
A Geometric Approach to Train Support Vector Machines

Ming-Hsuan Yang and Narendra Ahuja
Department of Computer Science and Beckman Institute

Universit yof Illinois at Urbana-Champaign, Urbana, IL 61801
fmhyang,ahujag@vision.ai.uiuc.edu

h ttp://vision.ai.uiuc.edu

Abstract

Support Vector Machines (SVMs) have shown great
potential in numerous visual learning and pattern
recognition problems. The optimal decision surface of
a SVM is constructed from its support vectors which
are conventionally determined by solving a quadratic
programming (QP) problem. However, solving a large
optimization problem is challenging sinc e it is com-
putationally intensive and the memory requirement
grows with square of the training vectors. In this pa-
per, we propose a geometric method to extr act a small
sup erset of supp ortvectors, which we call guard vec-
tors, to c onstruct the optimal decision surface. Specif-
ically, the guard vectors are found by solving a set of
linear programming problems. Experimental results on
synthetic and real data sets show that the prop osed
method is more eÆcient than conventional methods
using QPs and requir es much less memory.

1 Introduction

The Support Vector Machine (SVM) is a novel ma-
chine learning algorithm based on statistical learning
theory that can be applied to pattern recognition and
regression problems [15] [3]. One distinct character-
istic of SVMs is that it aims to �nd the optimal hy-
perplane from a set training samples suc h that the
expected recognition error for the unseen test samples
is minimized. According to the structural risk mini-
mization inductive principle, a function that describes
the training data well and belongs to a set of functions
with low est VC (Vapnik-Chervonenkis) dimension will
generalize well regardless of the dimensionality of the
input space [3]. Based on this principle, SVM adopts a
systematic approach to �nd a linear function that be-
longs to a set of functions with low est V C dimension.
The SVM algorithm also provides non-linear function
approximations by projecting the input vectors to a
high dimensional feature space in which a linear hy-
perplane is constructed to separate all the projected
vectors. One novelty of the nonlinear SVMs is the use

of kernel functions to avoid the expensive computa-
tions imposed by the nonlinear projection. Although
there is no guarantee that the patterns in a high di-
mensional space can always be linearly separated by
a hyperplane, in practice it is usually feasible to �nd
one such linear hyperplane in the projected space.

SVMs have recently attracted muc h attention be-
cause of the rigorous theoretical derivations from sta-
tistical learning theory and excellent empirical results
in many classi�cation tasks. T raining a SVM is equiv-
alent to solving a quadratic optimization problem in
which the support vectors (SVs) are identi�ed to con-
struct the optimal hyperplane. How ev er,many re-
searc hers have found that SVMs are not only compu-
tationally expensive but also memory intensive.

Consider a training set of m examples, (x1; y1);
(x2; y2); : : : ; (xm; ym), where xi is an input vector
and yi is its class label, one can solv e the following
quadratic programming (QP) problem to �nd the op-
timal hyperplane:

Minimize 1
2

Pm

i=1

Pm

j=1 �iQij�j �
Pm

i=1 �i
Subject to 0 � �i � C and

Pm

i=1 yi�i = 0

where C is a parameter for soft margin classi�er and Q
is anm�mmatrix that depends on the training inputs
xi, the label yi, and the kernel function of a SVM. Note
that a training set of 50,000 examples will yield a Q
matrix with 2.5 billion elements, which cannot easily
�t in to the memory of a standard computer. Solving
a large QP problem is usually computationally and
memory in tensiv e,nontrivial to implement, and can
su�er from numerical instability.

Although several methods have been developed to
eÆciently solve the quadratic optimization problem
[10] [11] [7], none use the structur einformation of the
training vectors. Since the support vectors (SVs) form
a subset of training vectors which have equal minimum
perpendicular distance to the optimal hyperplane and
the optimal hyperplane is a weigh ted linear combina-
tion of these SVs, w e can constructexactly the same

1063-6919/00 $10.00 � 2000 IEEE

optimal hyperplane if we are given only the SVs.

