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Abstract 
Given a video frame or image in terms of its 8 x 8 

block-DCT coefficients we wish to obtain a downsized 
or upsized (by factor of two) version of this frame also 
in terms of 8 x 8 block-DCT coefficients. We pro- 
pose an algorithm for achieving this directly in the 
DCT domain which is computationally much faster, 
produces visually sharper images and gives significant 
improvements in PSNR (typically 4 dB better) com- 
pared to other compressed domain methods based on 
bilinear interpolation. The downsampling and upsam- 
pling schemes combined together preserve all the low- 
frequency DCT coefficients of the original image. This 
implies tremendous savings for coding the difference 
between the original (unsampled image) and its pre- 
diction (the upsampled image). This is desirable for 
many applications based on scalable encoding of video. 

1 Introduction 
Due to the advances in digital signal processing and 

digital networks more and more video data is avail- 
able today in digital format. For economy of storage 
and transmission digital video is typically stored in 
compressed format. However for many applications 
one needs to produce in real-time a compressed bit- 
stream containing the video at a different resolution 
than the original compressed bitstream. For exam- 
ple for browsing a remote video database it would be 
more economical to send low-resolution versions of the 
video clip to the user and depending on his or her 
interest progressively enhance the resolution. Resiz- 
ing of video frames is also required when a viewer is 
tuned to two different TV channels with frames from 
one of the channels being displayed in a corner of the 
screen. Similar need arises when converting between 
different digital TV standards or to fit the incoming 
digital video onto the user’s TV screen. Similarly for 
transmitting video over dual-priority networks we can 
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and DCT(c) = TcTt we have 

4 

DCT(C) = C D C T ( ~ ~ ) D C T ( ~ ~ ) D C T ( ~ ~ )  (2) 
i=l 

DCT(hi) and DCT(gi) for i= 1 to 4 can be precom- 
puted. Hence DCT(c) can be computed as matrix 
multiplication. However even though the filter matri- 
ces hi and gi are sparse, DCT(hi) and DCT(gi) are not 
sparse at all. Hence the matrix multiplication in (2) 
can have complexity comparable to  downsampling in 
spatial domain (by first taking inverse DCT, filtering 
and taking DCT ) using fast algorithms for computa- 
tion of the DCT. In [l] a fast algorithm has been devel- 
oped for the computation of (2) based on factorization 
of the DCT matrix corresponding to the Winograd al- 
gorithm. However their approach is mainly aimed at 
the downsampling matrix in Eq. (1) and it has been 
commented that the method is not guaranteed to have 
lesser complexity compared to spatial domain meth- 
ods for every reasonable anti-aliasing filter. 

Hence we see that in the above approaches the low- 
pass filter is chosen independent of the DCT trans- 
form. In our approach we shall show that it is possible 
to design a low-pass filter so that the DCT of the fil- 
ter matrix is sparse rather than the filter matrix being 
sparse. 

We shall first give an outline of our scheme for 1-D 
signals. Let B1 and B2 denote the 8-point DCT of two 
consecutive 8-sample blocks bl and bz . We wish to 
generate the 8-point DCT B of the 8-point block got 
by downsampling (bl , b 2  ) (by factor of 2) with an ap- 
propriate filter. The downsampling has to carried out 
as far as possible in the compressed domain. In prin- 
ciple the proposed scheme can be viewed as follows: 
Take 4-point inverse DCT of the 4 lowpass coefficients 
in B1 and similarly for B2 . Concatenate these two 
4-point blocks and then take its 8-point DCT. The 
resulting block is the desired block B . In section 2 
we shall describe an algorithm for implementing this 
operation and show that it is computationally faster 
compared to (2). The scheme works because taking 
4 point inverse DCT of the 4 lowpass coefficients of 
8-point DCT of a block gives a low passed and down- 
sampled version of the original 8-point block [5]. 

2 Downsampling in the DCT domain 
We shall derive the relevant equations in 1-D and 

then extend them to 2-D. As in the previous section 
let bl and bz denote two consecutive 8-pixel blocks in 
the spatial domain. Let B1 and B2 be their 8-point 

DCTs respectively. Let b = [ 1. Let B1 and B2 

denote the first 4 (low-pass) components of B1 and 
B2 Let b1 and b 2  denote the- 4-point inverse DCT 
of B1 and B2 . Hence bl and bz are low-passed and 
downsampled versions of bl and b2 respectively. Let 

b = [ ii ] and let B be the 8-point DCT of b . 

