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Abstract—This paper presents an approach to understanding gen-
eral 3-D motion of a rigid body from image sequences. Based on dy-
namics, a locally constant angular momentum (LCAM) model is intro-
duced. The model is local in the sense that it is applied to a limited
number of image frames at a time. Specifically, the model constrains
the motion, over a local frame subsequence, to be a superposition of
precession and translation. Thus, the instantaneous rotation axis of the
object is allowed to change through the subsequence. The trajectory of
the rotation center is approximated by a vector polynomial. The pa-
rameters of the model evolve in time so that they can adapt to long
term changes in motion characteristics.

The nature and parameters of short term motion can be estimated
continuously with the goal of understanding motion through the image
sequence. The estimation algorithm presented in this paper is linear,
i.e., the algorithm consists of solving simultaneous linear equations.
Based on the assumption that the motion is smooth, object positions
and motion in the near future can be predicted, and short missing sub-
sequences can be recovered.

Noise smoothing is achieved by overdetermination and a least-
squares criterion. The framework is flexible in the sense that it allows
both overdetermination in number of feature points and the number
of image frames. The number of frames from which the model is de-
rived can be varied according to the complexity of motion and the noise
level so as to obtain stable and good estimates of parameters over the
entire image sequence.

Simulation results are given for noisy synthetic data and images
taken of a model airplane.

Index Terms—Computer vision, dynamic model, image sequence
analysis, motion, motion estimation, motion prediction, motion under-
standing.

I. INTRODUCTION

ERCEPTION of three-dimensional motion from im-

ages is an integral part of vision. It involves estima-
tion of the nature and parameters of 3-D motion, and as
a result, prediction of future positions of moving objects.
Human vision is adept at using image sequences to un-
derstand and predict motion [25]. For example, after a
football is kicked off, people can judge whether the foot-
ball will pass through uprights long before it actually
reaches there. In computer vision, cameras must be con-
tinuously reoriented to track a moving object for autono-
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mous image acquisition. The motion of a robot arm or a
vehicle may have to be estimated and predicted to plan
safe motion trajectories. Retrieval and repair of satellites
in space requires that the spacecraft rendezvous with the
target, which in turn, requires that the spin and the tum-
bling motion of the target be detected and estimated first.
An understanding of the 3-D motion makes it possible to
make predictions about future locations and configura-
tions of the moving objects. Such prediction capability
allows planning of manipulatory actions on moving ob-
jects, e.g., capturing a spacecraft.

We try to characterize quantitatively general 3-D mo-
tion from image sequences. The generality of the problem
refers to the lack of knowledge about the structure of the
objects undergoing motion as well as the type of motion
they are undergoing. For example, it may not even be
known if the objects are translating, rotating, or precess-
ing, much less the motion parameters. Under special re-
strictions, the problem may be easier to solve although
the solution may be of restricted use. Restrictions on both
allowed motion as well as object structure have been used
to simplify the problem, often making the solution in-
applicable to real images. Broida and Chellappa [4] dis-
cuss the inference of 2-D motion from 1-D image se-
quences under the assumption that the object undergoes
constant translation and rotational 2-D motion and the
structure of the object (the 3-D coordinates of the object
points in the object-centered coordinate frame) is known.
Yasumoto and Medioni [28] also assume the motion to be
constant through the sequence and estimate, through a
search in the solution space, the parameters of the as-
sumed constant motion from image sequence. In the field
of astrodynamics, the dynamic information about the ob-
ject is required to be known. For instance, the principal
moments of inertia and the structures of objects are re-
quired [8], [16]. Because the Lagrange equations of rigid
body motion are nonlinear [12], [20], numerical methods
are necessary to solve the dynamics problems [8], [16].

