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.eduAbstra
tGiven a video frame or image in terms of its 8 � 8blo
k-DCT 
oeÆ
ients we wish to obtain a downsized(lower resolution) or upsized (higher resolution) ver-sion of this frame also in terms of 8 � 8 blo
k-DCT 
o-eÆ
ients. We propose an algorithm for a
hieving thisdire
tly in the 
ompressed domain whi
h is 
omputa-tionally mu
h faster, produ
es visually sharper imagesand gives signi�
ant improvements in PSNR (typi-
ally 4 dB better 
ompared to other 
ompressed domainmethods based on bilinear interpolation). The down-sampling and upsampling s
hemes 
ombined togetherpreserve all the low-frequen
y DCT 
oeÆ
ients of theoriginal signal. This implies tremendous savings for
oding the di�eren
e between the original (unsampledimage) and its predi
tion (the upsampled image). Thisis desirable for many appli
ations based on s
alable en-
oding of video.1 Introdu
tionThe notion of hierar
hi
al representation of a sig-nal has been used in many 
ontexts. For example ins
ale spa
e theory [1, 2, 3, 4℄, the signal is representedfrom 
oarse to �ne levels of detail to extra
t importantstru
ture at a 
ontinuum of s
ales, by 
onvolving itwith a Gaussian kernel whose standard deviation playsthe role of s
ale. During the last few de
ades a num-ber of other approa
hes to multi-s
ale representationlike pyramids and wavelets have also gained popular-ity. The main di�eren
e between s
ale-spa
e represen-tation and the pyramid or wavelets representation isthat the s
ale spa
e representation uses the same spa-tial sampling density at all s
ales whereas in pyramidrepresentations the main obje
tive is to de
rease thesampling density with 
oarser and 
oarser s
ales (orapproximations). To redu
e aliasing �ltering is per-formed before subsampling. Hen
e with proper 
hoi
eof �lters (e.g. orthogonal wavelet representation) we
an say that the multi-resolution (or pyramid) rep-resentation is non-redundant whereas the s
ale-spa
erepresentation is maximally redundant [1℄. Moreoverthe rapidly de
reasing image size in the pyramid rep-resentation allows 
omputationally eÆ
ient 
oarse-to-�ne pro
essing. Due to su
h reasons the pyramid�The support of the oÆ
e of Naval Resear
h under grantN00014-96-1-0502 is gratefully a
knowledged.

stru
ture using wavelet de
omposition [5℄ is very suit-able for 
ompression or progressive en
oding of the sig-nal where as the s
ale-spa
e approa
h is more suitablefor immediate a

ess to stru
ture within the signal atall levels of s
ale.However, the standards 
urrently in pra
ti
e do notuse wavelet de
ompositions. Blo
k-DCT is by far themost popular method for image 
ompression. Keepingthis in mind, we shall present in this paper a methodfor de
reasing and in
reasing the resolution of imagesor video frames stored in terms of their blo
k-DCT
oeÆ
ients. For many appli
ations one needs to pro-du
e a 
ompressed bitstream 
ontaining the video ata di�erent resolution than the original bitstream. Forexample for browsing a remote video database it wouldbe more e
onomi
al to send low-resolution versions ofthe video 
lips to the user and depending on his or herinterest progressively enhan
e the resolution. A typ-i
al video 
onferen
ing appli
ation will require 
om-positing video bitstreams at di�erent resolutions intoone bitstream 
ontaining the individual video framesat possibly lower resolution. Similarly for transmit-ting video over dual-priority networks we 
an trans-mit a low-resolution version of the video over high-priority 
hannel and an enhan
ement layer over thelow-priority 
hannel. Similarly one solution to trans-mitting video over bandwidth-
onstrained 
hannels isto transmit a low-resolution version of the video. Spa-tial s
alability is also used in HDTV for maintaining
ompatibilitywith standards other than MPEG-2 (e.g.MPEG-1) and to allow for varied bitrate and 
ompu-tational 
apabilities of di�erent users.The straightforward approa
h of de
ompressing,
arrying out the downsampling in spatial domain andthen re
ompressing involves unne
essary work and is
omputationally too intensive to be feasible in real-time on 
urrently available workstations. Hen
e re-
ently there has been mu
h work [6, 7, 8℄ in 
arryingout downsampling as well as other operations on videosequen
es dire
tly in the 
ompressed domain withoutrequiring de
ompression and re
ompression.Most previous approa
hes for downsampling in the
ompressed domain (say in the DCT domain) rely onthe fa
t that the DCT, being a linear orthonormaltransform, is distributive over matrix multipli
ation[9, 6, 7℄. Let 
1; 
2; 
3; 
4 denote four adja
ent 8 � 8
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onse
utive blo
ks to get asingle blo
k.blo
ks in the spatial domain as shown in Figure 1 thenthe downsampled 8� 8 blo
k 
 
