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tA novel learning approa
h for human fa
e dete
tion using a networkof linear units is presented. The SNoW learning ar
hite
ture is asparse network of linear fun
tions over a pre-de�ned or in
remen-tally learned feature spa
e and is spe
i�
ally tailored for learningin the presen
e of a very large number of features. A wide range offa
e images in di�erent poses, with di�erent expressions and underdi�erent lighting 
onditions are used as a training set to 
apturethe variations of human fa
es. Experimental results on 
ommonlyused ben
hmark data sets of a wide range of fa
e images show thatthe SNoW-based approa
h outperforms methods that use neuralnetworks, Bayesian methods, support ve
tor ma
hines and oth-ers. Furthermore, learning and evaluation using the SNoW-basedmethod are signi�
antly more eÆ
ient than with other methods.1 Introdu
tionGrowing interest in intelligent human 
omputer intera
tions has motivated a re
entsurge in resear
h on problems su
h as fa
e tra
king, pose estimation, fa
e expressionand gesture re
ognition. Most methods, however, assume human fa
es in their inputimages have been dete
ted and lo
alized.Given a single image or a sequen
e of images, the goal of fa
e dete
tion is to identifyand lo
ate human fa
es regardless of their positions, s
ales, orientations, poses andillumination. To support automated solutions for the above appli
ations, this hasto be done eÆ
iently and robustly. The 
hallenge in building an eÆ
ient and robustsystem for this problem stems from the fa
t that human fa
es are highly non-rigidobje
ts with a high degree of variability in size, shape, 
olor and texture.Numerous intensity-based methods have been proposed re
ently to dete
t humanfa
es in a single image or a sequen
e of images. Sung and Poggio [24℄ report anexample-based learning approa
h for lo
ating verti
al frontal views of human fa
es.They use a number of Gaussian 
lusters to model the distributions of fa
e andnon-fa
e patterns. A small window is moved over an image to determine whether afa
e exists using the estimated distributions. In [16℄, a dete
tion algorithm is pro-posed that 
ombines template mat
hing and feature-based dete
tion method usinghierar
hi
al Markov random �elds (MRF) and maximum a posteriori probability(MAP) estimation. Colmenarez and Huang [4℄ apply Kullba
k relative informationfor maximal dis
rimination between positive and negative examples of fa
es. Theyuse a family of dis
rete Markov pro
esses to model fa
es and ba
kground patternsand estimate the density fun
tions. Dete
tion of a fa
e is based on the likelihood



ratio 
omputed during training. Moghaddam and Pentland [12℄ propose a prob-abilisti
 method that is based on density estimation in a high dimensional spa
eusing an eigenspa
e de
omposition. In [20℄, Rowley et al. use an ensemble of neuralnetworks to learn fa
e and non-fa
e patterns for fa
e dete
tion. S
hneiderman et al.des
ribe a probabilisti
 method based on lo
al appearan
e and prin
ipal 
omponentanalysis [23℄. Their method gives some preliminary results on pro�le fa
e dete
tion.Finally, hidden Markov models [17℄, higher order statisti
s [17℄, and support ve
torma
hines (SVM) [14℄ have also been applied to fa
e dete
tion and demonstratedsome su

ess in dete
ting upright frontal fa
es under 
ertain lighting 
onditions.In this paper, we present a fa
e dete
tion method that uses the SNoW learningar
hite
ture [18, 3℄ to dete
t fa
es with di�erent features and expressions, in di�erentposes, and under di�erent lighting 
onditions. SNoW (Sparse Network of Winnows)is a sparse network of linear fun
tions that utilizes the Winnow update rule [10℄.SNoW is spe
i�
ally tailored for learning in domains in whi
h the potential numberof features taking part in de
isions is very large, but may be unknown a priori. Someof the 
hara
teristi
s of this learning ar
hite
ture are its sparsely 
onne
ted units,the allo
ation of features and links in a data driven way, the de
ision me
hanismand the utilization of an eÆ
ient update rule. SNoW has been used su

