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Abstract 

This paper presents a new technique for the estimation 
of 2-0 motion fields from image sequences. Homogeneous 
regions are identijied and matched using a multiscale seg- 
mentation algorithm. Many matching diflculties result 
from structural changes in an image which occur only at 
certain scales, and, hence, a multiscale approach results 
in a denser set of matched regions. Pixel correspondences 
are then obtained by estimating an afJine transformation 
between matched regions. A motion field is then calcu- 
lated from these correspondences. Areas where occlusion 
is present are identified, and the effects of the occlusion on 
the aflne parameter estimation process are compensated, 
resulting in a more accurate estimated motion jield. 

1. Introduction 

This paperis concerned with the problem of estimat- 
ing the 2-D motion, or optical flow, field from a time 
sequence of images. Previous approaches to this problem 
can be classified as either pixel-based (intensity-based) or 
feature-based. Some reviews can be found in [ l ,  5 ,  131. 
The pixel-based approaches [ 12, 191 utilize constraints 
based upon local spatial and temporal derivatives. These 
methods work well as long as the motion is relatively 
small between frames and sufficient intensity variation is 
present. Feature-based methods extract features from im- 
ages such as points [4], edges [9, 11, 201, corners [15, 
201, or regions [7, 10, 14, 16, 171 and match them across 
frames, thereby obtaining a displacement field. The ad- 
vantages of this approach are that coarse (large) motions 
can be modelled and features are more robust to noise 
and lighting changes than pixel-based methods. The dif- 
ficulties with this approach include mismatched features 
and obtaining a dense displacement field from sparse fea- 
ture matches. This paper presents a new feature-based 
technique which segments and matches regions of homo- 
geneous intensity or color across frames of an image se- 
quence, and then interpolates a motion field down to the 
pixel level. Some advantages of a region-based approach 
over other feature-based methods are that regions are more 
stable to noise and lighting changes than other kinds of 

features, and the probability of an incorrect match is much 
lower because regions have a larger variety and complex- 
ity of attributes than the other types of features. 

It is important that the segmentation method used to 
extract regions from the images be multiscale. A multi- 
scale segmentation provides a much richer description of 
regions available for matching. Both structural changes 
and noise within a certain area of an image may cause 
there not to be any matches for regions within that area 
at a particular scale. However, it is often the case that 
matches can be found within that area at other scales. As 
a result, a multiscale method will be able to find region 
correspondences over a larger fraction of the image than a 
method which extracts regions at only a single scale. Of 
the previous region-based methods, only [ 101 uses a mul- 
tiscale segmentation method. After the extracted regions 
have been matched across frames, the methods of [7, 8, 10, 
161 assign to the matched region centroids motion vectors 
corresponding to the displacement of the centroids of the 
matched regions resulting in a very sparse motion field. 
Both our method and that of [14] assume that the motion 
between a pair of matched regions in adjacent frames can 
be modelled by an affine transformation. This allows very 
general types of motion to be modelled, including many 
kinds of nonrigid motion. A descent-type iterative ap- 
proach is used to calculate the best affine transformation 
between each pair of matched regions. These transforma- 
tions provide a dense set of motion vectors between the 
matched regions. The method of [ 141 computes the affine 
transformation which best matches the boundaries of the 
matched regions, however, this often gives an incorrect 
result. Instead, our method finds the affine transformation 
which best accounts for the. observed intensities or colors 
within the matched regions. This results in much more 
accurate estimated motion. 

All types of motion estimation algorithms make er- 
rors because of occlusion, but region-based methods are 
particularly sensitive to this problem. In pixel-based meth- 
ods, occlusion can cause rnotion vectors to be estimated 
incorrectly in the neighborhood of the occlusion. For 
feature-based methods, occlusion may cause matches not 
to exist for features near the occlusion, and, as a result, 
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the motion cannot be estimated in these areas. However, 
if the features are regions, it is usually the case that oc- 
clusion will only partially obscure a region. Hence, a 
region unoccluded in one frame and partially occluded in 
the following frame will still be matched, but the partial 
occlusion can change the shape of the region enough to 
cause the estimated motion parameters to be incorrect. If 
this region is large, motion vectors may be estimated in- 
correctly far away from the occlusion. Thus, occlusion 
can cause global errors in a region-based method. The 
method presented in this paper reduces this problem by 
estimating and compensating for the effects of occlusion. 

The rest of this paper is organized as follows: Section 
2 gives an overview of the multiscale region segmentation 
and matching process. Section 3 describes the method for 
obtaining a dense motion field within matched regions 
by computing an affine transformation between each pair 
of matched regions. Section 4 presents the method by 
which the effects of occlusion are compensated when the 
affine transformations are calculated. Section 5 shows ex- 
perimental results, and Section 6 makes some concluding 
remarks. 