Hence b is a low-pass filteqed downsampled version of 
b . We nee! to compute B directly from B1 and B2 
(i.e. from B1 and B2 ). Let T (8 x 8) denote the 8- 
point DCT operator matrix and let T4 (4 x 4) denote 
the 4-point DCT operator matrix. Then we have the 
following equation: 

= T L T ~ B ,  + TRT,"Bz (4) 

where TL and TR are 8 x 4 matrices denoting the first 
and last four columns respectively of the 8-point DCT 
operator T . Let us have a look at T L T ~  and T R T ~  
and see how about 50% of the terms in the product 
turn out to  be zeros (see also Eq. (3) at top): 

1 1 1 
cos; cos? -cos% -cos; 

T4= ( cos? cos? cos% cos% ) (5) 
c o s y  cos? -cos? -cos+ 

The following points can be noted immediately from 
Eqs. (3) and (5) : 
1. For k = 0,1,2,3, the (2k)th row of TL is same as 
the kth row of T4 and the the (2k)th row of TR is neg- 
ative of the kth row of T4 . 
2. Since the rows of T4 are orthogonal, point 1 above 
implies that every (2k)th row of TL (and also of TR) 
is orthogonal to  every row of T4 except the kth row 
for k = 0,1,2,3. Hence in the 8 x 4 matrices T L T ~  
and TRTi every (2k)th row has all its entries as zeros 
except the kth entry. Hence we see that about 50% of 
the entries of these matrices are zero. 
3. Odd rows of T are anti-symmetric and even rows are 
symmetric. Also odd rows of T4 are anti-symmetric 
and even rows are symmetric. These two facts to- 
gether imply that all the corresponding entries of T L T ~  
and T R T ~  are identical except possibly for a change of 
sign. Specifically T ~ T i ( i , j )  = (-l)i+jT~T,"(i,j) for 
i = 0,1, .  . . ,7  and j = 0,1,2,3.  This fact can be ex- 
ploited to  further reduce the computations in Eq. (4). 
Grouping the terms for which i + j is even into one 
matrix C and the remaining terms into another ma- 
trix D we have T L T ~  = C + D and T R T ~  = C - D. 

'The normalizing constants in these matrices have been 
omitted since they do not affect our conclusions. 
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f 1  1 1 1 
cos& cos cos? c o s b  

T = [TL I TRI = cos; cos, ss -cos, 9, -cosg 16, I 
( I  

Hence from Eq. (4) we have: 

B = ( C + D ) B ~ + ( C - D ) B Z  (6) 
= C(B1-t B g )  + D(B1 - 8,) (7) 

Eq. (7) is computationally much faster compared to 
Eq. (6) because each of the matrices C and D have 
only half the number of non-zero entries compared to 
C + D or C - D. Hence the number of multiplications 
involved is reduced drastically. Another way to look 
at this is that instead of computing expressions like 
a/3 + ay in Eq. (6) we are computing a(p + y) in Eq. 

4. Since T and T4 are DCT matrices it is our belief 
that much faster procedures (based on fast DCT algo- 
rithms [6] ) could be designed for the scheme (cf. Eq. 
(4)) presented here. But we shall not pursue this in 
the current paper. 

Using the facts mentioned above it can be shown 
that for the 2-D case our downsampling scheme re- 
quires 1.25 multiplications and 1.25 additions per pixel 
of the original image. 
2.1 The Downsampling Filter 

In this section we shall derive the downsampling fil- 
ter which corresponds to the downsampling operation 
mentioned above. We have the following equation: 

b1 = TiB1 = Ti[I  O]B1 = Ti[I  O]Tbl = TiMtTbl 

where I and 0 denote 4 x 4 identity and zero matrices 

respectively and M def = [ 1. Hence we have 

(7). 

(8) 

where 0 is a 4 x 1 zero vector. Hence we see that the 
downsampling filter matrix h(8 x 8) is given by 

h = MTiMtT (10) 

(11) 
DCT(h) = ThTt = [TL TR]MT~M~TT~ = T L T ~ M ~  

We have already seen above that T L T ~  is very sparse. 
The Mt at the end makes sure that only the first four 
low-pass components of DCT(b1) are used in the com- 
putation of b~ . Hence we have designed a filter matrix 
h such that its DCT (and not h) is sparse'. 

2Note that DCT(hb1) = Thbl  = ThTtTbi = 
DCT(h)DCT(bl). 

I 1  1 1 
I - c o s E    cos^ -cos% I -cos$ -cos, 4: cos? 

