and 
shading. Thus the proposed method is intended as a solution to the problem of multiscale, integraled edge and region detection, or 
low-level image segmentation. Experimental results with synthetic and real images are given to demonstrate the properties and 
segmentation performance of the transform. 

Index Terms-Image segmentation, representation, scale-space, edge detection, region detection, perceptual structure, pyramids, 
medial axis, nonlinear image analysis, texture. 

1 INTRODUCTION 
HIS paper is concerned with the problem of low level T image segmentation, or partitioning of an image into 

regions, that represent low level image structure. A region 
is characterized as possessing a certain degree of interior 
homogeneity and a contrast with the surround which is 
large compared to the interior variation. This is a satisfac- 
tory characterization from both perceptual and quantitative 
viewpoints. Homogeneity and contrast may be defined 
differently: A region may be uniform, in which case its 
contrast with the surround must be large; alternatively, a 
region may be shaded, in which case the local contrast 
across a boundary point must be large compared to the 
interior variation on each side. The sizes, shapes, types of 
homogeneity, and contrast values of regions in an image 
are a priori unknown. To illustrate, consider the image 
shown in Fig. loa, which shows people at a 3D movie. 
Within the lower of the two windows shown, the lenses 
and the rest of the head form two regions having homoge- 
neous intensities and large contrasts with their surrounds. 

+ 
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If the amount of acceptable variability and the contrast 
value of the regions are reduced, the frames of the eye- 
glasses and the ear emerge as new, smaller regions. If the 
homogeneity and sensitivity to contrast are increased fur- 
ther, nose and lips sepairate as regions from the rest of the 
face. Thus, a decrease in the acceptable contrast leads to 
increased, hierarchical decomposition, which culminates in 
constant-value regions at the bottom of the hierarchy. In 
another window in the same image, e.g., the upper window 
shown in Fig. loa, the depth of the hierarchy and the region 
homogeneity, contrast, :shape and size parameters associ- 
ated with the different levels are unrelated to the corre- 
sponding values in the lower window. Thus, in the tree 
representing the entire image, features such as depth and 
branching factor are unrelated across subtrees, each solely 
determined by the image and therefore a priori unknown. 
The homogeneity and contrast parameters associated with 
different image regions will be said to form the set of pho- 
tometric scales present in the image, while the region 
shapes and sizes will be said to define the geometric scales 
present. 

Finding a solution of the low level segmentation prob- 
lem poses two main challenges. First, a valid image region 
must be detected regardlless of its shape, size, type of ho- 
mogeneity, and contrast. Second, all geometric and pho- 
tometric scales at which regions happen to occur across an 
image must be identified. If these two problems are solved, 
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the result will be a segmentation tree representing the mul- 
tiscale, low level, image structure. To obtain such a tree for 
an arbitrary gray-scale image is the objective of image seg- 
mentation pursued in this paper. 

Limited work has been done to meet both of the above 
challenges. Much of the previous work on multiscale analysis 
is concerned with a scale-space decomposition of the image 
signal, determined by a single scale parameter. The decom- 
position amounts to a blurring of the image to different de- 
grees. The image structure is present across this scale-space 
continuum, and methods for extracting image regions of dif- 
ferent sizes and contrasts from this continuum are not avail- 
able. Further, even if they were extracted, the regions in the 
different decompositions would be correspondingly de- 
formed. Automatic estimation of scale parameters is typically 
not addressed. Even at a given scale, robust detection of a 
region continues to be an area of active investigation, mainly 
through the work on edge detection. Region detection such 
that the detected boundaries are closed and coincident with 
the true region boundaries regardless of region parameters is 
not a solved problem. Most methods are linear and often use 
restrictive region models, e.g., allowed geometric and pho- 
tometric complexity of edges. Although these models sim- 
plify processing, they cause fundamental limitations in the 
detection accuracy and sensitivity achieved which is partly 
why the problem of region and edge detection continues to 
evade a satisfactory solution. 

A central theme of this paper is to meet both of the 
aforementioned challenges, namely, accurate detection of 
regions without using rigid, geometric, and photometric 
models and automatic estimation of all scales associated 
with an image. This is accomplished by introducing a new 
transform which has two major properties. First, for a spe- 
cific pair of scale values, the transform leads to well- 
defined signatures of corresponding image regions which 
are easy to detect. The transform definition incorporates the 
duality of interior- and edge-based descriptions of regions. 
Thus, the transform performs integrated edge and region 
detection, and can be viewed as a multiscale blob and edge 
detector at the same time. Second, all scale values for which 
regions occur in the image can be computed by analyzing 
the results of the transform as the scale values used are 
varied. 

The transform computes affinities among image points or 
pixels for grouping with other pixels, letting the structure 
emerge bottom-up from "interactions" among the pixels 
instead of imposing a priori chosen models of region edges 
and interior. The emergent region geometry is not re- 
stricted, since pixels can group together to form any con- 
nected set. Specifically, the transform computes a family of 
force fields for a given image where the force vector at a 
point denotes its gray level similarity to the rest of the im- 
age. On either side of a region boundary, the pixels have 
high affinities, but there is little affinity between pixels 
across regions. The strength of interaction between pixels, 
and consequently their affinities, depend upon their dis- 
tances and contrasts, and this allows association of the 
computed affinities and segmentation with spatial and 
photometric scales. Since the transform allows interaction 
between a pixel and all other pixels, it can be viewed as 

collecting globally distributed evidence for image structure 
and making it available locally, e.g., at the locations of re- 
gion edges and medial axes (The medial axis of a region is 
defined as the locus of points inside the region which are 
equidistant from two or more points on the region bound- 
ary [6], 1161.) The regions are encoded in the force field via 
distinct signatures amenable to robust, local identification. 
In this sense, the transform performs Gestalt analysis. 

This paper introduces the transform and shows how it 
can be used for segmentation (the basic idea of the trans- 
form can be found in ill). It does not present specific seg- 
mentation algorithms. The segmentation is intended to rep- 
resent low-level image structure at all scales, thus with ap- 
plicability to textured as well as smooth images. To analyze 
and illustrate the basic properties of the transform, we 
model regions, whenever necessary, as possessing uniform 
gray levels and step edges. However, the transform prop- 
erties and segmentation results are shown to apply to im- 
ages containing general types of regions as discussed 
above, e.g., having shading and noise. Section 2 discusses 
some basic desired characteristics of segmentation and how 
they motivate the proposed approach. Section 3 describes 
the transform, describes some of its properties of interest, 
and shows how these properties facilitate multiscale seg- 
mentation. Section 4 analyzes the segmentation perform- 
ance of the transform, and Section 5 describes some ex- 
periments conducted to demonstrate this performance. 
Section 6 presents concluding remarks. 

2 BACKGROUND AND OBJECTIVES 

In this section, we first discuss past work on the two major 
subproblems of image segmentation: structure detection at 
a single scale and multiscale analysis (Section 2.1). This 
leads us to formulate the characteristics desired in a satis- 
factory segmentation (Section 2.2). 

2.1 Two Aspects of Image Segmentation 
We will first review the past work on photometric and geo- 
metric models of a region used for segmentation at a single 
scale. Mumford and Shah [25] estimate a 2D functional that 
minimizes a cost function comprised of the difference be- 
tween the images and estimated intensity values, the length 
of detected edges, and the variation in the functional away 
from edges, which are combined using a priori chosen rela- 
tive weights. Morphological methods are used in [22] to de- 
tect regions as intensity hills in grayscale landscape. More 
commonly, region detection has been performed through the 
detection of their boundaries (or edges). An edge separates 
two different regions and thus two different types of gray 
level populations. Edge detection methods use different 
models of edge geometry, and gray level variation along 
edge as well as within region. These models are fitted to local 
pixel populations to determine if an edge is present or not. 
Such local responses are then combined to derive a more 
global segmentation. Clearly, the validity of the models of 
the edge as well the gray level populations are critical factors 
in achieving a valid segmentation. We will now review some 
models used in the previous work. It is common to treat the 
problem of edge detection as mainly that of selecting a point 
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along the intensity profile across edge, assuming such a pro- 
file can be extracted from the image. Accordingly, a model of 
the intensity profile is used to precisely define an edge and to 
optimally detect its location. Different types of intensity 
models of an edge have been proposed, according to the na- 
ture of the two populations and the spatial profile of the 
transition from one to the other across the edge [291,[281, [5], 
[lo], [13]. To meet the assumption that edge profile through a 
pixel can be identified, it is common in edge detection work 
to implicitly or explicitly use a model of edge curvature. The 
use of such geometric model constrains the number of possi- 
ble, different subdivisions of the pixel neighborhood (e.g., a 
3 x 3 or a 5 x 5) into two regions which must be analyzed to 
detect the presence of an edge in the neighborhood. For ex- 
ample, the assumption of local straightness of edge is com- 
mon which makes it very easy to select neighborhoods on 
the two sides of the edge. Marr and Hildreth [21] assume 
that the edge is locally straight (and that the intensity 
changes linearly along a direction parallel to the edge.) 
Nalwa and Binford [26] assume straightness to extract a 
sample edge profile. Even the computation of gradient which 
is common to imany edge detectors, e.g., the diffusion based 
methods 1201, 1321, implicitly assumes local edge straight- 
ness. The same can be said about Laplacian based edge de- 
tectors. The use of straightness is very explicit in the different 
types of discrete edge masks each of which is meant to detect 
a different edge orientation [30]. To detect intensity facets 
meeting at an edge [12], a model of edge geometry is re- 
quired so candidate neighborhoods from each side of the 
edge can be identified. The work on optimal edge detection 
(e.g., [8 ] )  is also subject to the validity of the assumed model 
of the edge geometry. In short, the work on edge detection 
has lead to different approaches to estimate edge location 
and Orientation for edges having some (implicitly or explic- 
itly) assumed local curvature properties. Image edges do not 
always conform to these assumptions, and deviations lead to 
detection errors. Examples of such errors incurred using the 
Laplacian-of-Gmssian operator for different edge geometries 
can be found in [4]. To avoid some of these problems, Geman 
and Geman [ 11 ] use the Markov random field model to ob- 
tain an estimate similar to that in [25] but allow for end 
points, corners, and junctions in the edge models used. An 
approach that i2voids the dependence on geometric models 
of edge is given in [27] where interpixel correlations in spa- 
tiotemporal sp3ce are considered instead of interwindow 
correlations. 