an be written as: 
 =P4i=1 hi
igi where the downsampling �lters hi; gi areusually taken ash1 = 266666666664

:5 :5 0 0 0 0 0 00 0 :5 :5 0 0 0 00 0 0 0 :5 :5 0 00 0 0 0 0 0 :5 :50 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0
377777777775 (1)

and similarly for the other hi's and gi's. Let T denotethe 8�8 DCT operator matrix. Sin
e TT t = T tT = Iwe haveDCT(
) = T
T t = 4Xi=1 DCT(hi)DCT(
i)DCT(gi)(2)DCT(hi) and DCT(gi) for i= 1 to 4 
an be pre
om-puted. Hen
e given DCT(
i) for i= 1 to 4, DCT(
)
an be 
omputed as matrix multipli
ation. Howevereven though the �lter matri
es hi and gi are sparse,DCT(hi) and DCT(gi) are not sparse at all. Hen
e thematrix multipli
ation in (2) 
an have 
omplexity 
om-parable to downsampling in spatial domain (by �rsttaking inverse DCT, �ltering and taking DCT ) usingfast algorithms for 
omputation of the DCT. In [6℄ afast algorithm has been developed for the 
omputa-tion of (2) based on fa
torization of the DCT matrix
orresponding to the Winograd algorithm. Howevertheir approa
h is mainly aimed at the downsamplingmatrix in Eq. (1) and it has been 
ommented in thatpaper that it is not guaranteed that for every reason-able anti-aliasing �lter the method would have lesser
omplexity than spatial domain methods.Hen
e we see that the previous approa
hes view thedownsampling operation as lowpass �ltering followedby downsampling and try to implement this in theDCT domain. The lowpass �lter is 
hosen indepen-dent of the DCT transform. In our approa
h we shallshow that it is possible to design a low-pass �lter sothat DCT of the �lter matrix is sparse rather than the�lter matrix itself.We shall �rst give an outline of our s
heme for 1-Dsignals. Let B1 and B2 denote the 8-point DCT oftwo 
onse
utive 8-sample blo
ks b1 and b2 . We wish

