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Abstract

Given a video frame or image in terms of its 8 x 8
block-DCT coefficients we wish to obtain a downsized
(lower resolution) or upsized (higher resolution) ver-
sion of this frame also in terms of 8 x 8 block-DC'T co-
efficients. We propose an algorithm for achieving this
directly in the compressed domain which s computa-
tionally much faster, produces visually sharper images
and gives significant improvements in PSNR (typi-
cally 4 dB better compared to other compressed domain
methods based on bilinear interpolation). The down-
sampling and upsampling schemes combined together
preserve all the low-frequency DCT coefficients of the
original signal. This implies tremendous savings for
coding the difference between the original (unsampled
image) and its prediction (the upsampled image). This
is desirable for many applications based on scalable en-
coding of video.

1 Introduction

The notion of hierarchical representation of a sig-
nal has been used in many contexts. For example in
scale space theory [1, 2, 3, 4], the signal is represented
from coarse to fine levels of detail to extract important
structure at a continuum of scales, by convolving it
with a Gaussian kernel whose standard deviation plays
the role of scale. During the last few decades a num-
ber of other approaches to multi-scale representation
like pyramids and wavelets have also gained popular-
ity. The main difference between scale-space represen-
tation and the pyramid or wavelets representation is
that the scale space representation uses the same spa-
tial sampling density at all scales whereas in pyramid
representations the main objective is to decrease the
sampling density with coarser and coarser scales (or
approximations). To reduce aliasing filtering is per-
formed before subsampling. Hence with proper choice
of filters (e.g. orthogonal wavelet representation) we
can say that the multi-resolution (or pyramid) rep-
resentation is non-redundant whereas the scale-space
representation is maximally redundant [1]. Moreover
the rapidly decreasing image size in the pyramid rep-
resentation allows computationally efficient coarse-to-
fine processing. Due to such reasons the pyramid
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structure using wavelet decomposition [5] is very suit-
able for compression or progressive encoding of the sig-
nal where as the scale-space approach is more suitable
for immediate access to structure within the signal at
all levels of scale.

However, the standards currently in practice do not
use wavelet decompositions. Block-DCT is by far the
most popular method for image compression. Keeping
this in mind, we shall present in this paper a method
for decreasing and increasing the resolution of images
or video frames stored in terms of their block-DCT
coefficients. For many applications one needs to pro-
duce a compressed bitstream containing the video at
a different resolution than the original bitstream. For
example for browsing a remote video database it would
be more economical to send low-resolution versions of
the video clips to the user and depending on his or her
interest progressively enhance the resolution. A typ-
ical video conferencing application will require com-
positing video bitstreams at different resolutions into
one bitstream containing the individual video frames
at possibly lower resolution. Similarly for transmit-
ting video over dual-priority networks we can trans-
mit a low-resolution version of the video over high-
priority channel and an enhancement layer over the
low-priority channel. Similarly one solution to trans-
mitting video over bandwidth-constrained channels is
to transmit a low-resolution version of the video. Spa-
tial scalability is also used in HDTV for maintaining
compatibility with standards other than MPEG-2 (e.g.
MPEG-1) and to allow for varied bitrate and compu-
tational capabilities of different users.

The straightforward approach of decompressing,
carrying out the downsampling in spatial domain and
then recompressing involves unnecessary work and is
computationally too intensive to be feasible in real-
time on currently available workstations. Hence re-
cently there has been much work [6, 7, 8] in carrying
out downsampling as well as other operations on video
sequences directly in the compressed domain without
requiring decompression and recompression.