In this paper, we propose a method to extract a su-
perset of the SVs based on the structural information
of the training vectors. Note that for eac h support
vector xs with label ys, w ecan always �nd a hyper-
plane that passes through xs and separates the vectors
with label ys and those with the opposite class label.
In other w ords,a training vector may be a support
vector if there exists such a hyperplane that linearly
separates all the vectors according to their labels.

The duality theory in computational geometry
speci�esthat a point or a vector in an y dimensional
space has a unique corresponding hyperplane in the
dual space [12], and vice versa. We are in terested in
determining whether there exits a hyperplane through
a vector xi in the primal space such that all the points
are linearly separated according to their labels in the
primal space. Since all the points in the primal space
have dual hyperplanes in the dual space and their nor-
mal directions are determined by their labels, the ex-
istence of a separating hyperplane at xi in the primal
space is equivalen tto feasibility of a linear program
in the dual space. If there exists such a hyperplane,
there exists a corresponding point in the dual space.
Since the hyperplane through xi can linearly separate
all the points, xi may be a support vector. We will
call such vectors the guar dvectors in the rest of this
paper. For an optimal hyperplane with unit normal
w, the support vectors must lie on hyperplanes with
normalized distance 1

jjwjj to the optimal hyperplane.

Therefore, every support vector must be a guard vec-
tor. How ev er,a guard vector may not be a support
vector since it may not have minimum distance to the
optimal hyperplane.

For a set of m training examples, the superset of
SVs are found by solving a set ofm linear program-
ming problems. Each LP aims at determining whether
a point can be a support vector on the optimal hyper-
plane. Note that w eare interested in the feasibilit y
of eac h LP rather than the optimal objective value of
that LP. After we extract the set of guard vectors, we
can construct the same optimal hyperplane by solving
a quadratic programming problem with these vectors.
Since the guard vectors usually form a small superset
of support vectors and linear programming problems
can be solved more eÆciently than quadratic program-
ming problems, the proposed method is an eÆcient al-
gorithm to train SVMs. Our experimental results on
sev eral benchmarks sho wthat the proposed method
has lo w time and space complexity.

This paper is organized as follo ws. Section 2 de-
scribes previous approaches to train SVMs. In Section

3, w epresent a method to extract guard vectors us-
ing linear programming and then construct an optimal
hyperplane. In Section 4, we present experimental re-
sults on several synthetic datasets and real data sets.
We conclude this paper with comments on current and
future work in Section 5.

2 Related Work
For large learning problems with many training ex-

amples, the constrained quadratic optimization ap-
proach to solving SVMs quickly becomes intractable
in terms of time and memory requirements. A train-
ing set of 50,000 examples will yield a Q matrix with
2.5 billion elements, which cannot easily �t into the
memory of a standard computer. Consequently, tradi-
tional optimization algorithm such as Newton, Quasi
Newton, etc., cannot be directly applied (since these
methods usually involve the whole Hessian matrix of
Q). Several researchers have proposed decomposition
methods to solv e this optimization problem [2] [15]
[10] [8] [6] [7] [11]. V apniket al. describe a \chunk-
ing" method [2] using the fact that the solution of a
QP problem is the same if w eremove the rows and
columns of the matrix Q that correspond to zero La-
grange multipliers. Thus, a large QP problem can
be decomposed in to a series of smaller QP subprob-
lems in which all of the nonzero Lagrange multipliers
are identi�ed and all the zero Lagrange multipliers are
discarded. After all the nonzero Lagrange multipliers
in Q ha vebeen identi�ed, the last step then solv es
the remaining QP problem. Osuna et al. propose
a novel decomposition algorithm for solving the SVM
QP problem [10]. As a variation of the active set meth-
ods, a large QP problem is decomposed into a series of
subproblems by maintaining a small working set. The
algorithm works by moving the samples that violate
the Karush-K�uhn-Tuc ker condition to the working set
in each iteration, and solve the subproblems. Since the
w orking set is usually small, this method does not have
memory problems. How ev er, a n umerical QP solver is
required. Joac hims improves Osuna's methods with a
strategy to select good working sets [6]. Platt devel-
ops Sequential Minimal Optimization (SMO) which
further improves Osuna's method by making all the
w orking sets of size 2 with a set of heuristics [11]. One
feature of SMO is that all the subproblems are solved
analytically.