Our goal is to understand the motion with as little a
priori knowledge as possible. The motion of an object is
determined by underlying dynamics. By the analysis of
the image sequence under a general dynamic model, the
understanding and description of the motion can be de-
rived. Furthermore, based on the motion parameter de-
rived, we can make extrapolations and interpolations
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through image sequences to predict and recover part of
the motion. Clearly, we do not in general know the forces
acting on the object and the object structural response to
the forces which would otherwise enable us to derive ob-
ject’s 3-D motion from the principles of dynamics. How-
ever, it is essential to impose a constraint on the object
motion to make the inverse problem of 3-D inference
solvable.

In general, the moving objects exhibit a smooth mo-
tion, i.e., the motion parameters between consecutive im-
age pairs are correlated. From this assumption and given
a sequence of images of a moving rigid object, we deter-
mine what kind of local motion the object is undergoing.
A locally constant angular momentum model, or LCAM
model for short, is introduced. The model assumes short
term conservation of angular momentum and a polynom-
ial curve as the trajectory of rotation center. This con-
straint is the precise statement of what we mean by
smoothness of motion. However, we allow the angular
momentum, and hence, the motion characteristics of the
object to change or evolve over long term. Thus, we do
not constrain the object motion by some global model of
allowed dynamics.

As a result of the analysis presented in this paper, some
of the questions that we can answer are: whether there is
precession or tumbling; what the precession is if it exists;
how the rotation center of the object (which may be an
invisible point!) moves in space; what the future motion
would probably be; where a particular object point would
be located in image frames or in 3-D at the next several
time instants; where the object would be if it is missing
from a image subsequence, and what the motion before
the given sequence could be.

As a consequence of being able to predict future loca-
tions of feature points, only a neighborhood of the pre-
dicted position may need to be searched to obtain match-
ing points in successive images.

The imposition of local smoothness of motion con-
straint helps to combat the errors due to noise. One way
to combat the effect of such noise would be to use a large
number of feature points in the images. However, a large
number of feature points is not desirable, especially in the
case where very few feature points can be extracted from
the objects. The use of image sequences containing a large
number of frames is a better way to combat the effect of
noise.

Our approach is based on the two-view motion analysis
of image sequences consisting of either monocular im-
ages, or binocular image pairs. The two-view motion es-
timation problem is as follows. Given images of a moving
object taken at two different time instants, the problem is
to estimate the 3-D position transformation of the object
between the two time instants. The rotation and transla-
tion components of such transformation are referred to as
two-view rotation and two-view translation, respectively.
Generally, they do not represent actual continuous motion
undergone by the object between the two time instants.
The physical location of the rotation axis is not deter-
mined by such two-view position transformation. Two-
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view motion estimation has been discussed extensively in
the literature. Many researchers [10], [19], [22], [23],
[24], [31] have used point correspondences between two
image frames to solve this problem. Linear algorithms for
two-view motion analysis from point correspondences
have been developed by Longuet-Higgins [19], and Tsai
and Huang [24]. Line correspondences can also be used
to solve the problem (Yen and Huang [29]). An alterna-
tive approach is to compute the optical flow field and then
estimate motion parameters from optical flow [1], [26],
[27], [30]. Zhuang and Haralick [30] give a linear algo-
rithm for such estimation using optical flow. All these
motion estimation techniques use monocular images,
taken by a monocular sensor such as a single video cam-
era. With such an arrangement the 3-D translation and the
range of the object can be determined up to a scale factor.
If binocular images are used, we can determine the ab-
solute translation velocities and the ranges of object
points. An algorithm to find the rotation and translation
given 3-D correspondences has been discussed in Huang
and Blostein [15]. Shuster [21], Faugeras and Herbert [11]
propose the algorithm to find the least-squares solution of
the motion parameters from 3-D coodinates in the pres-
ence of noise.