The second major aspect of segmentation is related to 
scale. As we stded earlier, scale as defined in this paper is 
associated with both geometric and photometric sensitivity 
to detail. Thus, a pixel may simultaneously belong to dif- 
ferent regions leach having a different contrast value and 
size, giving rise to the tree representation mentioned ear- 
lier. Large regions may be said to have a coarse spatial scale 
while smaller sizes may be said to be associated with finer 
spatial scales. Analogously, an edge contour which sepa- 
rates two regions of a given contrast scale may not be de- 
tected at a higher scale associated with a larger contrast. 
The exact number and parameters of scales for a given im- 
age are a priori unknown. Therefore, multiscale segmenta- 
tion must automatically estimate these parameters and de- 

tect the corresponding regions. Although the general no- 
tion of multiscale operators has been examined for a long 
time [311, there has been limited work on definition, analy- 
sis and automatic estimation of multiscale image structure 
as pursued in this paper. Our objective here is to separate 
oviginal (unsmoothed) iimage structure at different scales 
(regions with different siizes and contrasts), as well as iden- 
tify the spatial and topological relationships among the 
regions. We obtain a multiscale structure-preserving de- 
composition of the image, unlike the more common multis- 
cale structure-decimation of the image signal 1171, [331, 1341, 
[19] where coarse scale structure is detected from blurred 
images and is therefore $3 smoothed version of the original 
image structure. In addition to accruing edge displacement 
error [4], the latter leads to artifacts such as phantom edges 
[9]. Among other approaches to multiscale segmentation, 
multiscale blob detection using morphological methods is 
described in [71, 1181 and computation of multiscale medial 
axis representation is discussed in [24], [2], [16]. 

2.2 Desired Characteriistics and Objectives 
The above discussion leads us to the following desired char- 
acteristics of multiscale structure detection and segmenta- 
tion. 

2.2.1 Shape and Topological Invariance 
The regions should be correctly detected regardless of their 
shapes and relative placement. For example, an edge point 
must be detected at its true location, regardless of whether 
the edge in the vicinity of the point is straight, curved or 
even contains a corner or a vertex where multiple regions 
meet. 

2.2.2 Photometric Scaling 
It should be possible to detect all regions which are in con- 
trast to their surround, regardless of the actual degree of 
intra-region homogeneity and the value of the contrast. 
Regions having large ciontrast may be associated with 
higher scales. 

2.2.3 Spatial Scaling 
It should be possible to detect all regions regardless of their 
shapes and sizes. Higher scales may be associated with 
larger regions. 

2.2.4 Stability and Automatic Scale Selection 
Image structures associaited with different scales corre- 
spond to segmentations that are locally invariant to 
changes in geometric and contrast parameters. Since the 
contrasts and sizes of regions contained in an arbitrary im- 
age are a priori unknown, they should be identified auto- 
matically. 

The transform presented in this paper has been moti- 
vated by the objective of achieving these desired character- 
istics. Specifically, the objective is to derive multiscale seg- 
mentation of the image and represent it through a hierar- 
chical, tree structure in which the different image segments, 
their parameters, and their spatial interrelationships are 
made explicit. The bottom (leaf) nodes of the hierarchy cor- 
respond to regions consisting of individual pixels or con- 
nected components of constant gray level, and the path 
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from a leaf to the root node specifies how the leaf regions 
recursively merge with adjacent regions to form larger re- 
gions each of which is homogeneous with respect to its sur- 
round and is characterized by its own contrast. Alternate 
representations of the same image structure and contrast 
information are also possible, e.g., by ordering regions ac- 
cording to contrast. In this paper, we will not dwell on the 
different possible data structures that could be used for 
representation. Rather, we will demonstrate how the trans- 
form extracts information about the a priori unknown re- 
gion geometries, homogeneities and contrasts, and associ- 
ates this structural information with each image pixel. Any 
specific image representation may be constructed from 
such annotated pixel arrays. Since the efficacy of segmen- 
tation is ultimately determined by its perceptual validity, 
performance evaluation will be done through assessment of 
perceived quality of real image segmentations in addition 
to quantitative measures computed for synthetic images. 

THE TRANSFORM AND IMAGE SEGMENTATION 
In this section we first discuss how the problems with the 
previous methods and the desired characteristics of the 
segmentation motivate an approach such as that underlies 
the proposed transform (Section 3.1). We then introduce 
the transform (Section 3.2) and present its properties 
(Section 3.3) that demonstrate how the transform makes 
explicit the image structure and facilitates image seg- 
mentation, and why the resulting segmentation possesses 
the desired characteristics listed in Section 2.2. Section 3.4 
describes how a given image region appears in the vector 
field computed by the transform. In Section 3.5, we dis- 
cuss the estimation of the unknown scale parameters as- 
sociated with an image, which are required to extract the 
unknown structures present in different parts of the im- 
age. Section 3.6 describes the hierarchical image structure 
that is extracted as the final result of segmentation. 
Whenever necessary, we will consider constant-value re- 
gions to analytically and qualitatively describe the trans- 
form behavior. However, the properties of the transform 
responsible for its segmentation capability remain valid 
for images containing more general types of regions, such 
as those having noise (statistical constancy) and shading 
(smoothly varying values or higher-order hombgeneity) 
as will be explained in Section 4. Thus, the transform is 
proposed for use in segmentation of piecewise smooth 
images. 

3.1 Overcoming Limitations of Linear Processing via 

To consider the limitations of previous linear approaches, 
consider the edge-based detection of regions. In the litera- 
ture, different models of edge profile (step, ramp, roof) and 
their validity have been investigated. However, the limita- 
tions and impact of the assumptions made about edge ge- 
ometry have received limited attention. Since any convolu- 
tion kernel for edge detection must incorporate a template 
for the expected edge geometry, no linear, convolution 
based approach can avoid the limitations resulting from the 
use of geometric models of edge. In the digital case, one 
could attempt to circumvent the problem by enumerating 

the Transform 

all possible edge geometries in a neighborhood. But the 
number of resulting kernels will fast increase with neigh- 
borhood size and will be prohibitively large for any rea- 
sonable size neighborhood. 

The inspiration for the proposed solution comes from 
physics where microscopic homogeneity of physical proper- 
ties leads to islands of, say, similar particles or molecules. An 
island shape is congruent with the space occupied by a set of 
contiguous, similar particles, whatever the complexity of the 
boundary! The particles group together and coalesce into 
regions based on the similarity of their intrinsic properties, 
regardless of their relative locations. The common property 
of the particles then characterizes the region they form. As an 
alternate analogy, the grouping process is like the alignment 
of microscopic domains over an area of ferromagnetic mate- 
rial. The key process is that of interaction among particles 
which leads to bindings among similar particles. 

The problem of segmentation has similarities to the 
above physical process. The goal is to find a partition of the 
image, regardless of the boundary complexity, such that 
each cell of the partition has a characteristic property, say, 
homogeneity of gray level. This analogy suggests a formu- 
lation of the segmentation process in terms of a suitably 
defined method of interpoint interaction-one that would 
group, bottom-up, each set of points of the same property 
to form a region having a boundary of any complexity. 
Being a parameter of the grouping process, different ac- 
ceptable degrees of the presence of the property within a 
region would yield groupings over different regions, mak- 
ing scale an integral part of structure detection. 

In the next section, we introduce a transform which 
achieves the above grouping. 

3.2 The Transform 
The transform converts the image I into a vector field F. 
The vector FP at an image location p is defined as 

where 
ipq = unit vector in the direction from p to another im- 

age location q; 
o,(p) = spatial scale parameter at p; denotes the shortest 

distance to region boundary; all valid o,(p) values 
are computed automatically; 

o,(p) = photometric scale parameter at p; denotes con- 

trast of region with surround; all valid o,(p) values 
are computed automatically; 

A7 = absolute gray level difference between image points 
under consideration; 

d,(a, b)  = a nonnegative, nonincreasing function of IlalI, 

d,(a, b )  = a nonnegative, nonincreasing, and symmetric 
function of a, not identically 0 for a 2 b, and 0 for a> b. 

not identically 0 for \la// 2 b ,  and 0 for llall > b , and 
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Since $(U,  b)  as defined above cannot be a linear func- 
tion of a for unrestricted values of a, the transform does not 
obey the principle of superposition and hence is nonlinear. 

3.2.1 Formulation of the Transform 
Having statecl the definition of the transform, we will now 
explain the motivation behind this formulation and con- 
struct the definition from basic principles. 

Consider a region R and a point P inside it. It is desired 
that the similarity of P to all the other points within R, rela- 
tive to those outside R, be recognized, regardless of the dis- 
tance to and curvature of the nearest region boundary. To do 
this, the transform defines a neighborhood around P which is 
sufficiently small so that the pixels within the neighborhood 
which have the most influence on the computation at P are 
within R. The similarity is estimated by comparing the gray 
level at P with those of the points in the neighborhood, rather 
than testing some (position independent) gray level statistics 
of points within the neighborhood, or comparing the statis- 
tics of different sets of pixels near P. An estimate of the local 
shape of R near P, specifically of the nearest region border, is 
computed. This is achieved by a vector integration of the 
results of pairwise comparisons of points at different orien- 
tations, instead of computing a scalar, weighted average at P 
as is done in linear methods. Contiguous points having com- 
patible estimates of local shape of R are grouped together. 
This results in the detection of an arbitrarily large region of 
arbitrary shape. 