essfully ona variety of large s
ale learning tasks in the natural language domain [18, 13, 5, 19℄and this is its �rst use in the visual pro
essing domain.In training the SNoW-based fa
e dete
tor, we use a set of 1,681 fa
e images fromOlivetti [22℄, UMIST [6℄, Harvard [7℄, Yale [1℄ and FERET [15℄ databases to 
ap-ture the variations in fa
e patterns. In order to 
ompare our approa
h with othermethods, our experiments involve two ben
hmark data sets [20, 24℄ that have beenused in other works on fa
e dete
tion. The experimental results on these ben
hmarkdata sets (whi
h 
onsist of 225 images with 619 fa
es) show that our method out-performs all other methods evaluated on this problem, in
luding those using neuralnetworks [20℄, Kullba
k relative information [4℄, naive Bayes [23℄ and support ve
torma
hines [14℄, while being signi�
antly more eÆ
ient 
omputationally. Along withthese experimental results we des
ribe further experiments that provide insight intosome of the theoreti
al and pra
ti
al 
onsiderations of SNoW-based learning sys-tems. In parti
ular, we study the e�e
t of learning with primitive as well as withmulti-s
ale features, and dis
uss some of the sour
es of the su

ess of the approa
h.2 The SNoW SystemThe SNoW (Sparse Network of Winnows) learning ar
hite
ture is a sparse networkof linear units over a 
ommon pre-de�ned or in
rementally learned feature spa
e.Nodes in the input layer of the network represent simple relations over the inputand are being used as the input features. Ea
h linear unit is 
alled a target node andrepresents relations whi
h are of interest over the input examples; in the 
urrentappli
ation, only two target nodes are being used, one as a representation for a fa
epattern and the other for a non-fa
e pattern. Given a set of relations (i.e., types offeatures) that may be of interest in the input image, ea
h input image is mapped intoa set of features whi
h are a
tive (present) in it; this representation is presentedto the input layer of SNoW and propagates to the target nodes. (Features maytake either binary value, just indi
ating the fa
t that the feature is a
tive (present)or real values, re
e
ting its strength; in the 
urrent appli
ation, all features arebinary. See Se
 3.1.) Target nodes are linked via weighted edges to (some of the)input features. Let At = fi1; : : : ; img be the set of features that are a
tive in anexample and are linked to the target node t. Then the linear unit is a
tive if andonly ifPi2At wti > �t, where wti is the weight on the edge 
onne
ting the ith featureto the target node t, and �t is its threshold.In the 
urrent appli
ation a single SNoW unit whi
h in
ludes two subnetworks, one



for ea
h of the targets, is used. A given example is treated autonomously by ea
htarget subnetwork; that is, an image labeled as a fa
e is used as a positive examplefor the fa
e target and as a negative example for the non-fa
e target, and vi
e-versa.The learning poli
y is on-line and mistake-driven; several update rules 
an be usedwithin SNoW. The most su