The problems of matching feature points in 2-D and 3-
D have been discussed by several researchers. For mon-
ocular vision, Dreschler and Nagel [9] propose feature
tracking from monocular image sequences. In binocular
vision, the matching process may involve two steps. One
is matching between two images taken at the same time
instant (i.e., stereo matching) to derive 3-D coordinates
of the features (e.g., Grimson [13], Hoff and Ahuja [14]).
The other is matching these 3-D coordinates of features
obtained at different time instants (e.g., Lin, Lee and
Huang [18], Chen and Huang [7]). (Alternatively, the 3-
D coordinates of the features may be obtained directly
using range finders.)

The approach presented in this paper can use either fea-
ture points or optical flow to solve two-view motion pa-
rameters. We use feature points in the discussion here.
We assume that there is a single rigid object in motion,
the correspondences of points between images are given,
and the motion does not exhibit any discontinuities such
as those caused by collisions.

In Section II we first present the LCAM model based
on dynamics. Then the solutions of the model parameters
are discussed and the relationship between continuous
motion and discrete two-view motion is described. The
approach to estimating these parameters in the presence
of noise is discussed in Section III. Section III also deals
with the local understanding, prediction, and recovering
of the motion. Some particular properties of monocular
vision are discussed in Section IV. Section V gives the
results of simulations. Section VI presents a summary.

II. Tue LCAM MoDEL

This section consists of four subsections. Subsection A
deals with the general motion of a rigid body in 3-D. Sub-
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section B is devoted to the motion of the rotation center.
The trajectory of the rotation center is approximated by a
vector polynomial as a function of time. Subsection C dis-
cusses the solution of the coefficient equations. The re-
lationship between the continuous precession of the
LCAM model and the discrete two-view motion is inves-
tigated in Subsection D.

A. Motion of a Rigid Body in 3-D
All external forces acting on a body can be reduced to
a total force F acting on a suitable point Q, and a total
applied torquer N about Q. For a body moving freely in
space, the center of mass is to be taken as the point Q. If
the body is constrained to rotate about a fixed point, then
that point is to be taken as the point Q. That point may
move with the supports. Letting m be the mass of the
body, the motion of the center of mass is given by
d
F=—(mV). 1
) (1)
Let L be the angular momentum of the body. The torque
N and the angular momentum L satisfy [12], [20]:

dL
N=—.
dt

The rotation is about the point Q, which will be referred
to as the rotation center. In the remainder of this subsec-
tion, we concentrate on the rotation part of the motion.
The motion of the rotation center Q will be discussed in
the next subsection.

In matrix notation, the angular momentum L can be
represented by

(2)

or writing in components:

L, o,
L,| = W,
L. -

where

I, = S (y’+2)dm I, = S (2% + x%) dm

IZZ = S (Xz —+ yz) dm Igr — IX" = — S Xz dm

Iyx = Ix.\' = - S Xy dm I:)' = l\': = - S Yy dm
and where w is angular velocity. The above integrals are
over the mass of the body.

If the coordinate axes are the principal axes of the body

[12], [20], the inertia tensor / takes the diagonal form:

[,\‘,\' O O
I=10 1,0 (3)
0 0 L.

Referred to a coordinate system fixed on such a rotating
body, (2) becomes

N\‘ = ],\'xw.\' + w\'w:(lff - Iv".“)
N, = 1o, + oo (l, — L)
N. = I::G":, + "‘f‘xw,\([\_\ - ].\1\’)

where (N, N,, N.) = N. These are known as Euler’s
equations for the motion of a rigid body. These equations
are nonlinear and have generally no closed-form solu-
tions. Numerical methods are needed to solve them.

Clearly the motion of a rigid body under external forces
is complicated. In fact even under no external forces, the
motion remains to be complex. Perspective projection
adds further complexity to the motion as observed in the
image. However, in a short time interval, realistic sim-
plifications can be introduced. One simplification occurs
if we ignore the impact of the external torque over short
time intervals. If there is no external torque over a short
time, there is no change in the angular momentum of the
object. Thus, if we have a dense temporal sequence of
images, we can perform motion analysis over a small
number of successive frames under the assumption of lo-
cally constant angular momentum. Another simplification
occurs if the body possesses an axis of symmetry. The
symmetry here means that at least two of 1., 1,,, I..in (3)
are equal. Cylinders and disks are such examples. Most
satellites are also symmetrical or almost symmetrical in
this sense.