To capture the local region geometry, the transform 
computes an attraction-force field over the image wherein 
the force at each point denotes its affinity to the rest of the 
image. The force vector points in the direction in which the 
point experiences a net attraction from the points in the rest 
of the image. For example, a point inside a region would 
experience a force towards the interior of the region. This 
force is computed as the resultant of attraction-forces due 
to all other image points. If F(p, q) denotes the magnitude 
of the force vector F(p, q) with which a pixel P at location p 
is attracted by another pixel Q at location q, then the trans- 
form is given by 

where tpq denotes the unit vector in the direction from P to 
Q, i.e., 

- 9 - P  
?pq - - 

114 - PI1 
In the real image plane, an image is transformed into a 

continuous vector field. The vector FP at point P is given by 

9’P 

where q can be any image location other than p. In the dis- 
crete case, 

W P  

We need to specify what forms the force function F(p, q) 
could take. WE‘ will do so by identifying the characteristics 

that any such function must possess, to yield the correct 
segmentation for a given pair of spatial and photometric 
scales as well as exhibit appropriate behavior across multi- 
ple scales. Specific choices of force functions having these 
characteristics will then define different instances of the 
transform. 

Since the presence of an edge of a region at any given 
spatial scale must be determined by its adjoining regions 
rather than by distant points across other intervening re- 
gions, the force F exerted on a given pixel P by another 
pixel Q should be a nonincreasing function of the distance 
between P and Q. Further, a pixel should be attracted more 
to a pixel within its own region than to one in a different 
region, and the attraction between two pixels should de- 
pend only on the magnitude of their gray level difference 
and not its sign. This is accomplished by making F to be a 
nonincreasing and symmetric function of the difference 
between the gray levels of P and Q. 

Since both spatial arid photometric vicinities are rela- 
tive to the scales of interest, let us now consider how to 
integrate the scale information in the computation of F. 
Consider a region W which exists amidst many other re- 
gions in an image (Fig. 1). To detect any structural char- 
acteristics of W, the computation of F at a point must not 
extend to nonlocal parts of W or to other regions, since 
otherwise the result will depend upon nonlocal structure 
of W or multiregion structure. To be specific, first con- 
sider the situation where a point P is inside W but not on 
its medial axis. Let &p) denote the distance to the unique 
border point (or border :segment) of W closest to P, and let 
D denote a disk of radius Y = &p) centered at P. If Y is in- 
creased, for some value r = 6 ’(p) > Mp), D s  intersection 
with Ws surround will begin to consist of multiple dis- 
connected regions or D will begin to intersect with other 
regions near W (e.g., regions Y and Z in Fig. 1). Now con- 
sider the second situation where the point P is along the 
medial axis of W. For arty such point, 6‘(p) = &p) since a 
disk of radius greater than &p) will intersect Ws  sur- 
round in multiple disconnected components, and possibly 
other regions. In order fhat FP reflects the structure of W 
surrounding P, it must be ensured that the contribution to 
F at p from points at a dlistance greater than or equal to 6 
’(p) is negligible. Such spatial locality of computation is 
enforced by including EL spatial (or geometric) scale pa- 
rameter 0, in the definition of F.  q(p) associates a “cut-off 
distance” with p such that the points farther than this 
distance make negligible contribution to F value at p. In 
particular, we define thle spatial scale parameter q(p) at 
each point p in some region R as having a value given by 
q p  = &p) + a(6’(p) - &p)), where 0 < a < 1. Thus, &p) < 
q(p) < 6’(p) at all points inside R except along the medial 
axis where q(p) = &p) = 6 ’(p). To achieve the desired 
monotone dependence of F on the spatial scale as well as 
on the distance as discussed in the previous paragraph, 
we make it proportional to a function ds(rpq,os(p)), where 

d,(rPq, o,(p)) is a nonnegative, nonincreasing function of 

llrll, not identically 0 for llrll I o,(p), and 0 for 11r11 > ~ , ( p ) .  
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cz; 
Fig. 1. The medial axis of the region W is the locus of points equidistant from multiple points on W s  border, shown here by dotted lines. A point 
P's distance to the nearest border point is given by 6(p). A disk D of radius > 6 ' may intersect with W's surround in more than one connected 
component (e.g., point P), or it may intersect with other regions as well (e.g., point Q). For points along the medial axis, 6 ' = S (e.g., point T). The 
spatial scale parameter os at any point is defined as a value between 6 and 6 ' (radius of the middle circle for point P). 

Just as the spatial scale parameter is chosen to ensure 
that F at p depends on spatial structure in the neighbor- 
hood of p, the photometric (contrast, or gray level) scale 
parameter at P is determined by the degree of gray level 
homogeneity and contrast of a specific region of interest 
containing P. It ensures that F at p is determined by points 
within the region, i.e., the point experiences negligible at- 
traction to another point having gray level difference larger 
than a cut-off value characteristic of within-region gray 
level variability. To achieve this, we make F proportional to 
the function d8(Al, o,(p)), where N denotes the absolute 
gray level difference between points P and Q, and ~ , ( p )  is 
the photometric scale parameter. d,(M, o,(p)) is a nonnega- 
tive, nonincreasing, and symmetric function of M, not 
identically 0 for AI 5 o&), and 0 for M > $(p). 

Thus, F, can be written as defined earlier in (l), namely, 

Fp = J 4($y 4 P ) ) d g ( A L  Os(P))$,dcl 
9'P 

Two observations follow from the above definition of F.  
First, the scale parameters at different points within a re- 
gion R are mutually dependent since they are all deter- 
mined by the structure of R. In particular, o, at a point P 
inside a region R depends on P's location relative to R s  
boundary, and all points inside R have the same og value 
which corresponds to the contrast of R with its surround. 
For example, in a piecewise constant image, o, varies con- 
tinuously and o8 is piecewise constant. Second, since the 
region structure is to be determined in the first place, o, and 
og are a priori unknown to the segmentation algorithm and 
must be computed at each point. Since a point in general 
belongs to many different regions at different scales, o, and 
og will have multiple values at a point. 

Note that when a homogeneous region (or back- 
ground) is at least partly enclosed by the image border, 
the computation of F will be undefined at those image 

points P whose nearest border point is on image bound- 
ary. This is because the computation of o,(p) involves 
points at distances > 6(p) from p (Fig. 1) and some such 
points are outside the image. To resolve this problem, we 
will treat the entire image as surrounded by a hypotheti- 
cal, constant-value region whose contrast relative to the 
given image is infinite. Accordingly, for computational 
purposes, the points outside the image will be assumed to 
be accessible but having a gray level of infinity. This 
would yield the given, finite size image as the largest and 
least homogeneous region within the hierarchical seg- 
mentation of the hypothetical, infinitely large image. 

3.3 Properties 
In this section, we present some properties of F which collec- 
tively describe the relationship between the spatial structure 
of F and the image structure, and consequently, suggest F as a 
means of image segmentation. For brevity, the proofs are out- 
lined for some of the properties; the rest can be found in [31. 

3.3. I Null Response 
Suppose an image contains a constant-value disk, an arbi- 
trary number of arbitrarily located other regions not inter- 
secting with the disk, and a constant-value background. 
Then the value of F is zero at the disk center. 
PROOF. Let D denote the constant-value disk and P denote 

the center of D. Let X denote the constant-value back- 
ground adjacent to D. By definition, q (p) has a value 
such that only points of D and X are contained within 
a distance o, (p) from p. Thus F at p is computed from 
a neighborhood comprised of the disk D surrounded 
by an annulus of X, which makes the neighborhood 
gray level distribution to be isotropic around pa 
Therefore, for each point Q, there is another point Q 
such that Q and Q are located radially symmetrically 
about P, and Q and Q exert equal and opposite forces 

n at P. Therefore the net force F, at P is zero. 
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3.3.2 Inward Attraction 
Let P be a point inside a homogeneous region W. Let D be 
the disk of radius o,(p) centered at P which intersects with 
W and its border with a homogeneous region X of con- 
trast C. Let N [  and N be the two points where the borders 
of D and W intersect (there will be exactly two such 
points by definition of 0). Then, for og < C, there exists a 
point S along W s  border within D and between the 
points M and N such that the direction of FP at P is given 
by the vector from S to P, i.e., Fp = k?sp, where k is a posi- 
tive constant and ?sp denotes the unit vector from S to P. 
Thus FP points inward. 
PROOF. Let L denote the region of intersection between D and 

X (Fig. 2). If we construct another region L‘ such that L 
and L‘ are symmetric about P, with the segment M N  
being symmetric to MN, then the force at P due to the 
neighborhood (D-L-L‘) will be 0 by symmetry (see 
Property 3.3.1). Therefore, the force F, at p is due to the 
points in the regions L U L‘ and is given by 

(3) 

where F,, and FpL, denote the forces at p due to re- 
gions L and L’, respectively. Now for all q1 E L, it is 
given that N(p, ql) > 08. Therefore, d8(N(p ,  ql), 02 = 0 
from the definition of d,. For all 92 E L‘, N(p, qz) = 0 < 
08. Since d, is a nonincreasing function of N not identi- 
cally 0, and A(p, 42 E L‘) = 0 < < N(p, q1 E L), we have 

(4) 

Thus FpL = 0, and consequently, FpL = Fp,,. Since 
d, is not identically zero and nonnegative, it follows 
from (l), (3), and (4) that FpL, > 0. Therefore, 
Fp = FpL, > 0. Since FpLt is the net force on P due to all 
points q1 E L‘, the direction of FpLt must be given by 
the unit vector FPs,, for some point S” E L‘. If S’ de- 
notes a point of intersection of the line joining P and 
S” with the segment M N ,  then the direction of Fp is 
given by the unit vector %ST. Therefore, Fp = 

where k is a constant. But for each point s’ on seg- 
ment M N ,  there is another point s on segment MN 
where the line PS intersects the segment MN, and 

0 

Fp = F P + FpL, 

dg(qP,q,)rO,)  ’ 0 = d,(qP,q,)!O,)  . 

GS, = isp. Therefore, Fp = k?sp. 

X 

Fig. 2. The force at a point P inside a homogeneous region points in- 
ward (Property 3.3.2). 

3.3.3 Divergence 
Consider a pair of points P and P’ inside and outside, re- 
spectively, a homogeneous region W, and infinitesimally 
close to W s  boundary. Then FpXFp, = 0, i.e., the force vector 
undergoes direction reversal across the boundary, regard- 
less of the shape of the boundary. 