An analogous problem to SVM has been investi-
gated in the Statistical Mechanics literature, which
has resulted in sev eral perceptron-alike algorithms.
These algorithms, e.g., Adatron [1], aim to �nd max-
imal margin hyperplanes in the input space. By in-
troducing kernels into Adatron, Friess et al. propose

1063-6919/00 $10.00 � 2000 IEEE

Kernel-Adatron which is able to maximize the margin
in the feature space [5]. Ruj�andescribes a stochas-
tic approximation method to to estimate the opti-
mal Bayes classi�er for linearly separable problems
[13] and later extends to support vector machines us-
ing k ernels [14]. Using a projection method di�erent
fromwhat has been used in conventional SVMs, F re-
und and Shcapire develop an algorithm to �nd maxi-
mal margin perceptron in a high dimensional feature
space [4]. Compared to SVMs, this method is much
simpler to implement (i.e., no QP optimization) and
more eÆcient in terms of computational complexity.
How ev er the performance is close to, but not as good
as, the performance of SVM on the same problems.

Recently Keerthi et al. treat SVM classi�cation in
terms of �nding the nearest points betw eenpairs of
con vex polytopes in the feature space, and solve them
with an iterativ e nearestpoint algorithm. Although
this approach does not require numerical QP library,

one drawback is that it needs to consider m(m�1)
2 pairs

of points for a problem with m points.

3 Extracting Guard Vectors for Sup-

port Vector Machines

In this section we �rst describe a method to extract
the guard vectors b y solving a set of linear program-
ming problems. These guard vectors are then used
to construct hyperplane for linear SVMs. F or nonlin-
ear SVMs, a projection method is described to project
vectors onto a higher dimensional space in which a lin-
ear h yperplane is constructed.

3.1 Determining Guard Vectors Using
Linear Programming

A point in a plane has tw o parameters: its x-
coordinate and its y-coordinate. A line in a plane
has also tw o parameters:its slope and its intersection
with the y-axis. The duality transform in computa-
tional geometry speci�es that ev ery point in a plane
has a unique dual hyperplane representation [12]. In
other w ords, there exists a one-to-one mapping be-
tw een points and lines such that certain properties of
points translate to certain other properties for the set
of lines. For instance, the mapping is incidence and
order preserving. The dual of a point p = (px; py) in a
plane is a line de�ned by y = pxx�py. Figure 1 shows
each point in the primal plane corresponds to a line in
the dual plane. Also note that three points on a line
becomes three lines through a point.

F or each point pi, we can use its class label to de-
termine whether there exists a line ls through pi in the
primal plane such that all the points of the same label
are on the same side of ls. If all the points of the same

*

*
*

Primal Plane Dual Plane

*
p4

l
p2

p1

p3
p1

p4

p3

p2

yy

x x

Figure 1: Dual representation of a point. Each point
in the primal plane corresponds to a line in the dual
plane.

label fall on the same side of ls, it means ls can linearly
separate all the points. We call such point pi a guard
vector. Since each point on a plane corresponds to a
line, w e can �ndall the dual line representations for
all the points. Therefore, the problem of determining
the existence of ls is equivalent to solving a linear pro-
gram in the dual space where the constraints are the
dual lines of the points in the primal plane. If there
exists a feasible point to the LP in the dual plane,
it means there exists a line in the primal plane that
linearly separates all the points.