Under the above two simplifications, Euler’s equations
are integrable [12], [20]. The motion is such that the body
rotates about its axis of symmetry m, and at the same time
the axis rotates about a spatially fixed /. The motion can
be represented by a rotating cone that rolls along the sur-
face of a fixed cone without slipping as shown in Fig. 1,
where the body is fixed on the rolling cone, the axis of
symmetry coincides with that of rolling cone, and the cen-
ter of mass or the fixed point Q of the body coincides with
the apices of the cones. Then, the motion of the rolling
cone is the same as the motion of the body. Fig. 1 gives
three possible configurations of the rolling cone and the
fixed cone.

Let o, be the angular velocity at which the rolling cone
rotates about I, m,, be the angular velocity at which the
rolling cone rotates about its own axis of symmetry m.
Then the instantaneous angular velocity ® is the vector
sum of o, and ®,, as shown in Fig. 1. The magnitudes of
,, and w, are constant. So the magnitude of the instan-
taneous angular velocity is also constant. This kind of
motion about a point is called precession in the following
sections and it represents the restriction imposed by our
model on the allowed object rotation.

A special case occurs when m is parallel to . Then
is also parallel to I. So the instantaneous rotation axis does
not change its orientation in motion. This type of motion
is called motion without precession.

In the rest of this paper column vectors and matrices
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Fig. 1. The precessional motion of a torque-free symmetrical rigid body.

will be used very often and will be generally denoted by
italics. Column vectors will also denote column matrices.
So dot and cross operations as well as matrix multiplica-
tions will be applied to column vectors. F; will denote an
image frame taken at time ¢, i = 0, 1, + -+ .

B. Motion of Rotation Center

The location of rotation center @ (¢) changes with time.
Assume the trajectory of the rotation center is smooth, or
specifically, it can be expanded into a Taylor series:

0(1) = 0(1) + 1 €' (O)(1 = 1)

£ OO =0+ @)

If the time intervals between image frames are short,
we can estimate the trajectory by the first k terms. We get
a polynomial of time ¢. The coefficients of the polynomial
are 3-vectors. Letting (1/j!) QY(0) = b;,,j =0, 1,
2, - -+, we have

2
0, = b, + by(t; — 1y) + by(t; — 1)

+ o+ bl - to)k_l

(5)

For simplicity, we assume the time intervals between
image frames are constant c, i.e., t; = ci + t5. From (5)
we get

Qi = b, + cbyi + c*byi* + -+ + bt (6)
Letting a; = cj"lbj,j =1,2, -, weget
O =a, +ayi +ayi> + -+ + aqi* . (7)

Equation (7) is the model for the motion of rotation cen-
ter. The basic assumption we made is that the trajectory
can be approximated by a polynomial. If the motion is
smooth and the time interval covered by the model is rel-
atively short, (7) is a good approximation of the trajec-

tory.
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Together with the precession model presented in the
previous subsection, we have the complete LCAM model.
Therefore, the model is characterized by locally constant
angular momentum, i.e., the angular momentum of the
moving object can be treated as constant over short time
intervals. Though we derive this model from the assump-
tion of constant angular momentum and object symmetry,
the condition leading to such motion is not unique. In
other words, the motion model we derived applies to any
moving objects whose rotation can be locally modeled by
such motion: the rotation about a fixed-on-body axis that
rotates about a spatially fixed axis, and whose translation
can be locally modeled by a vector polynomial.

Our goal here is to understand 3-D motion of an object
over an extended time period using the two-view motion
analysis of images taken at consecutive time instants.
Thus we would first estimate the two-view motion param-
eters of the moving object.