PROOF. Let P’ belong to region X (Fig. 3). Consider the line 1 
through P and P’, and the forces at P and P‘ due to 
points along 1 and within a distance oJp) (= o,(p’)). 
Let F,,(P) denote the total attraction force at P along I 
due to and towards the points inside W. Let Fix(P) de- 
note the total attraction force at P along l due to and 
towards the points inside X. Analogously, let F,,(P’) 
and F,,(P’) denote the total attraction forces on P’ 
along 1 due to and towards the points inside X and W, 
respectively. Then the total attraction force F,,(P) at P 
towards W is given by F,,(P) = (F,,(P) - FJx(P))w 
where w is the unit vector along 1 and towards W. 
Similarly, the total attraction force F,(P’) at l” to- 
wards X is given by F,,(P’) = (F,(P’) - FJw(P’)) 2 where 
2 is the unit vector along 1 and towards X. Since each 
of W and X is a constant-gray-level region, we have 
F,,(P) = (Fix@‘’) and further since F is an even function 
of gray level difference, F,,(P) = (FJw(P’). Therefore, 
F,,(P) = -FJP’). Now the total force F,(P) at P to- 

wards W is given by F,(P) = J“F,,(F‘)dO and the total 

force F,(P‘) at P‘ towards X is given by 

Fx(P’) = Jo%l,(P’)dO. From the previous three equa- 

tions, we see that Fw(P) = -Fx(P’), which means that 
there is a directional discontinuity of magnitude n 
between the force vectors at P and P‘. 0 

0 

3.3.4 Orthogonality 
Consider two points P and Q inside a homogeneous region 
W such that the unit vector ?pq is orthogonal to the region 
boundary at the point S where the line PQ intersects region 

1 

Fig. 3. Divergence. If a point F) in region W and another point P’ in re- 
gion X are infinitesimally far from each other, and hence also from the 
boundary between W and X, then the force vectors at P and P’ are 
equal and opposite (Property 3.3.3). 
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boundary and is directed into W. If the intercept of W s  
boundary with the disk D of radius Y = ~ , ( p )  centered at P 
is symmetric about the line PQ, then the direction of Fp is 
given by fpq, i.e., Fp = kfpq for some positive constant k, i.e., 
Fp is orthogonal to the boundary. 

PROOF. By definition of 0,, the force FP at P does not depend 
on points outside D. Since the boundary of W within D 
is symmetric about P, line PQ divides the region of in- 
tersection of W and D into two symmetric halves. For 
each point M in one half, there exists another point M' 
in the other half such that the components of the force 
at P due to M and M and orthogonal to PQ are equal 
and opposite. Thus, the net force at P is along PQ and, 
from Property 3.3.2, in the direction fpq. Since PQ is 

U orthogonal to the region boundary, so is Fp. 

3.3.5 Medial Axis 
At all points P along the medial axis of a region, Fp = 0 .  

PROOF. This follows directly from the definition of o,. For any 
point P along the medial axis, &p) = 6 ' (p). Therefore, 
O, (p) = 6 (p). Since the force on P due to points farther 
than q (p) is negligible (from the definition of O, (p) 
and since all points within the distance q (p) form a 
homogeneous region, it follows from Property 3.3.1 
that F, = 0. Note that here the detected axis is medial in 
the sense of 161. Other related shape axes are based on 

U local symmetery [351 or inertia 1361. 

3.3.6 Convergence 
At points near and on either side of the medial axis of a 
region R, F is directed toward the medial axis. That is, F 
points away from the closest border segment in the sense 
described in Property 3.3.2. 

PROOF. Consider a point Q near the medial axis. Then 6' (q)  
> 6(q) and O, (q)  > &q). From Property 3.3.2, therefore, 
F, points inward (away from the region border). As Q 
approaches a medial axis segment from either side, 6' 
(7) approaches aq) and therefore, O, (q)  approaches 
qq). Thus, the direction of F points toward the medial 
axis which becomes the locus of force convergence. U 

3.3.7 Smoothness 

If d g ( A I ,  C T ~ )  is a continuous function of Al, and ds(r, os) is 
a continuous function of r and os, then F is a spatially con- 
tinuous function at all nonboundary points of a region 
PROOF. Consider a point P inside a completely homogenous 

region R, and another point T inside R and arbitrarily 
close to P. Then, 

Fp = J d,($,! o s ! P ) ) d , ( q P 4  q P ) ) $ , d ,  

Ft = J ds(rtqr os(t))dp(AI(t, 4). ~g( t ) )2qd ,  

q+P 

and 

q#f 

Now for any third point Q, AI (p, q) = AI (t, q) since P 
and T have the same gray level. Further, since P and 
T are arbitrarily close, (Itg - rpJ is arbitrarily small. 
Also, O, (t) - q (p) is arbitrarily small from the defini- 
tion of o,. Therefore, for any given choice of OAP) 
(= og (t)), (F, - F,) is arbitrarily small. Consequently, FP 

U is continuous everywhere within a region. 

3.3.8 Closure 
For any piecewise constant image, the contours along 
which F exhibits divergence are closed. 

PROOF. From Property 3.3.3, a region edge appears as a di- 
rectional discontinuity of TC in F. Further, from Prop- 
erty 3.3.7, F varies smoothly on either side of the 
edge. Therefore, for each point of directional discon- 
tinuity, there is another point in its vicinity which is 
also a point of directional discontinuity. Since the 
boundary of any region in a piecewise homogeneous 
image is a closed contour, the points of directional 
discontinuity form closed contours with smoothly 

U varying F on each side. 

3.4 A Region's Signatures 
The above properties of the transform collectively suggest 
the following structure of F associated with an image re- 
gion R, or the signatures of R in the F-field. When a cg 
value corresponding to R s  contrast is used to compute F, it 
leads to much attraction between pixels within R and little 
attraction between pixels across R s  boundary. Further, if 
the O, value at each point is chosen corresponding to R, 
then R is characterized by a spatially smooth and inward 
force flow, where the force lines emanate from the region 
border and converge at R's medial axis given by F = 0. The 
direction of F undergoes a divergent discontinuity of mag- 
nitude n across the entire region border except at those 
border points where F = 0, i.e., border points which also lie 
on the medial axis such as corner points. Thus F's magni- 
tude along a region's border varies but is 0 at corners. Fig. 4 
illustrates the signatures of rectangular regions. 

A test of F s  validity can be performed by considering 
the nature of Fp at a point P inside an arbitrary shaped re- 
gion R as R shrinks in size uniformly and vanishes. Let us 
first consider the case where P belongs to the medial axis of 
R. Here, 6(p) = o,(p) = 6'(p). Since Fp is computed over a 

constant-value disk of radius o,(p), Fp = 0 .  Now consider 
a point P off the medial axis of R. Then, 
6(p) < o,(p) < 6'(p). However, as R continues to shrink, 
the area of the region L' (= area of region L) in Fig. 2 ap- 
proaches 0. Since the net force at P is that due to L' (see the 
proof of Property 3.3.21, 

lim F = O .  (5) 

Thus the influence on the F field caused by an image re- 
gion vanishes as the area of the region vanishes, as is to be 
expected. 

Aren(R)-tO 

3.5 Estimation of Scale Parameters 
Recall that image regions are in general recursively embedded, 
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each standing, in contrast with its surround and characterized 
by its own gray level homogeneity. An image point is associ- 
ated with multiple regions, and therefore with multiple de- 
grees of homogeneity and contrast scales. Since in the pro- 
posed transform an increasing value of og corresponds to in- 
creasingly nonuniform regons, og comprises one index into 
the structural hierarchy. Further, since each region has its own 
shape and size, and the spatial scale parameter at a point de- 
pends on its location with respect to region boundary, each 
image point is also associated with a number of spatial scales 
(os values). Therefore, each image point is associated with a 
number of (os,, OJ pairs, corresponding to the different regions 
that it belongs to. In real images, a point is contained in only a 
small number of regions, and is therefore characterized by a 
small number of scale pairs. F makes explicit at each image 
location regions corresponding to all scales present at that lo- 
cation. A parbcular selection of regions across the image corre- 
sponds to a specific cutset of the segmentation hierarchy. 

The signatiures of a region in the F field, as described in 
the previous subsection, are obtained assuming that F at each 
point is computed using the appropriate pair of (os, 02 val- 
ues. We will now explain how these unknown scales can be 
estimated to yield the multiscale image structure. For esti- 
mation of these values, we will treat o, and og as variables 
and identify their values that correspond to image regions. 
Suppose that for all images of interest, 5 (T, 5 ( c T ~ ) ~ ~ ~  

and 5 bg 5 ((TY)max. That is, the ranges of sizes and 

contrasts to be encountered in images have known bounds. If 
no specific information is available for images to be proc- 
essed, the image size and the maximum gray level can be 
used as ( ~ 7 ~ ) ~ ~ ~  and (og) , respectively, while 