essful update rule, and the only one used in thiswork is a variant of Littlestone's Winnow update rule, a multipli
ative update ruletailored to the situation in whi
h the set of input features is not known a priori, asin the in�nite attribute model [2℄. This me
hanism is implemented via the sparsear
hite
ture of SNoW. That is, (1) input features are allo
ated in a data drivenway { an input node for the feature i is allo
ated only if the feature i is a
tivein the input image and (2) a link (i.e., a non-zero weight) exists between a targetnode t and a feature i if and only if i has been a
tive in an image labeled t. Thus,the ar
hite
ture also supports augmenting the feature types at later stages or fromexternal sour
es in a 
exible way, an option we do not use in the 
urrent work.The Winnow update rule has, in addition to the threshold �t at the target t, twoupdate parameters: a promotion parameter � > 1 and a demotion parameter 0 <� < 1. These are being used to update the 
urrent representation of the target t (theset of weights wti) only when a mistake in predi
tion is made. Let At = fi1; : : : ; imgbe the set of a
tive features that are linked to the target node t. If the algorithmpredi
ts 0 (that is,Pi2At wti � �t) and the re
eived label is 1, the a
tive weights inthe 
urrent example are promoted in a multipli
ative fashion: 8i 2 At; wti  � �wti :If the algorithm predi
ts 1 (Pi2At wti > �t) and the re
eived label is 0, the a
tiveweights in the 
urrent example are demoted: 8i 2 At; wti  � �wti : All other weightsare un
hanged. The key property of the Winnow update rule is that the numberof examples1 it requires to learn a linear fun
tion grows linearly with the numberof relevant features and only logarithmi
ally with the total number of features.This property seems 
ru
ial in domains in whi
h the number of potential featuresis vast, but a relatively small number of them is relevant (this does not mean thatonly a small number of them will be a
tive, or have non-zero weights). Winnowis known to learn eÆ
iently any linear threshold fun
tion and to be robust in thepresen
e of various kinds of noise and in 
ases where no linear-threshold fun
tion 
anmake perfe
t 
lassi�
ation, and still maintain its abovementioned dependen
e on thenumber of total and relevant attributes [11, 9℄. On
e target subnetworks have beenlearned and the network is being evaluated, a winner-take-all me
hanism sele
tsthe dominant a
tive target node in the SNoW unit to produ
e a �nal predi
tion.In general, but not in this work, units' output may be 
a
hed and pro
essed alongwith the output of other SNoW units to produ
e a 
oherent output.3 Learning to dete
t fa
esFor training, we use a set of 1,681 fa
e images (
olle
ted from Olivetti [22℄, UMIST[6℄, Harvard [7℄, Yale [1℄ and FERET [15℄ databases) whi
h have wide variationsin pose, fa
ial expression and lighting 
ondition. For negative examples we startwith 8,422 non-fa
e examples from 400 images of lands
apes, trees, buildings, et
.Although it is extremely diÆ
ult to 
olle
t a representative set of non-fa
e examples,the bootstrap method [24℄ is used to in
lude more non-fa
e examples during training.For positive examples, ea
h fa
e sample is manually 
ropped and normalized su
hthat it is aligned verti
ally and its size is 20 � 20 pixels. To make the dete
tionmethod less sensitive to s
ale and rotation variation, 10 fa
e examples are generatedfrom ea
h original sample. The images are produ
ed by randomly rotating theimages by up to 15 degrees with s
aling between 80% and 120%. This produ
es16,810 fa
e samples. Then, histogram equalization is performed that maps the1In the on-line setting [10℄ this is usually phrased in terms of a mistake-bound but isknown to imply 
onvergen
e in the PAC sense [25, 8℄.