The image sequence can be either monocular or binoc-
ular. In the binocular case, at each time instant we take a
pair of images using two cameras in certain configuration.
From one such image pair, we can find the 3-D coordi-
nates of a point assuming its location in the two images
are known. The 3-D coordinates of an object point at two
time instants define a point correspondence. At least three
point correspondences are needed to uniquely determine
the relative displacement of a rigid body between these
two time instants. The displacement can be represented
by a rotation about an axis located at the origin of a world
coordinate system, and a translation [2]. We will refer to
this displacement as two-view motion. In the monocular
case, only one camera is used. At each time instant, one
image is taken which is a perspective projection of the
object at that time instant. The image coordinates of an
object point at two time instants define a point correspon-
dence in the monocular case. At least eight point corre-
spondence are needed to uniquely determine the rotation
and the translation direction of the two-view motion using
linear algorithms [24], [31]. The magnitude of translation
vector can not be determined generally from monocular
images. More point correspondences are needed to im-
prove accuracy in the presence of noise.

Let the column vector Py be the 3-D coordinates of any
object point at time #,. P, be that of the same point at time
t;, R, be the rotation matrix from time ¢, to ¢,, and 7, be
the corresponding translation vector. Then, P, and P, are
related by

P, = R P, + T, (8)
where R, represents a rotation about an axis through the
origin.

Given a set of point correspondences, R, and T can be
determined by two-view motion analysis. In the case of
monocular vision, the translation vector can only be de-
termined up to a positive scale factor, i.e., only the di-
rection of T, T = T/| T||, can be determined from the
perspective projection.
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In (8), letting P, be at the origin, it is clear that T is
just the translation of the point at origin. For any point
Oy, we can translate the rotation axis so that it goes
through Qg and rotate P, about the axis at the new loca-
tion. Mathematically, from (8) we have

Py =R(Py— Qo) + (RiQ + Tn). 9)

Compared to (8), (9) tells us that the same motion can
be represented by rotating P, about Qg by R;, and then
translating by R, Q, + T,. Because Q, is arbitrarily cho-
sen, there are infinitely many ways to select the location
of the rotation axis. This is an ambiguity problem in mo-
tion understanding from image sequences. If we let the
rotation axis always be located at origin, the trajectory
described by R, and T;, i = 1,2, 3 - - - would be like
what is shown in Fig. 2, which is very unnatural.

In Fig. 2 the real trajectory of the center of the body is
the dashed line. However, neither the rotation nor the
translation components show this trajectory. As we dis-
cussed in Section II-A, the center of mass of a body in
free motion satisfies Newton’s equation of motion of a
particle (1). Rotation is about the center of mass (or fixed
point if it exists). So motion should be expressed in two
parts, the motion of the rotation center (the center of mass
or the fixed point), and the rotation about the rotation cen-
ter.

Let Q; be the position vector of the rotation center at
time ¢;, R; be the rotation matrix from ¢, _, to ¢;, and T; be
the translation vector from ¢; _, to t;. From (8) we have

01 =RQy+ T (10)

or

(11)

Similarly we get equations for the motion from ¢; _, to ¢;,
i=1,2,--, f

ROy + 0, =T,.

RO+ 01 =T
RO+ O =T,

“R Qs + O =T

Equations (12) give the relationship among the locations
of the rotation center, the two-view rotation matrices, and
the two-view translation vectors.

Substituting (7) into (12), we get

(I - Rz)al + (2[ - R2)d2 + (4] - R2)a3 + -

(I—R)ay + (fI—=(f—=DR)ay + (FI—(f— 1)R)as + - -

Y
A

Fig. 2. Trajectory described by R, and T, if rotation axis is always located
at origin.

Vector equations (13) are referred to as the coefficient
equations. Both sides of the equations are 3-vectors. There
are f equations in k unknown 3-vectors. Let A = [a,, a,,

L, a), T=[T,T, -+, T;]', D be the coefficient
matrix of the unknowns in (13). Let the element of D at
ith row and jth column be 3 by 3 matrix d;, i.e., D =
[d;j s« We have

1

dy=i"'1— (i — 1) 'R.
We can rewrite the coefficient equations (13) as

DA =T. (14)

D and T are determined by two-view motion analysis.
The problem here is to find A, the coefficients of the
polynomial in (7).