= (og]tmIn = 1 can be used as the minimum size and 

contrast a regiion could have. Suppose the transform is used 
to compute thle force at each point for (os)" I os 5 ((T,)~,,, 

and jog) . Suppose that at a point P, the 

pair of values ( ( T , ~ , O ~ ~ )  and (oS2,og2) correspond to two 

regions R1 and R2 at two adjacent scales which contain P, 
with R2 containing (>) RI, and (og2 > ogl). That is, there is 

no other region R3 such that R1 < R3 < R2. By our definition 
of scale given in Section 1, R1 and R2 represent two adjacent 
natural scales occurring in the image at P. Let VI and V, de- 

note, respectively, the values of F corresponding to ( osl, ogl) 

and ( o , ~ ,  o ~ ~ ) .  AS the value of the variable G, is increased 

from dsl, the image area responsible for a nonzero value of F 
at P (area L in Fig. 2) will increase, resulting in an increase in 
the magnitude of F. Now from Property 3.3.2, as the value of 
0, at a point P increases beyond o,(p), the shape of L changes 
gradually and s moves along the subregion boundary, re- 
sulting in a gradual change in isp. A similar gradual change 
in F will also be associated with an increase in og. Thus, F will 
slowly deviate from VI as (os, 02 values increase. However, 
for a sufficiently large value of os, i.e., os > &(p), the value of 

max 

5 og 2 (08) nun max 

F will begin to depend on multiple disconnected compo- 
nents of Rl's surround which are subregions of R2. Since 
the direction isp is in general different for R I  and R2, V, 
and V, are in general different. Similarly, for 
ogl << ( T ~  << og2, the subregions of R2 will make signifi- 
cant contribution to F value at P. Consequently, F will 
change with (os, 02. As (CY$, 02 approach (052,0g2), F will 

assume the relatively sitable value of V,. Therefore, in the 
o,o,-space, the locations where F is stable will be scattered, 
associated with structures at different pairs of scale values. 
Somewhere between ealch pair of nearby locations of stable 
points in the o,o,-space corresponding to R1 and R2, F will 
make a sharper transition from the value V, to V,. Fig. 5 
illustrates the different stable values of F for a simple syn- 
thetic image. By traversing the o,o,-space, computing F us- 
ing all os, og values at all image points, and identifying 
those parts in the o,og-space where F is locally stable (has 
locally minimal variation), we can determine all the scales 
associated with P. The scale values at all image points can 
be estimated jointly, because together the values comprise 
the signatures of regions as explained in the previous sub- 
section. Such scale estimation is robust for two reasons. 
First, at each point only qualitative changes in F are de- 
tected. Second, the qualitative changes at different points 
are analyzed jointly to detect the spatial signatures of a re- 
gion. This further suppresses any noise in F, which is al- 
ready low because of the large neighborhoods used in the 
computation of F. 

The signatures of a region in the F field, as described in 
the previous subsection, are obtained assuming that F at 
each point is computed using the appropriate pair of (cis, 02 
values. We will now explain how these unknown scales can 
be estimated to yield the multiscale image structure. For 
estimation of these values, we will treat os and og as vari- 
ables and identify their values that correspond to image 
regions. Suppose that for all images of interest, 

5 6, 5 and (og)mln 5 og 5 (og) . That is, 

the ranges of sizes and contrasts to be encountered in im- 
ages have known bounds. If no specific information is 
available for images to be processed, the image size and the 
maximum gray level can be used as and (og) , 

respectively, while = = 1 can be used as the 

minimum size and contrast a region could have. Suppose 
the transform is used to compute the force at each point for 

max 

max 

(0, I,,, 5 6, 5 (0, ),,, and ( bg)mln 5 o g  5 ( og) max . Suppose 

that at a point P, the pair of values (o,,, ogl) and (Os2, og2) 
correspond to two regions R1 and R2 at two adjacent scales 
which contain P, with R2 containing (>) R1, and 
(og2 > (TY1). That is, there is no other region R3 such that 
R1 < R3 < R2. By our definition of scale given in Section 1, 
R1 and R2 represent two adjacent natural scales occurring 
in the image at P. Let VI and V, denote, respectively, the 

values of F Corresponding to ((T~,,(T~,) and (os2,0g2). 
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I 

(e) 
Fig. 4. Demonstration of the properties of the transform and the region signatures through a simple synthetic image. (a) Two rectangles having a 
constant intensity of 1, on a background of intensity 255. (b) Intensity coded image of 0, values chosen to correspond to the rectangular regions. 

Image brightness is proportional to os value. (c) Force vectors obtained after the transform has been applied using the 0, values shown in (b), 

and o8 = 20. The vector directions are intensity coded so that the brightness is proportional to the clockwise angle of the force vector from the 

positive x-axis. Some intensity discontinuities are artifacts of intensity based (linear) coding of the cyclic direction values. (d) Same as (c), but with 
vector directions rotated 90" clockwise and then intensity coded. This shifts the bright-dark artifacts resulting from the intensity coding, allowing 
one more easily to verify the field in (c) near areas where such artifacts occur. (e) The vectors in (c-d) shown as line segments. The length Of the 
line segment represents the vector magnitude, and the tail of the vector is indicated by a small square. 
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(c) (d) 
Fig. 5. Demonstration of the multiscale capability of the transform. (a) Same as Fig. 4a, except that two new, lower contrast regions have been 
added. The new small rectangle has a gray level of 30, and the new square has a gray level of 200. The three contrasts present are 29, 55, and 
254. (b) Intensity coded vector direction image using og = 10. Because 10 is less than all contrasts, all four regions are detected. (c) Analogous to 

(b) using og = 40. Because 40 > 29, the new rectangle is lost. (d) Analogous to (b) using og = 60. Because 60 z 29, 55, both new regions are 

lost, leaving a result identical to Fig. 4c. 

As the value of the variable Os is increased from (Tsl, the 
image area responsible for a nonzero value of F at P (area L 
in Fig. 2) will increase, resulting in an increase in the mag- 
nitude of F. Now from Property 3.3.2, as the value of at a 
point P increases beyond q(p), the shape of L changes 
gradually and s moves along the subregion boundary, re- 
sulting in a gradual change in tSp. A similar gradual change 
in F will also be associated with an increase in 0,. Thus, F 
will slowly deviate from VI as (os, 02 values increase. 
However, for a sufficiently large value of Os, i.e., Os > 6'(p), 
the value of F will begin to depend on multiple discon- 

nected components of Rl's surround which are subregions 
of R2. Since the direction ?sp is in general different for R1 
and R2, VI and V, are in general different. Similarly, for 
(Tzl << (Tg << Ogz, the subregions of R2 will make signifi- 
cant contribution to F value at P. Consequently, F will 
change with (Os, 02. As (Os, 02 approach (Os2,(Tg2), F will 
assume the relatively stable value of V,. Therefore, in the 
qO,-space, the locations where F is stable will be scattered, 
associated with structures at different pairs of scale values. 
Somewhere between each pair of nearby locations of stable 
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points in the o,o,-space corresponding to R1 and R2, F will 
make a sharper transition from the value VI to V,. Fig. 5 
illustrates the different stable values of F for a simple syn- 
thetic image. By traversing the op,-space, computing F US- 

ing all o,, os values at all image points, and identifying 
those parts in the o,og-space where F is locally stable (has 
locally minimal variation), we can determine all the scales 
associated with P. The scale values at all image points can 
be estimated jointly, because together the values comprise 
the signatures of regions as explained in the previous sub- 
section. Such scale estimation is robust for two reasons. 
First, at each point only qualitative changes in F are de- 
tected. Second, the qualitative changes at different points 
are analyzed jointly to detect the spatial signatures of a re- 
gion. This further suppresses any noise in F, which is al- 
ready low because of the large neighborhoods used in the 
computation of F. 

The point pattern in o,o,-space defined by the locations 
of the actual scale values corresponding to any image point 
is unique for the point and the image, and represents the a 
priori unknown multiscale structure determined by the 
algorithm at the point. This structure is restricted for com- 
mon images because an image point does not have multiple 
contrasts associated with the same spatial scale although it 
may be contained in multiple regions of the same contrast. 
Therefore, it would suffice to perform a linear sweep of the 
o,o,-space in the og direction, while identifying all (if any) 
o, values which yield locally stable F for each og. 

3.6 Region Detection 
For each region in the image, occuring at any scale, the 
automatic scale estimation process computes at each pixel 
in and around the region a O~-O, pair of values which corre- 
spond to the region’s shape (0,) and contrast (02. When the 
F field is computed using these oS-o, values, the field con- 
tains the signatures of the region. The detection of regions 
would thus require partitioning of the F field such that each 
cell has the signatures of a region. 

A simple approach to finding candidate regions is to lo- 
cate contours of force divergence. This is easy and the re- 
sult robust since the directional discontinuity across such 
contours is known to be 7 ~ .  All characteristics (listed in Sec- 
tion 3.4) comprising the region’s signature may then be 
matched jointly with the local F-field around the candidate 
regions to test the region hypothesis. The details of such 
hypothesis formation and testing are outside the scope of 
this paper. The results of some experiments that demon- 
strate the detection performance are given in Section 5. 

3.7 Segmentation Hierarchy 
The properties of the transform and the capability of auto- 
matic estimation of the scale parameters discussed in the 
previous subsections allow the construction of a hierarchi- 
cal representation of segmentation. The computed scale 
values for nearby pixels are mutually compatible in that for 
all points within a region, (T, values are continuous and ( T ~  

values are constant. 
The regions of a single gray level form the smallest re- 

gions. These may be defined as the leaf nodes of the hierar- 

chy. Homogeneous regions having larger sizes or gray level 
variations are used to define higher levels. For example, the 
hierarchy may be based on spatial containment relation- 
ship; thus, the regions containing a particular leaf region 
are arranged in increasing order of size to define the path 
from the leaf node to the root. Nearby pixels merge into 
increasingly large regions as the path to the root is trav- 
ersed. The subtree below any node in the hierarchy is un- 
related to any other disjoint subtree, i.e., the structure, path 
lengths and G~-CJ~ values associated with the nodes are un- 
related across the subtrees. They reflect the a priori un- 
known spatial structure within an image. In this sense, the 
hierarchy define a recursive partition of the image into ar- 
bitrarily shaped regions, analogous to the irregular pyra- 
mid representation of [23]. 

Specific algorithms to compute the scale parameters and 
to obtain different hierarchical representations are not 
within the scope of this paper; these will be reported in 
subsequent publications. 

4 PERFORMANCE ANALYSIS 
Let us first review the overall performance of the transform 
with respect to the desired characteristics (Sections 2.2.1- 
2.2.4) listed in Section 2.2. Characteristic 2.2.1, invariance to 
local edge geometry and topology, serves as a key motiva- 
tion for proposing the transform, and is central to its design. 
The discussion in Section 3 makes it clear how this charac- 
teristic is possessed by F. For example, the capability of mul- 
tiscale segmentation holds even if more than two regions 
share a border point since the properties of the transform 
leading to region signatures are not affected by shape and 
adjacency characteristics of the regions. With regard to de- 
sired characteristic 2.2.2, the scale parameter ox provides a 
mechanism to accomplish contrast scaling. As ox increases, 
adjacent regions may merge. This is because the attraction of 
a point in one region from another point across region 
boundary may increase sufficiently so that the directional 
discontinuity in F responsible for the edge may vanish. Thus 
changing or achieves the same result as contrast based split- 
and-merge of regions [14], [MI, and therefore, the desired 
contrast scaling. Analogously, for any given os, scale pa- 
rameter os helps achieve geometric scaling (desired charac- 
teristic 2.2.3). Larger os values at a point correspond to more 
global structures having a given contrast 08, which results in 
the capability to detect different spatial scales. The desired 
characteristic 2.2.4 is of course met since scales can be auto- 
matically estimated as explained in Section 3.5. 