Figure 2 shows three points with their duals (i.e.,
lines) in a plane in which points p1 and p2 belong to
class '+' while point p3 belongs class '-'. Consider
point p1 �rst, Figure 2 (a) shows one LP that we use
the dual of point 1 ,i.e., line l1, and speci�es that all
the points belonging to class '+' should be on the right
hand side of or on l1 and the points belonging to class
'-' should be on the left hand side of l1. The corre-
sponding LP for point p1 is

p11x1 � x2 = p12 (l1)
p21x1 � x2 � p22 (l2)
p31x1 � x2 � p32 (l3)

Note the equality and inequality constraints are set
according to the class labels of the point considered in
this LP and the other points. This means that any so-
lution p� = (x1; x2) must be on l1 and p� must satisfy
the constraints in l2 and l3. In other words, if there
exists a solution for this LP, l2 should be on the right
hand side of l1 and l3 should be on the left hand side
of l1. Clearly, there is no feasible solution to satisfy all
the constraints since p� does not satisfy the constraint
in l3. Figure 2 (b) shows another possible formulation
for l1. The constraint of l2 cannot be satis�ed and
thus there is no feasible solution for this formulation.
Since there is no feasible solution for either formula-
tion of l1, p1 is not a guard vector. Similarly for p2,
Figure 2 (c) shows one case that the one LP that has
no feasible solution. How ev er, Figure 2 (d) shows one
LP of p2 that has feasible solution because l1 is on the

1063-6919/00 $10.00 � 2000 IEEE

right left hand side of l2 and l3 is on the right hand
side of l2. In fact, the shaded area in Figure 2 shows
the all the feasible solutions for this LP. Consequently,
p2 is a guard vector. This example illustrates the use
of LP in which a feasible solution means the intersec-
tion of the half planes speci�ed by the constraints is
nonempty. It also shows that we are only interested in
the feasibility of a LP rather than its optimal value.

+ + -

+ + - + + -

+ + -

(a) (b)

(c) (d)

l1 l2 l3

p2

l1 l2 l3

p1 p2 p3

l1

p1

l2

p2 p3

l3

l1 l2 l3

p1 p2 p3 p1 p3

Figure 2: Using linear programming to extract guard
vectors. Each point and its dual are shown in the
�gure. P oints p1 and p2 belong to class '+' while point
p3 belongs to class '-'.

F ormally, for a set of m points with q positiv e ex-
amples andm�q negative examples, we can formulate
a LP problem for point p1:

Maximize x1
Subject to p11x1 � x2 = p12

p21x1 � x2 � p22
� � �

pq1x1 � x2 � pq2
p(q+1)1x1 � x2 � p(q+1)2

� � �
pm1x1 � x2 � pm2

where, without loss of generality, we assume that pi,
1 � i � q are positive examples and the others are neg-
ativ e examples. The constraints in the LP specify the
correct class labels for each point and the LP problem
itself means that we want to �nd a feasible solution to
satisfy all the constraints. Figure 3 gives a geometric
interpretation of an LP problem. If there is a feasible
solution in the dual plane, it means that we can �nd a
hyperplane through p1 in the primal plane such that
all the points of the same class fall on the same side
of the hyperplane (i.e., have the same class label). In
other words, the intersection of the half planes spec-

i�ed by all the constraints is not empty as shown in
Figure 3 (a). Since w edo not ha veprior knowledge
about whether the points of the same class are above
or belo wthe hyperplane, w eneed to change the in-
equality sign to chec k the other possibility. A point is
a guard vector if there exists one feasible solution to
the corresponding LP. If there is no feasible solution to
the LP, it means that there is no existing hyperplane
suc h that all the points are separated correctly. This
means the intersection of all the half planes speci�ed
by the constraints is empty as shown in Figure 3 (b).
Note that the exact form of the objective function is
immaterial since we are in terested in whether there is
a solution to the constraints or not, which means the
optimization problem can be solved more eÆciently if
we choose a simple form.

l1

l3
l4

l5

l6

l7

l5

l6

l7

(a) (b)

l1

l2

l3
l4

l8

l2

l8

Figure 3: Geometric in terpretation of a linear pro-
gramming problem. (a) shows one case where a feasi-
ble solution exists. (b) shows one case where no feasi-
ble solution exists.