Most previous approaches for downsampling in the
compressed domain (say in the DCT domain) rely on
the fact that the DCT, being a linear orthonormal
transform, is distributive over matrix multiplication
[9, 6, 7]. Let c1,ca,c3,cs denote four adjacent 8 x 8
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Figure 1: Downsampling 4 consecutive blocks to get a
single block.

blocks in the spatial domain as shown in Figure 1 then
the downsampled 8 x 8 block ¢ can be written as: ¢ =
23:1 hic;g; where the downsampling filters h;, g; are
usually taken as
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and similarly for the other h;’s and g;’s. Let T denote

the 8 x 8 DCT operator matrix. Since TT? = T!T =1
we have
DCT(c) = TcT* = ZDCT )DCT(c;)DCT(g;)

(2)
DCT(h;) and DCT(g;) for i= 1 to 4 can be precom-
puted. Hence given DCT(¢;) for i= 1 to 4, DCT(c)
can be computed as matrix multiplication. However
even though the filter matrices h; and g; are sparse,
DCT|(h;) and DCT(g;) are not sparse at all. Hence the
matrix multiplication in (2) can have complexity com-
parable to downsampling in spatial domain (by first
taking inverse DCT, filtering and taking DCT ) using
fast algorithms for computation of the DCT. In [6] a
fast algorithm has been developed for the computa-
tion of (2) based on factorization of the DCT matrix
corresponding to the Winograd algorithm. However
their approach is mainly aimed at the downsampling
matrix in Eq. (1) and it has been commented in that
paper that it is not guaranteed that for every reason-
able anti-aliasing filter the method would have lesser
complexity than spatial domain methods.

Hence we see that the previous approaches view the
downsampling operation as lowpass filtering followed
by downsampling and try to implement this in the
DCT domain. The lowpass filter is chosen indepen-
dent of the DCT transform. In our approach we shall
show that it is possible to design a low-pass filter so
that DCT of the filter matrix is sparse rather than the
filter matrix itself.

We shall first give an outline of our scheme for 1-D
signals. Let B; and B, denote the 8-point DCT of
two consecutive 8-sample blocks b; and by . We wish

to generate the 8-point DCT B of the 8-point block
got by downsampling (b; , bs ) with an appropriate
filter. The downsampling has to carried out as far as
possible in the compressed domain. In principle the
proposed scheme can be viewed as follows: Take 4-
point inverse DCT of the 4 lowpass coefficients in B;
and similarly for By . Concatenate these two 4-point
blocks and then take its 8-point DCT. The resulting
block is the desired block B . In section 2 we shall
describe an algorithm for implementing this operation
and show that it is computationally inexpensive com-
pared to matrix multiplication in Eq. (2). The scheme
works because taking 4 point inverse DCT of the 4
lowpass coefficients of 8-point DCT of a block gives
a low passed and downsampled version of the original
8-point block [10].

2 Downsampling in the DCT domain
In this section we shall elaborate on the downsam-
pling scheme and give a computationally efficient algo-
rithm for it. We shall derive the relevant equations in
1-D and then extend them to 2-D. As in the previous
section let b; and by denote two consecutive 8-pixel
blocks in the spatial domain. Let B; and B> be their

8-point DCTs respectively. Let b = [ E ] Let B,
2

and B, denote the first 4 (low-pass) components of
B; and Bg . Let b1 and bg denote the 4-point inverse
DCT of B1 and Bg . Hence b1 and b2 are low-passed
and downsampled versions of b; and by respectively.

Let b = [ El ] and let B be the 8-point DCT of b .
2

Hence b is a low-pass filtered downsampled version of

b . We need to compute B directly from B; and Bs

(i.e. from B; and B ). Let T (8 x 8) denote the 8-

point DCT operator matrix and let Ty (4 x 4) denote

the 4-point DCT operator matrix. Then we have the

following equation: P iR
B=Tb = T[ b1 ] =Ty, TR][T‘i]:D‘l ]
TiBs

= T.TiBy + TrT!B, (4)

2

where T, and T are 8 x 4 matrices denoting the first
and last four columns respectively of the 8-point DCT
operator T' . Let us have a look at T T} and TRT}
and see how about 50% of the terms in the product
turn out to ble Zeros (lsee also Eq (3) at tiop):

s 3 3
T4 _ COS28 COS 68 COS6 ] COg 8 (5)
cos - C€Oos—F  COS cos -
3 9 91 3T
COS 3 COS s — COS s — COS 3