In the rest of this section, we will divide the performance 
of the transform into two types. The first type is concerned 
with the capabilities of the transform to detect off-axis sig- 
natures of a region, specifically those represented by Prop- 
erties 2, 3, 7, and 8. The second type consists of region sig- 
natures related to the medial axis, represented by Proper- 
ties 5 and 6. Properties 1 and 4 do not directly contribute to 
the region signatures. Sections 4.1 and 4.2 examine the type 
1 and type 2 performance, respectively. 

In discussing each type of performance, we consider two 
types of deviations from the image model used in deriving 
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the transform’s properties. First, we consider the case 
where image regions are characterized by a smooth varia- 
tion of gray level instead of a constant gray level. Second, 
we consier the effects of additive noise. These deviations 
better characterize real images as stated earlier. We investi- 
gate the effect these deviations have on the region signa- 
tures, i.e., on the different properties. We then examine the 
impact of different choices of the function F ,  i.e., the func- 
tions d, and d,, on the transform’s performance. 

No detailed proofs are given for these claims as doing so 
will require the use of specific models of the deviations and 
further analysis which are beyond the scope of this paper. 
Results of further, experimental evaluation of the perform- 
ance are presented in Section 5. 

4.1 Off-Axis Signatures 
In this section, we examine the first type of performance of 
the transform, namely, the impact of lack of piecewise con- 
stancy and noise on inward attraction, divergence, smooth- 
ness, and closure properties. 

4.1. I Deviation from Piecewise Constancy 
In the discussion so far, we have assumed that the regions 
have a constant gray level. We will now explain how the 
segmentation performance of the transform extends to re- 
gions having other types of smooth variations. If the region 
does not have a constant intensity then the force at a point P 
in the region will include additional components due to dif- 
ferential rates of change of intensities in different directions 
away from P (unlike the case for Property 3.3.1). For the sim- 
ple case of an intensity ramp, the changes in intensity around 
P are antisymmetric. Since force depends on the absolute 
intensity difference, P still experiences equal and opposite 
forces from radially symmteric locations within the region 
resulting in zero net force from these locations. 

Regions in real images often contain shading which is 
more complex spatial variation of intensity than represented 
by the ramp clonsidered above, e.g., given by a polynomial in 
image coordinates x and y. Consider a point P within such a 
region R and mother point Q in R within a neighborhood of 
radius oJp) centered at P. Then, d,(N(p, q)) will vary for dif- 
ferent points Q, unlike was the case for constant-value re- 
gions. This variation will in general be nonlinear, partly due 
to the nonline,ar variation in (Al(p, q). Now consider another 
point T within the neighborhood but not within R. If the 
range of N(p, q) values is sufficiently small compared to 
N(p, t) for all choices of Q and T, then many of the properties 
of the transform may still hold. The proofs of Properties 3.3.2, 
3.3.3,3.3.7, anti 3.3.8 given earlier suggest that the boundaries 
of the regions may still be detected as before. Accordingly, at 
a region boundary, there will still be directional discontinui- 
ties because of the large gray level discontinuity; and in the 
process of finding the scale parameter values for the region, 
stable response of F will be found for the same values of 0, 

and og as if the region were homogeneous. Any directional 
discontinuities found at locations other than the region bor- 
der, due to nonlinear variation in gray level, will not persist 
if os is varied. Since the gray levels vary smoothly within the 
region, Property 3.3.7 suggests that F will still be continuous 
within the region although it will exhibit differences in F 

values from the piecewiise constant case. Therefore, regions 
with shading but in contrast with the surround should still 
have signatures similar to those for the piecewise constant 
case. Verification of the above extrapolation of the properties 
and the exact restatement of these and other properties for 
the general case would rdequire exact models of within-region 
intensity variation, and will be omitted here. 

4.1.2 Intensity Noise 
We will now consider sensitivity to noise in intensity val- 
ues. First, suppose that the regions have constant values 
but contain independently distributed, zero-mean, additive 
noise having a distribution which is symmetric with respect 
to the mean. Consider a point P and any other point Q 
within a neighborhood of radius o,(p) around P. Then, 
d,(hl(p, q)) will have the same mean as for the case when 
the noise is absent. Since d,(N(p, q)) is a symmetric func- 
tion of N(p, q), the expected value of F(p, q) will remain 
unchanged compared to the case without noise. Therefore, 
the expected value of Fc, due to all points q in the image is 
the same with or without noise. Now suppose that the re- 
gions exhibit ramp-like intensity variation which is con- 
taminated by independent, zero-mean, additive noise. 
Again, because of gray ljevel antisymmetry about P, and the 
symmetry of d,(Al) with respect to Al, the region boundary 
will remain unchanged assuming the region contrast with 
the surround is high compared to within region variation. 

For shaded regions, the noise effects will be anisotropic 
because the region intensities are asymmetric. For a given 
point P, consider two other points Q and T within a neigh- 
borhood of radius os( p) around P. Q is within the region R 
but T is across Rs border. If the range of ANp, q) values is 
sufficiently small compared to the range of N(p, t) values, 
then resulting F will have limited differences relative to the 
noiseless case. That is, boundaries of regions with shading 
but in contrast with the surround will still coincide with 
direction discontinuities in F and will therefore still be de- 
tected. However, as for noiseless shaded regions, exact 
analysis is necessary to obtain the true characterization of 
the region signature and its dependence on noise which we 
will again omit in this paper. 

4.1.3 Choices of F 
While defining the transform (Section 31, we stated that 
ds(rps, os(p)) should be a nonincreasing function of the mag- 
nitude of rp,, and dg(AI, os (p)) should be a nonincreasing 
and symmetric function of N. A variety of such functions 
could be used including pulse (box-car), Gaussian, expo- 
nential, and linear functions. For example, we may use a 
Gaussian for d, as well as d,, having standard deviations of 
kp, and kp,, resepectively, where k, and k, are normalization 
constants. The choice of (Gaussian for d8 and d, results in op- 
timal localization propeirties in both spatial and transform 
domains, in addition to others such as separability in com- 
putation. Then, the transform at image location p is given by 
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The properties of the transform given in Section 3 hold 
for any choices of such functions. Although the exact val- 
ues of the force vectors and the computational speeds de- 
pend on specific choices of the functions, the region signa- 
tures and segmentation hierarchy remain unchanged. We 
have verified empirically that this in fact is the case for the 
four choices of box-car, Gaussian, exponential, and linear 
functions (see Fig. 7 and [21). 

4.2 Axial Signatures 
This section discusses the impact of the two kinds of devia- 
tions from piecewise constancy and the choices of F on the 
medial axis related signatures. 

There are two ways in which the transform yields 
multiscale description of region shape. First, of course, is 
through the detection of region boundaries which may be 
used to estimate the medial axis following its definition, 
or using existing algorithms [6] ,  1301. The reliability of the 
region axis detected by this method directly depends on 
the corresponding reliability of detected region bounda- 
ries which we have discussed above. The second, more 
direct way in which the transform extracts multiscale re- 
gion shape information is by making explicit the location 
of the medial axis in the field signatures of the region. We 
will now consider the performance of this method of me- 
dial axis detection with respect to shading and noise. As 
stated in Property 3.3.5, for constant-value regions the F = 
0 curve within the region where F directions converge 
represents the medial axis. Now in the vicinity of loca- 
tions where F = 0, the magnitude of F will change at a rate 
determined by how fast the neighborhood of radius G~ 
begins to have significant intersection with an adjacent 
region, and thus on the local region shape. The steeper the 
F variation, the more accurate will be the detection of the 
F = 0 locations, and therefore, the medial axis. However, if 
the intensity value within the region is not constant, then 
the disk of radius o,(p) centered at a point on the medial 
axis will not in general have isotropic intensity distribu- 
tion about the point. The force at the point will not be 0, 
and the points where F = 0 may be off the medial axis. 
Therefore, when shading is present, the detection of me- 
dial axis is less reliable than the detection of region bor- 
ders. With regard to noise, there will be no expected 
change in results for noisy piecewise constant regions for 
reasons analogous to those given for off-axis signatures. 
However, in shaded regions, noise will further increase 
the medial axis deviation beyond that already present due 
to shading alone. This is because the function d8 in the 
integral defining the transform is in general nonlinear, 
and therefore, in the presence of shading, uniform noise 
distribution around the point will cause unequal devia- 
tions in the F value in different directions, which will lead 
to deviation in the location of the F = 0 curve. Finally, let 
us consider the effect of different choices of F.  For the 
piecewise constant case, changes in F will not cause any 
deviation in the mdeial axis because of symmetry. How- 
ever, when shading is present different choices of the 
nonlinear function dg will in general result in different 
distributions of force magnitudes and hence deviation in 
the F = 0 curve. 

5 EXPERIMENTS 
This section describes some of the experiments we have 
performed with the transform. We estimated scale pa- 
rameters at all pixels as described in Section 3.5. A detailed 
treatment of algorithms for automatic extraction of scale 
parameters is outside the scope of this paper, and will be 
presented in the future. The purpose of the experiments 
reported here is to illustrate: the various properties of the 
transform (Section 3.3); the F-field signatures of regions 
(Section 3.4); the stability of the region signatures at all 
naturally occurring scales (Section 3.5); the detection of 
hierarchical image structure amidst a priori unknown and 
spatially varying number of scales (Section 3.6); and finally 
the robustness of the above performance of the transform 
with respect to a number of factors (Section 4). 