Figure 4 shows a set of 50 points belonging to tw o
classes: the points labeled with '+' belong to class 1
and the others labeled with '*' belong to class 2. The
guard vectors are labeled with circles and the optimal
separating hyperplane found by a linear SVM is the
dash-dot line. For point p17, the corresponding LP
does not have a feasible solution and therefore it is not
a guard vector. In other w ords,it means that there
exists on line such that all the points can be correctly
separated. Similarly point p45 is not a guard vector.
For each guard vector, there exists one line such that
all the points can separated correctly. A close study
sho ws that guard vector 1 and 4 are support vectors for
the optimal separating hyperplane found by a linear
SVM. Also note that guard vectors form a superset of
support vectors.

Duality applies to high dimensional point sets as
well. For a point in n-dimensional space, pi = (pi1; pi2;
: : : ; pin), its dual p

� is the hyperplane xd = pi1x1+
pi2x2+ : : :+ pin�1xn�1 �pin. Similar to the 2D case,
w e can use solv e a linear programming problem to

1063-6919/00 $10.00 � 2000 IEEE

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

guard vector 1

guard vector 2

guard vector 3

guard vector 4

guard vector 5

p45

p17

l1

l2

l17 l4

l45

optimal
separating
hyperplane

guard vector 6

Figure 4: Geometric interpretations of guard vectors
and support vectors (guard vectors form a superset of
support vectors): guard vector 1 and 4 are the support
vectors for the optimal separating hyperplane found
by the SVM for this set of points.

determine whether a point is a guard vector or not:

Ax � b

In matrix form, we have2
6664
�p11 �p12 � � � +1
�p21 �p22 � � � +1
...

...
. . .

pm1 pm2 : : : �1

3
7775

2
6664
x1
x2
...
xn

3
7775 �

2
6664
�p1n
�p2n
...

pmn

3
7775

where m is the number of points and the sign of each
element depends on its class label and the class label
of the point that the LP corresponds to.

We summarize the abo vementioned algorithm as
follows:

Algorithm: Finding the guard vectors

1. T ransform each point to its dual hyperplane rep-
resentation with inequality '�'. Initialize i to 1.

2. Consider point pi with class label li, �rst set the
equality sign for dual hyperplane for point pi.
Then set the inequality signs of all dual hyper-
planes of the points ha ving the same class la-
bel to '�', and set the inequality signs of all the
other hyperplanes of the points having the oppo-
site class label to '�'.

3. Solve the current LP problem. If there is a feasi-
ble solution then it is a guard vector, else reverse
all the inequality signs. If there is still nofeasi-
ble solution to the new LP, then point pi is not a
guard vector

4. Increase i by 1 and go to step 2 until all the points
have been chec ked.

3.2 Linear SVM

Given a set of samples (x1; y1), (x2; y2), : : : ,
(xl; ym) where xi (xi 2 Rn) is the input vector of
n dimension and yi is its label (yi 2 f�1; 1g) for a
recognition problem, SVM aims to �nd the optimal
hyperplane that leaves the largest possible fraction of
data points of the same class on the same side while
maximizing the distance of either class from the hyper-
plane (margin). V apnik[15] shows that maximizing
the margin distance is equivalent to minimizing the
V C dimension in constructing an optimal hyperplane.
The optimal hyperplane is in the form

f(x) =

mX
i=1

w � x+ b =

mX
i=1

yi�i � k(x;xi) + b

where k(x;xi) = x � xi for linear SVMs. The sign of
f(x) determines the class label of x.

Since the optimal hyperplane can be constructed
exactly using only the support vectors, and the guard
vectors form a superset of SVs. We can use the
proposed algorithm to extract all the guard vectors
and then �nd the support vectors and corresponding
nonzero �i by solving a small QP to construct the
optimal hyperplane.

3.3 Nonlinear SVM

For the patterns that cannot be lineally separated,
w euse a nonlinear function similar to [4] to project
training vectors from input space to a high dimen-
sional space in which we construct a linear hyperplane.
F or better generalization performance, w emay also
w an t to project training vectors from input space to a
higher dimensional space. One distinct feature of this
projection function is that the projected vectors are
guaranteed to be linearly separated in the projected
space.