2.2 Extension to 2-D 
Let bl , bg , b3 and b4 denote four consecutive 

8 x 8 blocks numbered in the same way as c1, c g ,  c3 

and c4 in Fig. 1. Following the same notation as in 
1-D case, let B1 , Bz , B3 and B4 denote the DCTs 
of these blocks respectively. Let B1 etc. denote the 
4 x 4 matrices containing the low-pass coefficients of 
B1 etc. Let bl etc. denote the 4 x 4 inverse DCT of 

81 etc. Then b def = [ b1 b2 ] denotes the low-pass 
b3 b4 

de'[ bl bz 1. Let B and downsampled version of b = 
b3 b4 

def - DCT(b ). We need to compute B directly from B1 
, Bz , B3 and B4 (i.e. from B1 , B g  , B3 and B4 ). 
We have 

B = TbTt 

= (TLTi)fil (TLTi)t + (TLTi)BZ(TRTi)t 
f (TRT,")fi3(TLTi)t + (TRTi)84(TRT4t)t 

(15) 

We have already seen that ( T L T ~ )  and (T&) are 
very sparse. We know from 1-D case that ( T L T ~ )  = 
C + D and ( T R T ~ )  = C - D where each of C and D 
contain only half as many non-zero entries as ( T L T ~ )  
or ( T R T ~ )  . Hence it can be shown that 

B = ( X + Y ) C t + ( X - Y ) D t  (16) 

where 

X = C(B1 +B3)+D(Bjl -B3) (17) 
Y = C(Bg+B4)+D(Bz-B4) (18) 

We know from the 1-D case that Eqs. (17) and (18) 
are computationally inexpensive. Again from 1-D case 
we know that Eq. (16) is also computationally in- 
expensive. It can be shown that our downsampling 
scheme requires 1.25 multiplications and 1.25 ad- 
ditions per pixel of the original image. Compare this 
to 4 multiplications and 4.75 additions (after assuming 
that the DCT of any 8 x 8 image block is 75% sparse) 
per pixel of original image required by the method of 
Chang et. a1 [a] .  
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3 Upsampling 
In many applications it is required to  obtain an up- 

sampled version from a downsampled version of an 
original image. For example for spatially scalable en- 
coding of video [7, 81 a prediction of the original frame 
is obtained by upsampling the lower resolution frame 
and the difference is encoded in the enhancement or 
low-priority layer. A natural question is can we design 
an upsampling scheme that works in the compressed 
domain and can keep all the low-frequency compo- 
nents of the original image in the upsampled image. 
In terms of our notation in the previous section the 
probleAm is: can we get back B1 , B2 , B3 and B4 

from B (see Eq. (15)). Since the matrices T and T4 
are unitary the following inverse relationships can be 
easily derived from Eq. (15): 

v 

our 
bilinear 

Then 

34.69 29.09 32.28 34.22 
30.04 25.15 28.11 32.08 

etc. give us the four blocks in the upsampled image 
corresponding to  the block B in the downsampled im- 
age. Note that the process of downsampling and then 
upsampling has the effect of truncating to zero all 
the high frequency components in each 8 x 8 DCT 
block in the original image while preserving all the 
low-frequency components of such blocks. Also note 
the upsampling scheme can be applied to any given im- 
age irrespective of whether or not the given image is 
obtained by the downsampling scheme outlined in Sec- 
tion 2. It can be shown that our upsampling scheme 
requires 1.25 multiplications and 1.50 additions per 
pixel of the upsampled image. 

4 Results 
We have already shown the computational ef- 

ficiency of our method to be superior to existing 
methods for downsampling in the DCT domain. 
Moreover, since we preserve most of the significant 
energy (the low-pass coefficients of each block) 
of the image, the image obtained after downsam- 
pling and upsampling by our method looks much 

3Actually due to the different sizes of the DCTs there 
would be a factor of half that we have not accounted for so 
far. Hence in practice Eqs. (17)-(22) would be modified as: 
X = ;[C(Bi + B3) + D(B1 - B 3 ) ]  (and similarly for Y) and 
9 1  = ~ ( T L T , ~ ) ~ B ( T L T , ~ )  etc. 

sharper and preserves more texture compared to 
the image obtained after bilinear interpolation. 
The later looks blurred. The table below gives the 
PSNR values when an image is downsampled and 
upsampled using our method and the bilinear inter- 
polation method. The Cap image is obtained from 

I Image I Lena 1 Watch I F-16 I CaD I 

I I I I I 

ftp://ipl.rpi. edu/pub/image/still/KodakImages/color/O3.ras. 

Comparing the PSNR shows that the image obtained 
by our downsampling and upsampling scheme is 
typically about 4 dB better than the image ob- 
tained by bilinear interpolation. Figure 2 makes a 
visual comparison. Detailed results can be found at 
http://vision. ai. aim. edu/” dugad/draft/icip99dct. html. 
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fb) with bilinear intemolation 

Watch downsampled and upsampled with our scheme (d) with bilinear interpolation 

Figure 2: Notice the sharpness of the Lena image in (a) compared to (b) especially in the hair, eyes and cap 
region. For the Watch image the numbers on the three smaller dials are much clearer in (c) compared to (d). 
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