to generate the 8-point DCT B of the 8-point blo
kgot by downsampling (b1 , b2 ) with an appropriate�lter. The downsampling has to 
arried out as far aspossible in the 
ompressed domain. In prin
iple theproposed s
heme 
an be viewed as follows: Take 4-point inverse DCT of the 4 lowpass 
oeÆ
ients in B1and similarly for B2 . Con
atenate these two 4-pointblo
ks and then take its 8-point DCT. The resultingblo
k is the desired blo
k B . In se
tion 2 we shalldes
ribe an algorithm for implementing this operationand show that it is 
omputationally inexpensive 
om-pared to matrix multipli
ation in Eq. (2). The s
hemeworks be
ause taking 4 point inverse DCT of the 4lowpass 
oeÆ
ients of 8-point DCT of a blo
k givesa low passed and downsampled version of the original8-point blo
k [10℄.2 Downsampling in the DCT domainIn this se
tion we shall elaborate on the downsam-pling s
heme and give a 
omputationally eÆ
ient algo-rithm for it. We shall derive the relevant equations in1-D and then extend them to 2-D. As in the previousse
tion let b1 and b2 denote two 
onse
utive 8-pixelblo
ks in the spatial domain. Let B1 and B2 be their8-point DCTs respe
tively. Let b = � b1b2 �. Let B̂1and B̂2 denote the �rst 4 (low-pass) 
omponents ofB1 and B2 . Let b̂1 and b̂2 denote the 4-point inverseDCT of B̂1 and B̂2 . Hen
e b̂1 and b̂2 are low-passedand downsampled versions of b1 and b2 respe
tively.Let b̂ = � b̂1b̂2 � and let B̂ be the 8-point DCT of b̂ .Hen
e b̂ is a low-pass �ltered downsampled version ofb . We need to 
ompute B̂ dire
tly from B1 and B2(i.e. from B̂1 and B̂2 ). Let T (8 � 8) denote the 8-point DCT operator matrix and let T4 (4 � 4) denotethe 4-point DCT operator matrix. Then we have thefollowing equation:B̂ = T b̂ = T � b̂1b̂2 � = [TL TR℄ � T t4B̂1T t4B̂2 �= TLT t4B̂1 + TRT t4B̂2 (4)where TL and TR are 8� 4 matri
es denoting the �rstand last four 
olumns respe
tively of the 8-point DCToperator T . Let us have a look at TLT t4 and TRT t4and see how about 50% of the terms in the produ
tturn out to be zeros (see also Eq. (3) at top): 1T4 = 0BB� 1 1 1 1
os �8 
os 3�8 � 
os 3�8 � 
os �8
os 2�8 
os 6�8 
os 6�8 
os 2�8
os 3�8 
os 9�8 � 
os 9�8 � 
os 3�8 1CCA (5)The following points 
an be noted immediately fromEqs. (3) and (5) :1The normalizing 
onstants in these matri
es have beenomitted sin
e they do not a�e
t our 
on
lusions.



T = [TL j TR℄ = 0BBB� 1 1 1 1 j 1 1 1 1
os �16 
os 3�16 
os 5�16 
os 7�16 j � 
os 7�16 � 
os 5�16 � 
os 3�16 � 
os �16
os �8 
os 3�8 � 
os 3�8 � 
os �8 j � 
os �8 � 
os 3�8 
os 3�8 
os �8... ... 1CCCA (3)1. For k = 0; 1; 2; 3, the (2k)th row of TL is same asthe kth row of T4 and the the (2k)th row of TR is neg-ative of the kth row of T4 .2. Sin
e the rows of T4 are orthogonal, point 1 aboveimplies that every 2kth row of TL (and also of TR) isorthogonal to every row of T4 ex
ept the kth row fork = 0; 1; 2; 3. Hen
e in the 8 � 4 matri
es TLT t4 andTRT t4 every (2k)th row has all its entries as zeros ex-
ept the kth entry. Hen
e we see that about 50% ofthe entries of these matri
es are zero.3. Odd rows of T are anti-symmetri
 and even rows aresymmetri
. Also odd rows of T4 are anti-symmetri
and even rows are symmetri
. These two fa
ts to-gether imply that all the 
orresponding entries of TLT t4and TRT t4 are identi
al ex
ept possibly for a 
hange ofsign. Spe
i�
ally TLT t4(i; j) = (�1)i+jTRT t4(i; j) fori = 0; 1; : : : ; 7 and j = 0; 1; 2; 3. This fa
t 
an be ex-ploited to further redu
e the 
omputations in Eq. (4).Grouping the terms for whi
h i + j is even into onematrix C and the remaining terms into another ma-trix D we have TLT t4 = C + D and TRT t4 = C � D.Hen
e from Eq. (4) we have:B = (C +D)B̂1 + (C �D)B̂2 (6)= C(B̂1 + B̂2) +D(B̂1 � B̂2) (7)Eq. (7) is 
omputationally mu
h faster 
ompared toEq. (6) be
ause ea
h of the matri
es C and D haveonly half the number of non-zero entries 
ompared toC+D or C�D. Hen
e the number of multipli
ationsinvolved is redu
ed drasti
ally. Another way to lookat this is that instead of 
omputing expressions like�� + �
 in Eq. (6) we are 
omputing �(� + 
) in Eq.(7).4. Sin
e T and T4 are DCT matri
es it is our beliefthat mu
h faster pro
edures (based on fast DCT algo-rithms [11℄) 
ould be designed for the s
heme (
f. Eq.(4)) presented here. But we shall not pursue this inthe 
urrent paper.Using the fa
ts mentioned above it 
an be shownthat for the 2-D 
ase our downsampling s
heme re-quires 1.25 multipli
ations and 1.25 additions per pixelof the original image.2.1 The Downsampling FilterIn this se
tion we shall derive the downsampling �l-ter whi
h 
orresponds to the downsampling operationmentioned above. We have the following equation:b̂1 = T t4B̂1 = T t4 [I O℄B1 = T t4 [I O℄Tb1 = T t4M tTb1(8)where I and O denote 4�4 identity and zero matri
esrespe
tively and M def= � IO �. Hen
e we have