Let X be a Hilbert space and for any �xed non-
negative �, we de�ne a projection of X onto another
higher dimensional Hilbert space X

0

as

�� : xi 2 X 7! x
0

i = (xi;�Æxi
) 2 X

0

where Æxi
2 Rm is de�ned by

Æxi
(j) =

�
1; if j = i; 1 � j � m
0; otherwise:

Given a set of samples (x1; y1), (x2; y2), : : : ,
(xm; ym) where xi (xi 2 Rn) is the input vector of
n dimension and yi is its label (yi 2 f�1; 1g), the
projection extends the input space Rn to Rn+m by
adding m new dimensions, one for each example. Let
x

0

i 2 Rn+m denote the extension of the point xi, w e

1063-6919/00 $10.00 � 2000 IEEE

set the �rst n coordinates of x
0

i equal to xi and the
(n+i)-th coordinate to �. The rest of the coordinates
of x

0

i are set to zero.

F or a linear classi�erw on X and threshold b 2 Rn,
w e de�ne deviationdi for eac h example as

di((xi; yi); (w; b);
) = maxf0;
 � yi((w � xi)� b)g

where di is the amount by which w fails to reach the
margin at point (xi; yi) or 0 if its margin is larger than

, i.e.

di((xi; yi); (w; b);
) �
 � yi((w � xi)� b)

Only those points whose margins are less than
 have
di > 0 cause errors in classi�cation.

Similar to the projection for xi, we project the nor-
mal vector w of a hyperplane 2 Rn to w

0

2 Rn+m by
the following function:

w
0

= (w;
1

�

mX
i=1

d((xi; yi); (w; b);
)yiÆxi
)

Claim: All the points x
0

in the projected space X
0

are linearly separable.

Proof: For a point (xi; yi) and a hyperplane (w, b),
we have the following in the projected space X

0

,

y
0

i((w
0

� x
0

i)� b)

= y
0

i((w;x
0

)� b) + y
0

i(
Pm

i=1 d((xi; yi); (w; b);
)yiÆxi
� Æ
x

0

i

)

�
 � di((x
0

i; y
0

i);w;
) + d((x
0

i; y
0

i;w;
) =

In other w ords, all thepoints in Hilbertspace X
0

have margins that are large than
. Therefore, all the
points can be linearly separated.

4 Experiments

In this section, the proposed algorithm is tested
against SVMs with QP numerical library on synthetic
and benchmark data. All implementations are written
in MATLAB and the CPU times of all the experiments
are measured on an unloaded Sun Ultra 10. The ob-
jectiv e of these experiments is to benchmark the CPU
time and memory usage of the proposed method and
the conven tional QP approach in SVMs, rather than
the recognition performance. In other w ords,w edo
not tune the parameters in SVMs to get the optimal
performance (e.g., the parameter C is set to 1000 for
all experiments). How ev er, both methods do produce
the same optimal separating hyperplane in each ex-
periment.

4.1 Synthetic Data

Each synthetic data set is randomly generated from
a n-dimensional hypercube. For eac h data set, m=2
positiv e examples are generated from a hypercube of
[0; 40]n andm=2 negative examples are generated from
a hypercube of [60; 100]n. Figure 5 sho ws the CPU
time and memory requirements on a series of syn-
thetic data setsin 2 dimensions. The experimental re-
sults show that the proposed method outperforms the
QP implementation for SVM since it requires much
less CPU time and memory. A close examination also
sho ws that the number of guard vectors found by the
proposed method is at most twice the number of sup-
port v ectors.

Table 1 shows more experimental results in which
points are generated from hypercubes of higher di-
mensions. Note the reported CPU time of the pro-
posed method in each entry includes thetime to ex-
tract guard vectors and the time to train a SVM using
the conventional QP method. The results show that
the proposed algorithm performs well when the ratio
betw eenthe number of points and the dimensional-
ity (i.e., m=n) is high. Meanwhile, the ratio betw een
the number guard vectors and the number of support
vectors depends both on the ratios of m=n and the
structure of the data set itself.