Fig. 4 demonstrates the properties of the transform and 
the region signatures in the F-field through a simple syn- 
thetic image. Fig. 4a shows two rectangular regions hav- 
ing a constant intensity of 1, on a background of intensity 
255. Estimates of os were obtained and used to derive the 
F-field. Any errors in 0, will result in errors in the F-field. 
Consequently, the performance of the transform as dem- 
onstrated in our experiments serves as a lower bound on 
the true performance. Fig. 4b shows an intensity coded 
image of the estimates of 0, values used for the rectangu- 
lar objects in Fig. 4a; the higher the 0, is, the brighter the 
point appears. The transform was applied using the pulse 
(boxcar) function for each of ds and dg. Specifically, the 
function shown in Fig. 4a was used where o indicates 
o,(o> value used by ds(dg) .  Fig. 4c shows intensity coded 
directions of the force vectors computed using = 20, 
and the os values shown in Fig. 4b. Since 20 is smaller 
than the contrast value 254 of the rectangles, the signa- 
tures of the rectangles as well as the background region of 
Fig. 4a can be seen in Fig. 4c. In producing Fig. 4c, the 
cyclic values of the directions in the interval [O degrees, 
360 degrees] are linearly mapped onto the intensity inter- 
val [0-2551. The 0-degree direction is defined to coincide 
with the positive x-axis, and is arbitrarily mapped onto a 
value in the intensity interval, e.g., to a value near 0. 
Thus, the brightness of a point is proportional to the 
counterclockwise angle the force vector makes from the 
reference, say, 0-degree direction. The black to white tran- 
sitions in Fig. 4c between neighbor gray levels of 0 and 
255 correspond to force direction transitions between 
nonnegative and negative angles. Since directions are 
continuous across the 0-degree direction, the associated 
intensity transition is an artifact of the mapping. For ex- 
ample, the black to white transitions across the 45-degree, 
diagonal lines in Fig. 4c, e.g., the one starting from the 
bottom left corner, are such artifacts. Other diagonal lines 
(e.g., at 135-degree) do not suffer from similar intensity 
discontinuities because they do not represent transitions 
across the reference direction. To help recognize and dis- 
regard these artifacts, an additional, redundant intensity 
coded direction image is shown in Fig. 4d. It still uses 
linear mapping from directions to intensities but the ref- 
erence direction is now placed at 90 degrees instead of 0 
degrees as above. Consequently, those transitions across 
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the 90 degree direction now result in the artifactual, 0 to 
255 intensity transitions, instead of transitions across the 
0-degree direction. The artifacts can be identified by com- 
paring the direction coded images in Figs. 4c and 4d since 
the same direction transition will not appear as an artifact 
in both images. If directions were color coded, these vis- 
ual artifacts would not occur. However, intensity coding 
is less expensive but workable and hence it is used here. 
Fig. 4e avoids the mapping completely and draws the 
vectors explicitly, although because it takes more space to 
draw vectors the vectors are shown at every fifth pixel 
along rows and columns. In each of Figs. 4c, 4d, and 4e, 
the force directions at points inside the regions demon- 
strate the inward attraction property while their gradual 
spatial variation is in accordance with the smoothness 
property. The force divergence and convergence can be 
seen across region boundaries and medial axes, respec- 
tively. Along the medial axes, the values of F can be seen 
to be 0 at poiints where the nearest boundary segments are 
parallel. This is particularly clear in Fig. 4e where the 
length-0 vectors appear only as dots. (Due to some limi- 
tations of our current implementation, O, value at other 
medial axis points is greater than Gand not equal to 6, as 
defined in Section 3. This is the reason for nonzero F val- 
ues at medial axis segments associated with the corners.) 
The orthogonality property is demonstrated by the 90- 
degree angle between a rectangle’s edge away from cor- 
ners, and the force vectors at points near a rectangle’s 
edge. The closed contours formed by points where force 
vectors diver,ge are consistent with the closure property. 

Fig. 5 demonstrates the multiple F-fields provided by 
the transform using oso, values corresponding to the dif- 
ferent scales present in the image (Section 3.5). Fig. 5a 
shows a modified version of the image in Fig. 4a, where a 
smaller rectangular region has been inserted within the 
horizontal rectangular region, and a square region has 
been inserted within the background. This leads to four 
foreground regions. The new rectangle has a gray level of 
30 and hence a contrast of 29, and the new square has a 
gray level of 200 and hence a contrast of 55. Thus, there 
are three different contrasts present within the image, one 
(254) corresponding to the two old rectangles, and the 
two new values of 29 and 55. Figs. 5b, 5c, and 5d show 
intensity codled direction images of F-field obtained using 
og = 10, 40, and 60, respectively. Since 10 is lower than all 
three contrasts present, all four foreground regions are 
detected as can be seen from their signatures present in 
the F-field which is obtained using g values which take 
into account the new rectangle. For bg = 40, which is 
higher than the contrast of the new rectangle, the signa- 
tures of the new rectangle are absent in the F-field. This is 
shown in Fig. 5c. Finally, Fig. 5d shows the intensity 
coded direction image obtained using o8 = 60, which is 
higher than both new contrasts, and the O, values used 
are the same as those shown in Fig. 4b, corresponding to 
the two old rectangles. The result is that neither of the 
new regions is detected. This can be seen by comparing 
the intensity coded direction images in Fig. 4c and Fig. 5d 
which are identical. An arbitrary point in the image as- 

sumes as many stable values of F as the number of differ- 
ent regions containing it. For a point within the square, 
the F value changes from one stable value V, corre- 
sponding to the square, to another value V, for the case 
when the square is miming. If ox > 255 were used, the F- 
field computed using os values corresponding to the 
whole image as a single region would show the signa- 
tures of the square image with no other region. Thus, for a 
point within the new rlectangle, there will be three stable 
points in the o,o,-space, corresponding to the three re- 
gions in which it is contained. For increasing values of CO,, 
o,), the value changes from V, corresponding to the em- 
bedded rectangle, to V, corresponding to the embedding 
rectangle, on to V, corresponding to the entire image. 

Fig. 6 illustrates the invariance of the transform to 
boundary curvature and topology, which is a problem 
with the existing approaches and a major motivation for 
the proposed transform. Fig. 6a contains constant-value 
regions with a complex. boundary structure. The maplike 
region in the foreground has a jagged boundary. The 
checkerboard background contains vertices where 
boundaries of four adjacent square regions meet. Four of 
the checkerboard squares near the top of the image have 
been further divided into two triangles each, leading to a 
common vertex where the boundaries of eight triangular 
regions meet. Two triangular regions with very sharp 
corners are also included as a further challenge to the 
curvature invariance of transform. The smaller of the two 
sharp angles has the low value of about 5 degrees. All 
region boundaries have a contrast of at least 15. Fig. 6b 
shows intensity coded direction images computed using 
0, = 10 < 15. Therefore, the os value used for each point is 
the one corresponding to the smallest region containing it, 
regardless of the contrast of the region. Undistorted sig- 
natures of all the regions can be seen in Fig. 6b, except for 
the artifacts caused by the direction to intensity mapping. 
As before, a redundant direction image is provided in Fig. 
6c, which is obtained using the alternate mapping using 
reference direction of 90 degrees. From Figs. 6b and 6c, all 
regions can be seen to have been identified without dis- 
tortion. For example, the contours of force divergence 
coincide with the jagged edges of the maplike region. This 
will be difficult to achieve with the conventional methods 
that apply a priori models of boundary structure over 
pixel neighborhoods, since the actual edge structure could 
be different or more intricate than that incorporated in the 
model. The sharp corners of the triangular regions dem- 
onstrate insensitivity to boundary complexity more em- 
phatically since in the vicinity of the sharp corner of an 
unknown angle any a priori model of local geometry is 
likely to be violated. The performance of the transform 
near the vertices is more notable since a priori models of 
vertex topology are even less likely to be valid. The arti- 
facts of direction-intensity coding are almost unavoidable 
near the sharp corners since the force directions here span 
almost the entire 360-degree range making it very likely 
for the 0 degree to 360 degree transitions to occur. The 
medial axes of the regions can also be seen as force con- 
vergence contours. 
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Fig. 6. Demonstration of the insensitivity of the transform to boundary curvature and topology. (a) Constant value regions having complex bound- 
ary structure. The boundaries contain smooth as well as high-curvature segments including corners. Some of the boundary points are vertices 
where more than two regions meet. All region boundaries have a contrast of at least 15 grey levels. (b) intensity coded directions computed by the 
transform using values chosen corresponding to the region structure for 0, = 10. (c) Same as (b), but with vector directions rotated 90" clock- 

wise and then intensity coded. The regions are represented in (b-c) by their force field signature without distortion. 

Fig. 7 shows the insensitivity of the transform perform- 
ance to the choice of the function F, i.e., the functions d, and 
d,. Figs. 7a-7d show intensity coded directions of F for the 
image of Fig. 6a using four different types of ds and dg: 

(a) boxcar (pulse), 
(b) Gaussian, 
(c) exponential, and 
(d) linear. 

The same function is used for both ds and dg. The signatures 
of the rectangles as described in Section 3.4 can be clearly 
seen in each case. The direction images for cases (b), (c), 

and (d) are visually almost identical. Clearly, the magni- 
tudes of the vectors and, to a lesser extent, even their direc- 
tions, cannot be expected to be identical because the inte- 
grand in (1) is different for the different cases. But what is 
important is that the spatial features of F which determine 
the relevant image structural properties (Section 3.3) be the 
same. Consequently, the same image structure is seen in 
each of the cases (a-d) despite the differences that must ex- 
ist among the F-fields. Some minor differences can be seen 
between the direction image for case (a) and those for cases 
(b-d). This is because the fluctuations in F-values computed 
in the different cases lead to direction transitions across the 
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Fig. 7. Demonstration of the insensitivity of the transform to the choice of the functions d&.) and d,(.). (a-d) Intensity coded directions of Fig. 6a 

computed by the transform using os values chosen corresponding to the region structure for os = 10. The forms used for d,(.) and d,(.) are box- 

car, Gaussian, exponential, and linear, respectively. The region structure is represented within the field wiithout distortion in all cases. 

reference direction near the sharp triangle corners, and 
within the checkerboard square in the fourth row and col- 
umn from bottom left square), which lead to visual differ- 
ences that are predominantly mapping artifacts. Any re- 
maining differlences in F values are minor and due to fluc- 
tuations in F-values which arise primarily from fluctuations 
in the values of d,; the values of d, do not vary much across 
(a-d). These minor differences in F can be minimized by 
suitably normalizing the different dJd, functions with re- 
spect to each other. Such calibration may involve scaling to 
find the optimum values of the various parameters of the 
different functions, for example, the values of k, and k, men- 
tioned in Section 4.2.2. The small differences among (a-d) 

suggest that the segmentation performance of the transform 
is relatively independent of the exact choice of F. Therefore, 
the distinguishing aspect of the transform which is respon- 
sible for its performance is i. , which is the only remaining 
part of the integrand in (11) not considered so far. The use of 
i. reflects the fact that vector integration is being per- 
formed, and results in the bottom-up estimation of image 
structure which, as we argued in Section 3.1, is a central 
theme of the proposed ,approach and represents a major 
deviation from the previously used methods. 