The following points can be noted immediately from
Eqgs. (3) and (5) :

1The normalizing constants in these matrices have been
omitted since they do not affect our conclusions.
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cos {g  €OS z—g cos ?—” cos %
T=[T,|Tr]l= cosg COS“t —COS* —cCosyg

1. For k = 0,1,2,3, the (2k)th row of Ty, is same as
the kth row of T4 and the the (2k)th row of T is neg-
ative of the kth row of T} .
2. Since the rows of Ty are orthogonal, point 1 above
implies that every 2kth row of Ty, (and also of Tg) is
orthogonal to every row of Ty except the kth row for
k =0,1,2,3. Hence in the 8 x 4 matrices T T} and
TgrT} every (2k)th row has all its entries as zeros ex-
cept the kth entry. Hence we see that about 50% of
the entries of these matrices are zero.
3. Odd rows of T' are anti-symmetric and even rows are
symmetric. Also odd rows of Ty are anti-symmetric
and even rows are symmetric. These two facts to-
gether imply that all the corresponding entries of 7', T}
and TrT} are identical except possibly for a change of
sign. Specifically T;, T} (i,5) = (=1)*TgT}(i,5) for
1=0,1,...,7and j = 0,1,2,3. This fact can be ex-
ploited to further reduce the computations in Eq. (4).
Grouping the terms for which ¢ + 5 is even into one
matrix C' and the remaining terms into another ma-
trix D we have T, T} = C + D and TgT} = C — D.
Hence from Eq. (4) we have: .

B = (C+D)B;+(C—D)B, (6)

= C(By;+B;)+ D(B; —B,) (7)

Eq. (7) is computationally much faster compared to
Eq. (6) because each of the matrices C and D have
only half the number of non-zero entries compared to
C+ D or C — D. Hence the number of multiplications
involved is reduced drastically. Another way to look
at this is that instead of computing expressions like
af + ay in Eq. (6) we are computing (8 + v) in Eq.
(7).

4. Since T and T, are DCT matrices it is our belief
that much faster procedures (based on fast DCT algo-
rithms [11]) could be designed for the scheme (cf. Eq.
(4)) presented here. But we shall not pursue this in
the current paper.

Using the facts mentioned above it can be shown
that for the 2-D case our downsampling scheme re-
quires 1.25 multiplications and 1.25 additions per pixel
of the original image.

2.1 The Downsampling Filter

In this section we shall derive the downsampling fil-
ter which corresponds to the downsampling operation
mentioned above. We have the following equation:

b, = TiB, = Ti[I O]B, =T{[I O]Tb, = T{M'Tb,
(8)
where I and O denote 4 x 4 identity and zero matrices

def [ 1

respectively and M = 0 ] . Hence we have

1 1 1 1
cos Z—g — cos 5—g — cosgr“"l)—gr — Cos % 5
cos % — cos ?” cos ?’T cos % (3)
1A)l tast def
o | = MT;M'Tb; = hb; (9)

where 0 is a 4 x 1 zero vector. Hence we see that the
downsampling filter matrix h(8 x 8) is given by

h=MT;M'T (10)
Compare this with the filter matrix h; in Eq. (1). by
is chosen without considering the fact that finally in
Eq. (2) it is the DCT of h; that is used. It is more
desirable to have DCT(h;) to be sparse than to have
h1 as sparse. In our approach the downsampling filter
hin Eq. (10) is derived from the DCT basis functions
so that DCT(h) is guaranteed to be very sparse:?