4.2 Real-World Data

The �rst data set w e use is from the Wisconsin
Breast Cancer data set[9]. Each of the 699 data el-
ements has 9 attributes, with class label indicating
whether it represents a benign or malignant exam-
ple. The second data set consists of 500 20� 20 face
images and 1000 20 � 20 nonface face images, to be
used for face detection testssimilar tothose reported in
[10]. Both data sets are trained using a linear SVM for
benchmarking. Figure 6 shows some of the face images
in the data set.

Figure 6: Some 20� 20 face images used in the exper-
iment. Each image is converted to a 400-dimensional
vector.

Table 2 shows the CPU time and memory usage of

1063-6919/00 $10.00 � 2000 IEEE

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 100 200 300 400 500 600 700 800

S
ec

on
d

Number of Examples

CPU Time Usage

QP method
Proposed method

(a)

20

30

40

50

60

70

80

90

0 100 200 300 400 500 600 700 800

M
eg

a
B

yt
e

Number of Examples

Memory Usage

QP method
Proposed method

(b)

Figure 5: Benchmark results of the proposed algorithm against a linear SVM in terms of CPU time and memory
requirements using the �rst 2-dimensional data set shown in Table 1.

T able 1:Experimental results on synthetic data: Each data set has m points that are randomly scattered in an
n-dimensional hypercube.

Dimension (n): 2
Proposed method QP method Ratio

pt (m) cpu (sec) mem (MB) # gv (g) cpu (sec) mem (MB) # sv(s) g/s m/n
50 1.96 24 3 1.63 24 2 1.5 25.0
100 5.61 24 4 8.50 24 3 1.3 50.0
200 18.4 24 4 187.2 28 3 1.3 100.0
400 64.57 24 8 2326.69 38 5 1.6 200.0
800 243.19 24 11 45633.23 88 6 1.9 400.0

Dimension (n): 3
Proposed method QP method Ratio

pt (m) cpu (sec) mem (MB) # gv (g) cpu (sec) mem (MB) # sv(s) g/s m/n
50 2.23 24 16 1.91 24 3 5.3 16.6
100 6.31 24 29 11.9 25 6 4.8 33.3
200 20.73 24 35 307.85 28 14 2.5 66.6
400 70.64 24 46 3717.81 39 23 2.0 133.3

Dimension (n): 5
Proposed method QP method Ratio

pt (m) cpu (sec) mem (MB) # gv (g) cpu (sec) mem (MB) # sv(s) g/s m/n
50 2.6 24 40 1.84 24 2 12.0 10.0
100 7.2 24 61 19.18 24 4 15.3 20.0
200 23.41 24 130 178.51 28 12 10.8 40.0
400 78.10 24 181 1885.75 45 10 18.1 80.0

T able 2:Experimental results on benchmark data sets: The �rst one is the Wisconsin Breast Cancer data set in
which each of the699 poin ts has 9 features. The second data set consists of 500 20 � 20 face images and 1000
20� 20 nonface images for face detection.

Proposed method QP method Ratio
pt (m) cpu (sec) mem (MB) # gv (g) cpu (sec) mem (MB) # sv(s) g/s m/n

699 99.02 28 317 3572.91 68 52 6.1 77.7
1500 39086.21 38 712 36506400.81 168 347 4.2 3.8

1063-6919/00 $10.00 � 2000 IEEE

both methods. F or both cases, the proposed algorithm
is more than 30 times faster than the conven tional QP
approach. F urthermore, the memory requirement of
the proposed method is one fourth that of the QP
method in a large scale experiment (i.e. the data set
for face detection). The results also show that the set
of guard vectors is a small superset (i.e., roughly 20
times) of support vectors. Note that both the pro-
posed and conven tionalmethods generate the same
optimal hyperplane in all the experiments.