2. Region segmentation and matching 

The processes of region segmentation and matching 
are integrated together in this approach. We treat an im- 
age sequence as a 3-D volume with time as the third axis. 
A 3-D, multiscale segmentation is then performed on this 
volume. The assumption is that a given region will over- 
lap spatially with itself at least partially between adjacent 
frames. Each segmented 3-D region is a “tube” consist- 
ing of a 2-D region and its correspondences throughout 
the sequence. 

The region segmentation algorithm presented in [ 181 
transforms an image into a hierarchy of force fields us- 
ing the transform of [2, 31. This transform encodes the 
structural information of the image into the field hierar- 
chy. This encoding allows regions to be extracted from the 
field hierarchy using only local operations. This method 
is robust to noise, yet the identified regions retain detailed 
boundary features. The resulting multiscale region hier- 
archy has the property that a region at any given scale is 
composed of a set union of regions existing at any finer 
scale. Also, the scale parameter is directly related to the 
similarity of a region with its neighboring regions. For 
grayscale images, this similarity is measured in terms of 
intensity differences, and for color images the similarity 
is measured by distance in some color space. Originally, 
the 3-D segmentation was done by extending both the 
transform and subsequent region identification from 2-D 
to 3-D. Evaluating this transform in 3-D incurs signifi- 
cant computational expense, and, as a result, a method was 

Figure 1. Tube A undergoes a bifurcation in (a), which causes 
a region at some time to be matched to two regions. In (c), 
Tube A undergoes a merging, which causes two regions to 
map to the same region at some time. These problems are 
resolved by the creation of Tube B as shown in (b) and (d). 

developed which performs the 3-D segmentation using a 
2-D transform. 

The segmented tubes require some post-processing 
because structural changes occurring in an image sequence 
may result in tubes which contain bifurcations and merg- 
ings. As a result, a region in one frame may be matched 
to multiple regions in the following frame and vice versa. 
When a multiple match situation exists, one of the regions 
is selected arbitrarily as being the correct match, and a 
new tube is created for each of the other regions. If the 
selected match is incorrect, it will be identified when the 
affine transformation parameters are computed. Figure 1 
illustrates this process. Tube A contains a bifurcation in 
l(a). The multiple match at the bifurcation was resolved 
with the creation of Tube B as shown in l(b). Tube A 
contains a merging in l(c), which resulted in the creation 
of Tube B shown in l(d). 

3. Estimating affine transformation 
parameters and the resulting motion field 

For each pair of regions matched in adjacent frames, 
the best affine transformation between them is estimated 
iteratively. Denote by Ri the region corresponding to 
the cross-section of the ith tube at frame t .  Also, denote 
the coordinates of the pixels within Rt by (.Ij, &) with 
j = 1.. I R: 1, where I R: I is the cardinality of R:, and denote 
the pixel nearest the centroid of Rj by (52, jjf). Each 
(z t ,  yfj) is mapped by an affine transformation to the 
point (2i.fj, $fj) according to 

A 2x2 deformation matrix, Ak, and a translation vector, 
?k, comprise the affine transformation. The subscript k 
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indicates the iteration number, and [.] indicates a vector 
operator which rounds each vector component to the near- 
est integer. Define the indicator functions 

The amount of mismatch is measured as 

(M& = ~ l l ~ t ( ~ , ~ ~ - ; t + , ( ~ , ~ ~ l l .  [Af(z, y) + A f + l ( i ,  3 )  

-A;(., y) . Xf+l(i,3)] 
X,Y 

(3) 
where <(x, y) represents the value of the pixel at coordi- 
nate (x,y) in frame t. For grayscale images, I is a scalar 
representing pixel intensities. For color images, we define 
I' as a 3-D vector representing pixel values in the CIE 
1976 (L*u*v*) space [6]. The Euclidean norm is used in 
both cases. The rounding performed in (1) causes M j  to 
be larger than would be the case if (2,Q) was a rational 
coordinate and interpolation kernels were used to estimate 
Z + l ( P ,  3)  from the four pixels nearest to (2 ,  3 )  . However, 
the estimated affine transformations are very similar with 
and without rounding. 

The affine transformation parameters which mini- 
mize M i  are estimated iteratively using a straightfor- 
ward local descent criterion. As initial guesses, we set 
To = (if$+* - z i ,  @' - $) and A0 to the final value of 
A computed between R:-' and Rf if Rf-' exists, and to 
the identity matrix otherwise. The initial guess is usually 
very close to the optimal transformation, hence, it is as- 
sumed that the first local minimum reached in the descent 
process corresponds to the global minimum. Typically, 
about 10 iterations are required for convergence. 