C. Solutions of Coefficient Equation

Let f = k in (13); then, the matrix D is a square matrix.
We wish to know whether the linear equations (14) have
a solution. If a solution exists, is it unique? If it is not
unique, what is the general solution?

The solution of the coefficient equations depends on the
types of motion, or the rotation matrices R; and the trans-
lation vectors 7;. Let us first consider a simpler case,
where k = 2. This means that the trajectory of the rotation
center is locally approximated by a motion of constant
velocity. Three frames are used in this case. The coeffi-
cient equations become

(I_Rl)al +a2=T1 (15.1)
(I - Rz)al + (21 - Rz)az = T2‘ (152)

Solving for a, in (15.1) and substituting it into (15.2), we
get

(I — 2R, + RR)a, = (21 — R)T, — T. (16)
(I—Rl)a1+a2+a3+ st +ak=T1
4+ 2T -R)a =T

( 2) k 2 (13)

k

CH (U= (f - 1) R)a = T
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If I — 2R, + R,R, is nonsingular, a; can be uniquely
determined from (16):

-1
a, = (I - 2R1 + R2R1) ((2[ - R2)T1 - T2) (17)
Then a, is determined from (15.1):
a, = Tl - (I - Rl)al.

Appendix 3 shows that (I — 2R, + R, R,) is nonsingular
if and only if the following two conditions are both sat-
isfied: 1) the axes of rotations, represented by R; and R,,
respectively, are not parallel. 2) Neither rotation angle is
zero. Condition 2) is usually satisfied if the motion is not
pure translation. If condition 1) is not satisfied, the solu-
tion of equations (15) is not unique and has some struc-
ture. To show this, assume the rotation axes of R, and R,
are parallel. Let w be any vector parallel to these axes.
Because any point on the rotation axis remains unchanged
after rotation, we have R,w = w, R,w = w. For any so-
lution a, and a,, a, + cw and a, is another solution, where
¢ is an arbitrary real constant. So there exist infinitely
many solutions.

The following theorem presents the results for the gen-
eral case.

Theorem 1: In the coefficient equations, let f = k. De-
fine §/, to be a 3 by 3 matrix:

) ) [k
Sk = (_1) <l> Re_(R_j_y " Rj+11

Define number u;;:

e 3w ()
m=1 m

j=i+1,i+2 -k
Then
k
Sgal = _EJI SiT,
o kil i .
a = k-1 <m=1 Sk-1Tn + Sk-—lal>

k-2
1 m
-1 = (k——i)_‘ <mz=:1 Sk-2T + Si2a — u(k—2)kak>

k=3
1
=— | 2 SP 5T, + Sy_3a, — Up-3)a
Q-2 (k — 3)! <m=1 k=3 k=341 (k—3) k%

— Uk-3) (k- 1)Fk—-1

2
0
as = -~ Z S'2nTm + Szal — UppQy — uz(k_l)ak_l
2! m=1
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1
1 1 0
a = m <mz=:1 Si1Ty + Sia; — uje@p — Uye—1)@-1

Proof: See Appendix 1.

If S is not singular, the first equation given by Theo-
rem 1 uniquely determines a,. Then a;, a,_¢, * * * , ay
can be determined, sequentially, by the second, third,

-+, and last equations in Theorem 1. So if S? is not
singular, the solution is unique.