� b̂10 � =MT t4M tTb1 def= hb1 (9)where 0 is a 4� 1 zero ve
tor. Hen
e we see that thedownsampling �lter matrix h(8� 8) is given byh =MT t4M tT (10)Compare this with the �lter matrix h1 in Eq. (1). h1is 
hosen without 
onsidering the fa
t that �nally inEq. (2) it is the DCT of h1 that is used. It is moredesirable to have DCT(h1) to be sparse than to haveh1 as sparse. In our approa
h the downsampling �lterh in Eq. (10) is derived from the DCT basis fun
tionsso that DCT(h) is guaranteed to be very sparse:2DCT(h) = ThT t = [TL TR℄MT t4M tTT t = TLT t4M t(11)We have already seen above that TLT t4 is very sparse.The M t at the end makes sure that only the �rst fourlow-pass 
omponents of DCT(b1) are used in the 
om-putation of b̂1 . The produ
t TRT t4 appears in the
omputation of � 0̂b2 � whi
h when added to � b̂10 �gives the desired low-pass downsampled ve
tor b̂ .2.2 Extension to 2-DLet b1 , b2 , b3 and b4 denote four 
onse
utive8 � 8 blo
ks numbered in the same way as 
1; 
2; 
3and 
4 in Fig. 1. Following the same notation as in1-D 
ase, let B1 , B2 , B3 and B4 denote the DCTsof these blo
ks respe
tively. Let B̂1 et
. denote the4� 4 matri
es 
ontaining the low-pass 
oeÆ
ients ofB1 et
. Let b̂1 et
. denote the 4� 4 inverse DCT ofB̂1 et
. Then b̂ def=� b̂1 b̂2b̂3 b̂4 � denotes the low-passand downsampled version of b def=� b1 b2b3 b4 �. Let B̂def=DCT(b̂ ). We need to 
ompute B̂ dire
tly from B1, B2 , B3 and B4 (i.e. from B̂1 , B̂2 , B̂3 and B̂4 ).We haveB̂ = T b̂T t (12)= [TL TR℄ � b̂1 b̂2b̂3 b̂4 �� TLTR � (13)= [TL TR℄ � T t4B̂1T4 T t4B̂2T4T t4B̂3T4 T t4B̂4T4 �� TLTR � (14)= (TLT t4)B̂1(TLT t4)t + (TLT t4)B̂2(TRT t4)t+ (TRT t4)B̂3(TLT t4)t + (TRT t4)B̂4(TRT t4)t(15)2Note that DCT(hb1) = Thb1 = ThT tTb1 =DCT(h)DCT(b1).