Due to structural changes in the scene and very fast 
motion, some of the identified region matches will be 
incorrect. Bad matches typically result in a computed 
affine transformation with a larger amount of deformation 
than will typically occur between adjacent frames. Thus, 
letting aij denote the elements of A, if 

4 

4 

(11 - a00J > + J ( J a o 1 J  > W(Ja1oJ  > € ) U ( J 1  - all1 > 4 
(4) 

is true, a match is considered incorrect. The value of the 
constant E used is 0.3. 

A motion field is computed for each frame from the 
pixel correspondences of the well-matched regions. Be- 
cause the segmentation is multiscale, a given pixel may 
belong to more than one region which is well-matched. 
Hence, multiple motion vectors will exist for this pixel, 
although they will typically be very similar. This ambi- 
guity is resolved by selecting the motion vector resulting 
from the affine transformation which gives the smallest 
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mismatch error when applied to the smallest (finest scale) 
well-matched region. 

4. Compensating for occlusion 
If a region is unoccluded in one frame and its match is 

partially occluded in the following frame, then the motion 
vectors estimated in section 3 for this region may have 
some error caused by the changed shape of the region due 
to the partial occlusion. In this section, we show how to 
compensate for this changed region shape. 

We first compute a predicted motion field for the 
present frame before the affine transformation parameters 
for this frame are computed. This is accomplished by 
taking the affine transformation parameters for the regions 
in the previous frame which were used in computing the 
previous motion field, and then applying these parameters 
to the corresponding regions in the present frame. If the 
motion field is reasonably smooth from frame to frame, 
then this predicted motion field will be fairly close to the 
actual motion field in the present frame. Motion vectors 
from two or more regions which map onto the same 
pixel indicate that the pixels are visible in the present 
frame but all but one of them are occluded in the next 
frame (VPON). Similarly, a pixel to which no motion 
vectors map is occluded in tlhe present frame and visible in 
the next frame (OPVN). Before the affine transformation 
parameters are computed between a given region in the 
present frame and its match in the next frame, the shape of 
the region in the next frame is modified. First, connected 
sets of VPON pixels are identified. Any of these sets 
which are adjacent to the region are appended to it. Next, 
any OPVN contained within the region are subtracted from 
it. The shape of the resulting region is now no longer 
distorted by the occlusion. Figure 2 demonstrate why this 
is the case. 

5. Experimental results 
Figure 3 gives an example of the performance of our 

motion estimation algorithm. Two consecutive frames of 
a color image sequence of a football game are shown in 
3(a-b). The motion in this sequence is very fast and non- 
rigid, and there is also a significant amount of occlusion. 
Computed motion fields are shown sub-sampled in 3(c-d). 
The effects of occlusion were not compensated in 3(c), 
whereas in 3(d) they were, resulting in a significant im- 
provement in the accuracy of the estimated motion field. 
The best set of matched region pairs for these two frames 
is shown in 3(e-Q. Each matched pair is displayed with 
one of six different intensity values, and all neighboring 
regions have been assigned different intensities. Regions 
for which no motion coulcl be computed are shown in 
black. The main reason motion could not be computed 
for these regions is that no imatches were found for them. 



Figure 2. (a) A stationary region is occluded by a smaller 
region whose position in the present frame is shown with a 

dotted boundary and in the next frame with a solid boundary. 
(b) The corresponding VPON and OPVN pixels are shaded. 

(c) The shape of the smaller region is shown for both 
frames. The shape of the smaller region in the next frame 
is unchanged by the occlusion compensation. (d-e) The 

shape of the larger region in both frames is shown before 
(d) and after (e) the occlusion compensation. In (e), the 

larger region in the next frame has had the VPON appended 
to it and the OVPN subtracted from it, which compensates 

for the shape distortion caused by the occluding region. 

This is due to the matches being fully occluded in the other 
frame or structural changes which cause the match to be- 
long to a different tube. A total of 43 best matched region 
pairs were identified, resulting in motion vectors computed 
over 96% of the first frame. Through visual inspection, 
the motion estimated for each of these region pairs was 
determined to be consistent with the actual motion. 

6. Conclusions 
We have presented a new region-based technique for 

2-D motion estimation. A multiscale segmentation algo- 
rithm is used which provides a rich set of matched re- 
gions. Pixel correspondences are obtained for each pair 
of matched regions by estimating the parameters of the 
best affine transformation relating the regions. The affine 
transformation allows very complex motion fields to be 

modelled. Before computing the affine transformation pa- 
rameters, the distortion in region shapes caused by oc- 
clusion is compensated. A motion field is then estimated 
from the affine parameters calculated for the set of regions 
identified as being the best matched. 
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