Theorem 2: In the case of rotation without precession,
letting w be any column vector parallel to the rotation
axes, then,

Siw =0 (18)
and for any vector a
(8%) - w=0. (19)
Proof: See Appendix 2.
From Theorem 1, we have
k
S%a, = —gl SLT,. (20)

In the case of rotation without precession, (18) implies
S9 is singular. From (19), the left-hand side of (20) is
orthogonal to w. However if the real trajectory of the ro-
tation center is not exactly a jth degree polynomial with j
< k — 1 in (7), the right-hand side of (20) can be any
vector, which may not be orthogonal to w. This means
that no solution exists for (20). If the real trajectory is a
jth degree polynomial with j < k — 1, then (20) has a
solution by our derivation of (20). Since (7) is usually
only an approximation of the real trajectory, a least-
squares solution of (20) can serve our purpose. Let 4, be
a least-squares solution of (20) which is solved by using
independent columns of S. If the rank of Sj is 2, which
is generally true for motion without precession, the gen-
eral solution is then a; = d4; + cw, where c is any real
number. All general solutions {4, + cw} form a straight
line in 3-D space. From (7), this line gives the location
and direction of the two-view rotation axis of the motion
between time instants #, and ¢;. From Theorem 2 we have
S w=0,8_,w=0,---,8w = 0. Then S}_,a,
= Sg_ldl, Sg_zal = Sg_zdl, ey, S?az = S?&l By the
equations given by Theorem 1, the unknowns a;, a;_,,

-, a, are determined without knowing the undeter-
mined number c.

If the motion is pure translation without rotation, all the
rotation matrices R;, i = 1, 2 - - - , k, are unit matrix I.
S(,z is a zero matrix. The first three columns of D are zero,
a, cannot be determined by coefficient equations. From
Theorem 1, a,, a3, * - * , ai, can still be determined by
coefficient equations. Because no rotation exists, any point
can be considered as a rotation center. Equation (7) can
be used to approximate the trajectory of any object points.
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Thus the solutions of the coefficient equations can be
summarized as follows.

1) In the case of rotation with precession, the solution
of the coefficient equations is generally unique. The tra-
jectory of the rotation center is described by (7).

2) In the case of rotation without precession, the gen-
eral solution of a; gives the two-view rotation axis of the
first two-view motion. All other coeflicients a,, as,

*, ay are generally determined uniquely by Theorem
1. So the two-view rotation axes of all two-view motions
are determined by (7). Because no precession exists, any
point on the rotation axis can be considered as the rotation
center. This is the meaning of the general solution a,.
Once a particular point on the rotation axis is chosen as
the rotation center, its trajectory is described by (7). Fig.
3 shows the possible ‘‘parallel’’ trajectories of the rota-
tion center depending on which point on the axis is chosen
as the rotation center.

3) In the case of pure translation without rotation, a,,
as, * * + , a; can still be determined by coefficient equa-
tions. However a; cannot be determined by coefficient
equations. a; can be chosen to be the position of any ob-
ject point at time . Then (7) describes the trajectory of
this point.

In the presence of noise, both a large number of point
correspondences and a large number of image frames pro-
vide overdetermination. The algorithms in [21] and [11]
can be used for the least-squares estimation of two-view
motion parameters. To use overdetermination based on a
large number of frames, we left f > k in the coeflicient
equations (13). In fact, the coefficient matrix S2 is essen-
tially a high order deference. This is shown in Lemma 1
of Appendix 1. SY tends to be ill-conditioned when k gets
large. This means f > k is more important when £ is large.
If f > k, (14) can be solved by a least squares method.
We find a solution A4 such that

(21)

In the case of motion with precession, all the columns
of D are generally independent. The least-squares solu-
tion is

”DA — T|| = min.

A= (D'D) ' DT. (22)

In the case of motion without precession, the column
vectors of D are linearly dependent. This can be shown
by letting a, in (13) be a nonzero vector parallel to the
two-view rotation axes. Then the first three columns of D
linearly combined by a, is zero vector. To get this least-
squares solution of the coefficient equations (13), the larg-
est set of independent columns of D should be found or
tolerance-based column pivoting should be made [17].
Theorem 1 solves a,, a3, - - -, a;,. This means the last 3k
— 3 columns of D are always independent. In the pres-
ence of noise the columns of D are very unlikely to be
exactly linearly dependent even in the case of motion
without precession.