We have already seen that (TLT t4) and (TRT t4) arevery sparse. We know from 1-D 
ase that (TLT t4) =C +D and (TRT t4) = C �D where ea
h of C and D
ontain only half as many non-zero entries as (TLT t4)or (TRT t4) . Hen
e it 
an be shown thatB̂ = (X + Y )Ct + (X � Y )Dt (16)where X = C(B̂1 + B̂3) +D(B̂1 � B̂3) (17)Y = C(B̂2 + B̂4) +D(B̂2 � B̂4) (18)We know from the 1-D 
ase that Eqs. (17) and (18)are 
omputationally inexpensive. Again from 1-D 
asewe know that Eq. (16) is also 
omputationally inex-pensive. Hen
e for the 2-D 
ase the pro
edure is:3
ompute X and Y as in Eqs. (17) and (18) and then
ompute B̂ as in Eq. (16). As mentioned before, it
an be shown that our downsampling s
heme requires1.25 multipli
ations and 1.25 additions per pixel of theoriginal image. Compare this to 4 multipli
ations and4.75 additions (after assuming that the DCT of any8� 8 image blo
k is 75% sparse) per pixel of originalimage required by the method in [7℄.3 UpsamplingIn many appli
ations it is required to obtain an up-sampled version from a downsampled version of anoriginal image. For example for spatially s
alable en-
oding of video [12, 13℄ a predi
tion of the originalframe is obtained by upsampling the lower resolutionframe and the di�eren
e is en
oded in the enhan
e-ment or low-priority layer. A natural question is 
anwe design an upsampling s
heme that works in the
ompressed domain and 
an keep all the low-frequen
y
omponents of the original image in the upsampled im-age. In terms of our notation in the previous se
tionthe problem is: 
an we get ba
k B̂1 , B̂2 , B̂3 and B̂4from B̂ (see Eq. (15)). Sin
e the matri
es T and T4are unitary the following inverse relationships 
an beeasily derived from Eq. (15):4B̂1 = (TLT t4)tB̂(TLT t4) (19)B̂2 = (TLT t4)tB̂(TRT t4) (20)B̂3 = (TRT t4)tB̂(TLT t4) (21)B̂4 = (TRT t4)tB̂(TRT t4) (22)3 A
tually due to the di�erent sizes of the DCTs there wouldbe a fa
tor of half that we have not a

ounted for so far. Hen
ein pra
ti
e the a
tual equations to be used for X and Y wouldbe: X = 12 [C(B̂1 + B̂3) + D(B̂1 � B̂3)℄ and Y = 12 [C(B̂2 +B̂4) +D(B̂2 � B̂4)℄. Note that the fa
tor of 12 
an be absorbedin C and D whi
h would be pre-
omputed.4As mentioned in footnote 3 we have to a

ount for a fa
torof half due to di�erent sizes of the DCTs involved and hen
ein pra
ti
e the equations used for upsampling would be B̂1 =2(TLT t4)tB̂(TLT t4) et
.