DCT(h) = ThT" = [Ty, TpRIMT{M'TT' =T T{M"
(11)
We have already seen above that T, T} is very sparse.
The M? at the end makes sure that only the first four
low-pass components of DCT(b;) are used in the com-

putation of b, . The product TrT} appears in the

] which when added to [ l:)l ]

. 0
computation of [ b,
gives the desired low-pass downsampled vector b.
2.2 Extension to 2-D

Let b; , by , b and by denote four consecutive
8 x 8 blocks numbered in the same way as cj,c2,c3
and ¢4 in Fig. 1. Following the same notation as in
1-D case, let B; , By , B3 and By denote the DCTs
of these blocks respectively. Let Bl etc. denote the
4 x 4 matrices containing the low-pass coefficients of
B etc. Let 131 etc. denote the 4 x 4 inverse DCT of

Bl etc. Then b dg[ ]?1 132 ] denotes the low-pass
3 4
and downsampled version of b def b; b, . Let B
b; by

défDCT(f) ). We need to compute B directly from B,

, Ba, B3 and By (i.e. from B, , B, , Bg and By ).
We have

B = Tbr! (12)
b, by Ty
= [Ty T ~ ~ 13
neaf B[R] w
TiB, Ty TiB,T T
— T T 4A1 4 4A2 4 L 14
Tz R][T;Bgﬂ By | | e | Y
= (TLTH)BL(TLT))" + (TLT4)Bo(TRTS)!
+ (TRTHBs (TLTY)! + (TrTE)B4(TRTY)!
(15)
2Note that DCT(hby) = Thby = ThT!Tb; =
DCT(h)DCT(by).



We have already seen that (T T{) and (TrT}) are
very sparse. We know from 1-D case that (T,T}) =
C + D and (TrT}) = C — D where each of C and D
contain only half as many non-zero entries as (T7%)

or (TrT}) . Hence it can be shown that
B = (X+Y)C'+ (X -Y)Dt! (16)
where
X = CB;+B3)+D®B;,—Bs) (17)
Y = C(By+Bs)+D(B;—By) (18)

We know from the 1-D case that Eqgs. (17) and (18)
are computationally inexpensive. Again from 1-D case
we know that Eq. (16) is also computationally inex-
pensive. Hence for the 2-D case the procedure is:®
compute X and Y as in Egs. (17) and (18) and then
compute B as in Eq. (16). As mentioned before, it
can be shown that our downsampling scheme requires
1.25 multiplications and 1.25 additions per pixel of the
original image. Compare this to 4 multiplications and
4.75 additions (after assuming that the DCT of any
8 x 8 image block is 75% sparse) per pixel of original
image required by the method in [7].

3 Upsampling

In many applications it is required to obtain an up-
sampled version from a downsampled version of an
original image. For example for spatially scalable en-
coding of video [12, 13] a prediction of the original
frame is obtained by upsampling the lower resolution
frame and the difference is encoded in the enhance-
ment or low-priority layer. A natural question is can
we design an upsampling scheme that works in the
compressed domain and can keep all the low-frequency
components of the original image in the upsampled im-
age. In terms of our notation in the previous section
the problem is: can we get back B; , B, , B; and By
from B (see Eq. (15)). Since the matrices 7' and T,
are unitary the following inverse relationships can be
easily derived from Eq. (15)

1 (T Ty tE(TLTi) (19)
B, = (T,T))'B(TxT}) (20)
Bs = (TrTH'B(ILT}) (21)
By, = (TgrT})'B(TxT}) (22)

3 Actually due to the different sizes of the DCTs there would
be a factor of half that we have not accounted for so far. Hence
in practice the actual equations to be used for X and Y would
be: X = 1[C(B1 + Bs) + D(B1 — Bs)] and Y = 1[C(B2 +
By) + D(B2 — By)]. Note that the factor of 5 can be absorbed
in C and D which would be pre-computed.

4 As mentioned in footnote 3 we have to account for a factor
of half due to different sizes of the DCTs involved and hence
in practice the equations used for upsampling would be B, =
2T T B(TLTY) etc.

Then = def | By O

B, = O O (23)
etc. give us the four blocks in the upsampled image
corresponding to the block B in the downsampled im-
age. Note that the process of downsampling and then
upsampling has the effect of truncating to zero all
the high frequency components in each 8 x 8 DCT
block in the original image while preserving all the
low-frequency components of such blocks. Also note
the upsampling scheme can be applied to any given im-
age irrespective of whether or not the given image is
obtained by the downsampling scheme outlined in Sec-
tion 2. It can be shown that our upsampling scheme
requires 1.25 multiplications and 1.50 additions per
pixel of the upsampled image.