intensity values to expand the range of intensities. The same pro
edure is appliedto input images in dete
tion phase.3.1 Primitive FeaturesThe SNoW-based fa
e dete
tor makes use of Boolean features that en
ode the po-sitions and intensity values of pixels. Let the pixel at (x; y) of an image with widthw and height h have intensity value I(x; y) (0 � I(x; y) � 255). This informationis en
oded as a feature whose index is 256(y �w+ x) + I(x; y). This representationensures that di�erent points in the fposition � intensityg spa
e are mapped todi�erent features. (That is, the feature indexed 256(y � w + x) + I(x; y) is a
tive ifand only if the intensity in position (x; y) is I(x; y).) In our experiments, the valuesfor w and h are 20 sin
e ea
h fa
e sample has been normalized to an image of 20�20pixels. Note that although the number of potential features in our representationis 102400 (400�256), only 400 of those are a
tive (present) in ea
h example, and itis plausible that many features will never be a
tive. Sin
e the algorithm's 
omplex-ity depends on the number of a
tive features in an example, rather than the totalnumber of features, the sparseness also ensures eÆ
ien
y.3.2 Multi-s
ale FeaturesMany vision problems have utilized multi-s
ale features to 
apture the stru
turesof an obje
t. However, extra
ting detailed multi-s
ale features using edge or regioninformation from segmentation is a 
omputationally expensive task. Here we use theSNoW paradigm to extra
t Boolean features that represent multi-s
ale information.This is done in a similar way to the fposition � intensityg used in Se
. 3.1,only that in this 
ase we en
ode, in addition to position, the mean and varian
e of amulti-s
ale pixel. The hope is that the multi-s
ale feature will 
apture informationthat otherwise requires many pixel-based features to represent, and thus simplifythe learning problem. Uninformative multi-s
ale features will be qui
kly assignedlow weights by the learning algorithm and will not degrade performan
e. Sin
eea
h fa
e sample is normalized to be a re
tangular image of the same size, it suÆ
esto 
onsider re
tangular sub-images with varying size from fa
e samples, and forea
h generate features in terms of the means and varian
es of their intensity values.Empiri
al results show that fa
es 
an be des
ribed e�e
tively this way.Instead of using the absolute values of the mean and varian
e when en
oding thefeatures, we dis
retize these values into a prede�ned number of 
lasses. Sin
e thedistribution of the mean values as well as the varian
e values is normal, the dis-
retization is �ner near the means of these distributions. The total number ofvalues was determined empiri
ally to be 100, out of whi
h 80 ended up near themean. Given that, we use the same s
heme as in Se
. 3.1 to map the fposition �intensity mean � intensity varian
eg spa
e into the Boolean feature spa
e.This is done separately for four di�erent sub-image s
ales, of 1� 1, 2� 2, 4� 4 to10�10 pixels. The multi-s
ale feature ve
tor 
onsists of a
tive features 
orrespond-ing to all these s
ales. The number of a
tive features in ea
h example is therefore400 + 100 + 25 + 4, although the total number of features is mu
h larger.In re
ent work we have used more sophisti
ated 
onjun
tive features for this purposeyielding even better results. However, the emphasis here is that with the SNoWapproa
h, even very simplisti
 features support ex
ellent performan
e.4 Empiri
al ResultsWe tested the SNoW-based approa
h with both sets of features on the two setsof images 
olle
ted by Rowley [20℄, and Sung [24℄. Ea
h image is s
anned with are
tangular window to determine whether a fa
e exists in the window or not. Todete
t fa
es of di�erent s
ales, ea
h input image is repeatedly subsampled by afa
tor of 1.2 and s
anned through for 10 iterations. Table 1 shows the reported



experimental results of the SNoW-based fa
e dete
tors and several fa
e dete
tionsystems using the two ben
hmark data sets (available at http://www.
s.
mu.edu/~har/ fa
es.html). The �rst data set 
onsists of 130 images with 507 frontal fa
esand the se
ond data set 
onsists of 23 images with 155 frontal fa
es. There area few hand drawn fa
es and 
artoon fa
es in both sets. Sin
e some methods useintensity values as their features, systems 1-4 and 7 dis
ard these su
h hand drawnand 
artoon fa
es. Therefore, there are 125 images with 483 fa
es in test set 1 and20 images with 136 fa
es in test set 2 respe
tively. The reported dete
tion rate is
omputed as the ratio between the number of fa
es dete
ted in the images by thesystem and the number of fa
es identi�ed there by humans. The number of falsedete
tions is the number of non-fa
es dete
ted as fa
es.It is diÆ
ult to evaluate the performan
e of di�erent methods even though theyuse the same ben
hmark data sets be
ause di�erent 
riteria (e.g. training time,number of training examples involved, exe
ution time, number of s
anned windowsin dete
tion) 
an be applied to favor one over another. Also, one 
an tune theparameters of one's method to in
rease the dete
tion rates while in
reasing also thefalse dete
tions. The methods using neural networks [20℄, distribution-based [24℄,Kullba
k relative information [4℄ and naive Bayes [23℄ report several experimentalresults based on di�erent sets of parameters. Table 1 summarizes the best dete
tionrates and 
orresponding false dete
tions of these methods. Although the methodin [4℄ has the highest dete
tion rates in one ben
hmark test, this was done bysigni�
antly in
reasing the number of false dete
tions. Other than that, it is evidentthat the SNoW-based fa
e dete
tors outperforms others in terms of the overallperforman
e. These results show the 
redibility of SNoW for these tasks, as wellTable 1: Experimental results on images from test set 1 (125 images with 483 fa
es)in [20℄ and test set 2 (20 images with 136 fa
es) in [24℄ (see text for details)Test Set 1 Test Set 2Method Dete
t Rate False Dete
ts Dete
t Rate False Dete
tsSNoW w/ primitive features 94.2% 84 93.6% 3SNoW w/ multi-s
ale features 94.8% 78 94.1% 3Mixture of fa
tor analyzers [26℄ 92.3% 82 89.4% 3Fisher linear dis
riminant [27℄ 93.6% 74 91.5% 1Distribution-based [24℄ N/A N/A 81.9% 13Neural network [20℄ 92.5% 862 90.3% 42Naive Bayes [23℄ 93.0% 88 91.2% 12Kullba
k relative information [4℄ 98.0% 12758 N/A N/ASupport ve
tor ma
hine [14℄ N/A N/A 74.2% 20as exhibit the improvement a
hieved by in
reasing the expressiveness of the features.This may indi
ate that further elaboration of the features, whi
h 
an be done in avery general and 
exible way within SNoW, would yield further improvements.In addition to 
omparing feature sets, we started to investigate some of the reasonsfor the su