5 Discussion and Conclusion
The optimal decision surface of a SVM is con-

structed from its support vectors which are conven-
tionally determined by solving a quadratic program-
ming problem. How ev er, solving a large optimization
problem is challenging since it is computationally in-
tensiv eand the memory requirement grows with the
square of the number of training vectors. In this pa-
per, we have proposed a geometric method to extract
guard vectors, a small superset of support vectors, to
construct the optimal decision surface. Speci�cally,
the superset of support vectorsis found by solving a
set of linear programming problems. Experimental re-
sults on synthetic and real data sets sho w that the
proposed method is more eÆcient than con ven tional
methods using QPs and requires much less memory.

F uture work will focus on theoretical analysis of the
number of guard vector v ersus the number of support
vectors. Although the numbers of guard vectors and
support vectors depend on how the data points scatter
in the input and feature space, we believe the relation-
ship betw een the number of guard and support vectors
can be characterized with some assumptions such as
general position of points. More experiments will also
be conducted to benchmark the proposed algorithm
against other training methods for SVMs.

Acknowledgements

The support of the OÆce of Naval Research under
gran t N00014-00-1-0091 is gratefully ackno wledged.

References
[1] J. K. Anlauf and M. Biehl. The adatron: An

adaptive perceptron algorithm. Eur ophysics Letters,
10(7):687{692, 1989.

[2] B. E. Boser, I. M. Guyon, and V. Vapnik. A training
algorithm for optimal margin classi�ers. In Proceed-

ings of the Fifth Annual Workshop on Computational

L earning Theory, 1992.
[3] C. Cortes and V. Vapnik. Support vector net works.

Machine Learning, 20, 1995.
[4] Y. F reund and R. E. Schapire. Large margin clas-

si�cation using the perceptron algorithm. Machine

Learning, 1999. To appear.

[5] T. F riess, N. Cristianini, and C. Campbell. The
kernel-adatron: a fast and simple learning procedure
for support vector machines. In Pr oceedings of the Fif-
teenth International Conference on Machine Learn-

ing, pages 188{196, 1998.
[6] T. Joachims. Making large-scale support vector ma-

chine learning practical. In B. Sch�olkopf, C. Burges,
and A. Smola, editors, A dvances in Kernel Methods:

Supp ort Vector L earning, chapter 11, pages 169{184.
MIT Press, 1998.

[7] L. Kaufman. Solving the quadratic programming
problem arising in support vector classi�cation. In
B. Sch�olk opf, C. Burges, and A. Smola, editors,A d-

vanc es in Kernel Methods: Supp ort Vector Learning,
chapter 10, pages 147{167. MIT Press, 1998.

[8] O. L. Mangasarian and D. R. Musicant. Successive
overrelaxation for support vector machines. IEEE

T ransactions on Neural Networks, 10(5):1032{1037,
1999.

[9] O. L. Mangasarian, R. Setiono, and W. Wolberg. Pat-
tern recognition via linear programming: Theory and
application to medical diagnosis. In T.F. Coleman
and Y. Li, editors, Large-scale numerical optimiza-

tion, pages 22{30. SIAM Publications, 1990. data avi-
lable at ftp://128.195.1.46/ pub/ machine- learning-
databases/.

[10] E. Osuna, R. Freund, and F. Girosi. Training support
vector machines: an application to face detection. In
Proceedings of the IEEE Computer Society Confer-

ence on Computer Vision and Pattern R ecognition,
pages 130{136, 1997.

[11] J. C. Platt. Fast training of support vector ma-
chines using sequential minimal optimization. In
B. Sch�olkopf, C. J. C. Burges, and A. J. Smola, edi-
tors, A dvanc es in Kernel Methods, chapter 12, pages
185{208. MIT Press, 1998.

[12] F. P . Preparata and M. I. Shamos. Computational

Geometry. Springer-Verlag, 1985.
[13] P . Ruj�an. Playing billiards in version space. Neural

Computation, 9(1):99{122, 1997.
[14] P. Ruj�an. Computing the bayes support vector ma-

chine. In B. Sch�olk opf, C. Burges, and A. Smola,
editors, Advances in Large Margin Classi�ers. MIT
Press, 1999. T o appear.

[15] V. Vapnik. The Nature of Statistical Learning Theory.
Springer, 1995.

1063-6919/00 $10.00 � 2000 IEEE