Then ~B1 def= � B̂1 OO O � (23)et
. give us the four blo
ks in the upsampled image
orresponding to the blo
k B̂ in the downsampled im-age. Note that the pro
ess of downsampling and thenupsampling has the e�e
t of trun
ating to zero allthe high frequen
y 
omponents in ea
h 8 � 8 DCTblo
k in the original image while preserving all thelow-frequen
y 
omponents of su
h blo
ks. Also notethe upsampling s
heme 
an be applied to any given im-age irrespe
tive of whether or not the given image isobtained by the downsampling s
heme outlined in Se
-tion 2. It 
an be shown that our upsampling s
hemerequires 1.25 multipli
ations and 1.50 additions perpixel of the upsampled image.4 ResultsWe have already shown the 
omputational eÆ-
ien
y of our method to be superior to existing meth-ods for downsampling in the DCT domain. That isthe main 
ontribution of this paper. Moreover, sin
ewe preserve most of the signi�
ant energy (the low-pass 
oeÆ
ients of ea
h blo
k) of the image, the imageobtained after downsampling and upsampling looksmu
h sharper 
ompared to the image obtained afterbilinear interpolation. The later looks blurred. Com-paring the PSNR shows that the image obtained byour downsampling and upsampling s
heme is typi
allyabout 4 dB better than the image obtained by bilinearinterpolation. This is an additional advantage of ourmethod.Fig. 3 shows the lena image after pro
essing byour s
heme and the bilinear interpolation s
heme. Wesee that the image obtained by our method is mu
hsharper 
ompared to the bilinearly interpolated imagewhi
h looks blurred. This is parti
ularly noti
eable inthe hair and the eye regions. The PSNR values aregiven in Table 1 for di�erent sets of operations on var-ious original images. We see an improvement of 4.65dB with our method 
ompared to the 
onventionalbilinear interpolation method [9, 6, 7℄. The downsam-pled images using our method and the method usingbilinear downsampling �lter look equally good and arenot shown.Figure 3 also shows similar results for a wat
h im-age. The PSNR values for these images are given inTable 1. Note that the numbers on the three 
ir
ulardials are mu
h 
learer in our method than the one ob-tained by bilinear interpolation. Similarly the num-bers on the rim of the wat
h appear mu
h sharper.Similar results are obtained for the 
ap image shownin Figure 2. It is seen that more texture is retainedby our method than by bilinear interpolation.Comparing the 
olumns of d
t-d
t and 
on-
on inTable 1 we see that our s
heme gives about 3 to 4



dB improvement 
ompared to using bilinear s
heme.Note that bilinear s
heme is extensively used in pa-pers reporting downsampling in the 
ompressed do-main [9, 6, 7℄. Also note that the performan
e of
on-d
t is very 
lose to that of d
t-d
t and that ofd
t-
on is very 
lose to that of 
on-
on. This impliesthat in terms of PSNR the upsampling s
heme is thede
iding fa
tor. This in turn implies that we 
ould
hoose the downsampling s
heme that is faster in thedomain in whi
h the original images (video frames)are available. For example if the original frames areavailable in 
ompressed format (e.g. motion JPEG)we should use our proposed s
heme whi
h is faster inthe 
ompressed domain (sin
e the DCT of the down-sampling �lter matrix is sparse). On the other hand, ifthe original frames are available in the raw format weshould use the bilinear s
heme whi
h is faster in thespatial domain. In either 
ase the upsampling s
hemedes
ribed in this paper should be used to minimize theenergy in the residual image.Referen
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Image d
t-d
t 
on-
on 
on-d
t d
t-
onLena 34.69 30.04 34.06 30.09Wat
h 29.09 25.15 28.63 25.25Cap 34.22 32.08 33.73 32.17Table 1: PSNR values with respe
t to the original im-age and images obtained by downsampling the originalimage and upsampling the downsampled image. Thereare 4 possible ways of doing this depending on whetherwe use our s
heme or bilinear s
heme for downsam-pling and upsampling respe
tively. d
t-d
t (
on-
on)refers to the 
ase in whi
h our (bilinear) s
heme isused for both downsampling and upsampling. 
on-d
t (d
t-
on) refers to using bilinear (our) s
heme fordownsampling and our (bilinear) s
heme for upsam-pling.

(a)

(b)Figure 2: (a) Cap downsampled and upsampled by ourmethod (b) Cap downsampled and upsampled usingbilinear interpolation [9, 7℄. We see that the image in(a) is sharper 
ompared to that in (b) whi
h is blurred.For example the letters on the white 
ap are mu
hsharper in (a). Also (a) has more texture on the leftside of the image.



(a) (b)

(
) (d)Figure 3: Lena downsampled and upsampled using (a) our method (b) using bilinear interpolation [9, 7℄. We seethat the image in (a) is sharper 
ompared to that in (b) whi
h is blurred. Wat
h downsampled and upsampledusing (
) our method (d) using bilinear interpolation. We see that the number appear sharper in (
). Results forall these images have been tabulated in Table 1