ess of SNoW in this domain, whi
h we dis
uss brie
y below. Twopotential 
ontributions are the Winnow update rule and the ar
hite
ture. First, westudied the update rule in isolation, independent of the SNoW ar
hite
ture. Theresults we got when using the Winnow simply as a dis
riminator were fairly poor(63.9%/65.3% for Test Set 1, primitive and multi-s
ale features, respe
tively, andsimilar results for the Test Set 2.). The results are not surprising, given that Winnowis used here only as a dis
riminator and is using only positive weights. Investigatingthe ar
hite
ture in isolation reveals that weighting or dis
arding features based ontheir 
ontribution to mistakes during training, as is done within SNoW, is 
ru
ial.Considering the a
tive features uniformly (separately for fa
es and non-fa
es) yieldspoor results. Spe
i�
ally, studying the resulting SNoW network shows that the totalnumber of features that were a
tive with non-fa
es is 102,208, out of 102,400 possible



(primitive) features. The total number of a
tive features in fa
es was only 82,608,most of whi
h are a
tive only a few times. In retrospe
t, this is 
lear given thediverse set of images used as negative examples, relative to the somewhat restri
ted(by nature) set of images that 
onstitute fa
es. (Similar phenomenon o

urs withthe multi-s
ale features, where the numbers are 121572 and 90528, respe
tively, outof 135424.) Overall it exhibits that the ar
hite
ture, the learning regime and theupdate rule all 
ontribute signi�
antly to the su

ess of the approa
h.Figure 1 shows some fa
es dete
ted in our experiments. Note that pro�le fa
es andfa
es under heavy illumination are dete
ted. Experimental results show that pro�lefa
es and fa
es under di�erent illumination are dete
ted very well by our method.Note that although there may exist several dete
ted fa
es around ea
h fa
e, onlyone window is drawn to en
lose ea
h dete
ted fa
e for 
lear presentation.

Figure 1: Sample experimental results using our method on images from two ben
h-mark data sets. Every dete
ted fa
e is shown with an en
losing window.5 Dis
ussion and Con
lusionMany theoreti
al and experimental issues are to be addressed before a learning sys-tem of this sort 
an be used to dete
t fa
es eÆ
iently and robustly under general
onditions. In terms of the fa
e dete
tion problem, the presented method is stillnot able to dete
t rotated fa
es. A re
ent method [21℄, addresses this problem bybuilding upon a upright fa
e dete
tor [20℄ and rotating ea
h test sample to uprightposition. However, it su�ers from degraded dete
tion rates and more false dete
-tions. Given our results, we believe that the SNoW approa
h, if adapted in similarways, would generalize very well to dete
t fa
es under more general 
onditions.In terms of the SNoW ar
hite
ture, although the main ingredients of it are under-stood theoreti
ally, more work is required to better understand its strengths. Thisis in
reasingly interesting given that the ar
hite
ture has been found to performvery well in large-s
ale problem in the natural language domain as well



The 
ontributions of this paper 
an be summarized as follows. We have introdu
edthe SNoW learning ar
hite
ture to the domain of visual pro
essing and des
ribed anapproa
h that dete
t fa
es regardless of their poses, fa
ial features and illumination
onditions. Experimental results show that this method outperforms other methodsin terms of dete
tion rates and false dete
tionss, while being more eÆ
ient both inlearning and evaluation.Referen
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