4 Results

We have already shown the computational effi-
ciency of our method to be superior to existing meth-
ods for downsampling in the DCT domain. That is
the main contribution of this paper. Moreover, since
we preserve most of the significant energy (the low-
pass coefficients of each block) of the image, the image
obtained after downsampling and upsampling looks
much sharper compared to the image obtained after
bilinear interpolation. The later looks blurred. Com-
paring the PSNR shows that the image obtained by
our downsampling and upsampling scheme is typically
about 4 dB better than the image obtained by bilinear
interpolation. This is an additional advantage of our
method.

Fig. 3 shows the lena image after processing by
our scheme and the bilinear interpolation scheme. We
see that the image obtained by our method is much
sharper compared to the bilinearly interpolated image
which looks blurred. This is particularly noticeable in
the hair and the eye regions. The PSNR values are
given in Table 1 for different sets of operations on var-
ious original images. We see an improvement of 4.65
dB with our method compared to the conventional
bilinear interpolation method [9, 6, 7]. The downsam-
pled images using our method and the method using
bilinear downsampling filter look equally good and are
not shown.

Figure 3 also shows similar results for a watch im-
age. The PSNR values for these images are given in
Table 1. Note that the numbers on the three circular
dials are much clearer in our method than the one ob-
tained by bilinear interpolation. Similarly the num-
bers on the rim of the watch appear much sharper.
Similar results are obtained for the cap image shown
in Figure 2. It is seen that more texture is retained
by our method than by bilinear interpolation.

Comparing the columns of dct-dct and con-con in
Table 1 we see that our scheme gives about 3 to 4



dB improvement compared to using bilinear scheme.
Note that bilinear scheme is extensively used in pa-
pers reporting downsampling in the compressed do-
main [9, 6, 7]. Also note that the performance of
con-dct is very close to that of dct-dct and that of
dct-con is very close to that of con-con. This implies
that in terms of PSNR the upsampling scheme is the
deciding factor. This in turn implies that we could
choose the downsampling scheme that is faster in the
domain in which the original images (video frames)
are available. For example if the original frames are
available in compressed format (e.g. motion JPEG)
we should use our proposed scheme which is faster in
the compressed domain (since the DCT of the down-
sampling filter matrix is sparse). On the other hand, if
the original frames are available in the raw format we
should use the bilinear scheme which is faster in the
spatial domain. In either case the upsampling scheme
described in this paper should be used to minimize the
energy in the residual image.
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Image | dct-dct | con-con | con-dct | dct-con
Lena 34.69 30.04 34.06 30.09

Watch | 29.09 25.15 28.63 25.25
Cap 34.22 32.08 33.73 32.17

Table 1: PSNR values with respect to the original im-
age and images obtained by downsampling the original
image and upsampling the downsampled image. There
are 4 possible ways of doing this depending on whether
we use our scheme or bilinear scheme for downsam-
pling and upsampling respectively. dct-dct (con-con)
refers to the case in which our (bilinear) scheme is
used for both downsampling and upsampling. con-
dct (dct-con) refers to using bilinear (our) scheme for
downsampling and our (bilinear) scheme for upsam-

pling.

(b)

Figure 2: (a) Cap downsampled and upsampled by our
method (b) Cap downsampled and upsampled using
bilinear interpolation [9, 7]. We see that the image in
(a) is sharper compared to that in (b) which is blurred.
For example the letters on the white cap are much
sharper in (a). Also (a) has more texture on the left
side of the image.




Figure 3: Lena downsampled and upsampled using (a) our method (b) using bilinear interpolation [9, 7]. We see
that the image in (a) is sharper compared to that in (b) which is blurred. Watch downsampled and upsampled
using (c) our method (d) using bilinear interpolation. We see that the number appear sharper in (c). Results for
all these images have been tabulated in Table 1