Fig. 8 illustrates the sustained performance of the trans- 
form when the regions are no more piecewise constant in 
gray level but contain shading. Fig. 8a shows the same im- 
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(b) (c) 

Fig. 8. Demonstration of the insensitivity of the transform to shading. (a) Same image as in Fig. 6a, but different regions now have spatially 
varying grey levels. Here, the disk contains linearly increasing grey levels from left to right, whereas the polygonal region has quadratically 
increasing grey levels from right to left. The irregularly shaped center region contains quadratically varying grey levels which increase from 
bottom to top. (b) Intensity coded force directions after the transform has been applied using os = 10. (c) Same as (b) but with ox = 25. At 

this value of og, the microstructure within the irregular center region has disappeared. 

age as in Fig. 6a but the gray levels within every region are 
not constant but spatially vary linearly or quadratically. The 
intensity coded force directions shown in Figs. 8b and 8c 
demonstrate that the inward attraction, divergence, con- 
vergence, smoothness, and closure properties are preserved 
despite the violation of the constant gray level assumption. 

Fig. 9 shows the effect of noise on the performance of 
the transform using an image with three regions whose 
boundaries contain sharp corners as well as smooth 
curves. Fig. 9a shows the image with additive Gaussian 
noise having a standard deviation of 50. This results in 
the worst case signal to noise ratio of about 7 db. Figs. 9b 

and 9c show that regions are detected without distortion. 
Fig. 9d contains additive Gaussian noise of standard de- 
viation 100, i.e., a worst case signal to noise ratio of 0 db. 
The worst ratio occurs at the border between the polygo- 
nal region and the background, which is particularly dif- 
ficult to overcome near the sharp corner. The F-field still 
contains all regions, including the noisy sharp corner. In 
addition, signatures of some small spots are also present, 
some of which can be seen in Figs. 9b and 9c as artifacts 
of mapping. But other small spots represent new small 
regions formed by random clumping of noisy pixels. 
However, as stated in Section 3.5, the final image structure 
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Fig. 9. Demonstration of the insensitivity of the transform to additive, white Gaussian noise. (a) Image containing two regions of intensity 0 and 100 on a 
background of intensity 200, and with zero-mean noise of standard deviation (J = 50. (b) Intensity coded directions computed using o8 = 50. (c) Same 

as (b), but with 'vector directions rotated 90" counterclockwise and then intensity coded. (d-f) Same as (a-c), but with noise having CJ = 100. Note that 

the structure boundaries are all present, have closed contours, and retain geometric fidelity. (For example, the sharp corner of the intensity 100 region 
has been preseived without smoothing, except, of course, where the region structure has been changed lbecause of the noise, in which case the new 
structure is reflejcted.) 

detected by the algorithm will be that which corresponds 
to stable points in the opg-space. Thus, only a subset of 
the identified structures that survives the dynamics in the 
o,o,-space would comprise the detected regions. As men- 
tioned earlier, the details of such multiscale algorithm 
beyond Section 3.5 are not presented in this paper. 

Figs. 10 to 13 show the results of the transform on four 
real images, chosen to form a diverse test set. Fig. 10a 
shows the first image which contains relatively homogene- 
ous regions at multiple scales. For all points in the image, 
region signatures are obtained for two, relatively fine scales 
corresponding to (r8 values of 7 and 26. Figs. 10b and 1Oc 
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hl i 

Fig. IO. Performance of the transform on a real image with several geometric and photometric scales. (a) The original image. The multiscale structure 
in the lower window is independent of that present in the upper window, i.e., the number of levels and branching factors in the segmentation subtrees 
containing the two windows are independent. In general, the structure of the multiscale segmentation hierarchy is determined solely by the image, and, 
therefore, is a priori unknown. (b-c) Intensity coding of the force directions computed for this image using ox = 7 and ox = 26, respectively. (d) Con- 

tours characterized by force divergence at ox = 7. (e) Pixels enclosed by each closed contour defined in (b) are replaced by the mean graylevel of the 
region, thus showing the segmentation at that scale. (f-g) Analogous to (d-e) but obtained from F for og = 26. 
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Fig. 11. (a) A real image containing structure at predominantly two scales, with jagged edges particularly visible inside the lighter, cellular regions. 
The structure is (easy to follow visually, which makes it easy to test the transform performance with respect to boundary complexity. (b-g) Analo- 
gous to Figs. 1 Ob-1 Og using as = 7,26, corresponding to the two major scales. 
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Fig. 12. Performance of the transform on another real image. The image contains an airplane with a large amount of intensity shading. 
(a) The original image. (b-c) Analogous to Fig. 10f-log. 

show the intensity coded direction images of F for the two 
scales. The signatures are shown in two ways. Figs. 10d and 
10f show the contours of force divergence, i.e., the region 
border, for the two scales. Figs. 10e and 10g replace each 
pixel enclosed by a region contour by the mean gray level of 
the region, thus showing the segmentation at the corre- 
sponding scale. Fig. l l a  (provided by Tom Binford of Stan- 
ford University) shows another real image which contains 
structure at predominantly two scales. The structures have 
jagged edges, particularly inside the cellular regons. Tlus 
structure is easy to follow visually which makes it easy to test 
the transform performance with respect to the boundary com- 
plexity. Figs. llb-llg show the results analogous to Figs. 1Ob- 
log using the same two o8 values as used in Fig. 10. Fig. 12a 
shows a real image which has sigruficant amount of shading, 
e.g., across the airplane body. For brevity, the direction 
coded images are not shown, and the contours and segmen- 
tation are presented for only one os value (Figs. 12b and 12c). 
The og value used is the larger of the two used in Fig. 10. As 

can be seen, regions are detected correctly despite the large 
amount of shading. Finally, Fig. 13a contains a laboratory 
scene, selected since it shows an indoor, human made envi- 
ronment. Results analogous to Figs. 12b and 12c using os = 17 
are shown in Figs. 13b and 13c. 

UMMARY 

We have introduced a transform for integrated detection of 
image edges and regions for general-purpose, low-level 
image segmentation. A region is viewed as being homoge- 
neous but in relative contrast with the surround. The main 
feature of the transform is that it lets the image structure 
emerge bottom-up by allowing pixels to group recursively 
to form regions, instead of fitting detailed models of region 
geometry and photometry to the data. The transform com- 
putes a force vector at each image point which represents 
the point’s affinity to the rest of the image. The resulting 
force field contains distinct signatures of image regions. 
The signatures succinctly reflect the distributed evidence of 
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Fig. 13. Performance of the transform on another real image, an indoor scene of a workbench. (a) The oiriginal image. (b-c) Analogous to Fig. 10f- 
log but for o8 = 17. 

the presence of a region and are characterized by a number 
of relatively qualitative properties which make their detec- 
tion robust and easy. No critical thresholds are necessary. 
The transform-based segmentation has the following sali- 
ent properties: 

1) The regions are detected accurately, regardless of 
their size and shape. The detected region boundary 
has no dislocation errors, irrespective of the bound- 
ary curvature. 

2) The regions are detected correctly, regardless of their 
topology, e.g., the edges are found without errors 
even around a vertex where a number of regions 
meet. 

3)  Valid regions are detected independent of the value 
of the contrast they have with the surround. 

4) The notion of scale is formulated such that multis- 
cale analysis sorts the regions in the image based on 
geometric and photometric criteria. This is in con- 

trast with most previous work where multiscale 
analysis is synonymous with different degrees of 
image blurring which entails deformation of the 
original image regions. 

5) Regions of all scales (sizes, shapes, homogeneity, 
contrast) and topology are detected without any ad- 
vance knowledge of these parameters. 

The detected regions are organized into a hierarchical, tree 
structure, which captures the image-specific and a priori 
unknown region configuration and scale values present in 
the image. Thus the use of the transform yields a tree repre- 
sentation of the image whose depth and structure corre- 
spond to the image at hand. This differs from the com- 
monly used multiscale methods where the number and 
specification of the different degrees of blurring to be per- 
formed are selected a priori. I have demonstrated the above 
properties through experiments. The segmentations ob- 
tained in agreement with real/perceived structure even for 
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images with large noise, intricate geometric and topological 
structure, and shading. 

Another important property of the transform is that the 
transform space is the same as image space, unlike, for ex- 
ample, the Fourier transform. The resulting multiscale rep- 
resentation is directly useful for analysis by humans, e.g., 
for image browsing, manipulation, and retrieval. Also, the 
transform could be used in other applications where de- 
termination of perceptually salient image structure is criti- 
cal or advantageous, such as image compression, motion 
analysis, texture analysis, and perceptual grouping. My 
objective in this paper has been to present the transform 
and its capabilities; details and different applications are 
left to future work. I have not given specific algorithms for 
using the transform to automatically estimate the scales 
and identify region signatures. These will also be reported 
later. Since no assumptions specific to the sensing modality 
are made in defining the transform, it could be applied to 
other types of data, such as range images and synthetics 
aperture radar images. It will be interesting to compare the 
transform with force-based clustering algorithms [15], 
which we also plan to do. 
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