Fig. 3. The possible trajectories of rotation centers when rotation axes are
parallel.

D. Continuous Precession and Discrete Two-View
Motion

The LCAM model we discussed is based on continuous
precessional motion. We must find the relationship be-
tween continuous precession and two-view motion, be-
fore we can estimate the precession parameters of our
model based on discrete two-view motions.

As we discussed in Section II-A, a precession can be
considered as the motion of a rolling cone which rolls
without slipping upon a fixed cone. The angular fre-
quency at which the symmetrical axis of the rolling cone
rotates about the fixed cone is constant.

Assuming at time #;, an edge point A’ on the rolling
cone touches an edge point A on the fixed cone as shown
in Fig. 4. After a certain amount of rolling, the touching
points become B’ on the rolling cone and B on the fixed
cone at time #,. Let 6 be the central angle of points 4’ and
B', and ¢ be that of A and B. Let r and r’ be the radii of
circles O and O, respectively. The arc length between A
and B is equal to that between A’ and B'. So ¢r = 6r' or
¢ sin o« = 0 sin 3, where o and $ are generating angles
of the fixed cone and the rolling cone, respectively. We
get

f  sina
¢ sinf’

The precession consists of two rotational components.
One is the rotation of the rolling cone about its own sym-
metrical axis. The other is the rotation of the rolling cone
about the fixed cone. From Fig. 4 it can be readily seen
that the relative position of the rolling cone and the fixed
cone is uniquely determined if the touching points of the
two cones are determined. Or alternatively, starting from
the previous position, the new position of the rolling cone
is determined if the two angles ¢ and 6 are determined.
So no matter how we order these two rotational compo-
nents, the final positions are identical as long as the angle
¢ and 0 are kept unchanged. We can first rotate the rolling
cone about its axis m and then rotate the rolling cone about
the axis of the fixed cone, [, or vice versa.

We hope to find the equivalent two-view rotation axis
of this continuous motion between two frames at time #,
and time f,, respectively, in Fig. 4. If we can find two
fixed points which stay in the same positions before and

(23)



WENG et al.: 3-D MOTION FROM NOISY IMAGE SEQUENCES

time 7,

Fig. 4. The relation between rotation angles 6 and ¢.

after the motion, then the two-view rotation axis must go
through these points. One trivial fixed point is the apex Q
of the cones. Another fixed point can be founded as fol-
lows. In Fig. 5 let the midpoint of arc AB touch the rolling
cone (at time (#; + #,)/2). Extend line OB so that it
intersects the plane containing Q, O', and B’ at a point
P,. Extend line OA so that it intersects the plane contain-
ing @, O', and A’ at a point P,. Draw a circle centered at
O and passing through P, and P,. Then the midpoint P of
arc PP, is a fixed point. This can be seen by noting that
the rolling cone can also reach its position at next time
instant ¢, in an alternative manner as follows. First, rotate
the rolling cone (slipping along the fixed cone) about / by
angle ¢ /2, thus rotating P to its new position at Py, and
axis m reaches the position shown in Fig. 5. Then rotate
the rolling cone (slipping on the fixed cone) about its own
axis m by angle 6. Point P now reaches position P,. Fi-
nally, rotate the rolling cone (slipping along the fixed
cone) about [ again by angle ¢ /2, taking the rolling cone
to the position at time instant #,. This takes the point P
back to its starting position. So the two-view rotation axis
n found by two-view motion analysis from two image
frames, goes through Q and P. Notice that the angular
frequency, at which the symmetrical axis of the rolling
cone rotates about the fixed cone is constant. From the
way of finding P, it is clear that the two-view rotation axis

(n2 — 1)(1 —cos §) + 1
R(n, 0) =

nn, (1 — cos 8) + n, sin 0 (2 —1)(1 —cos0) +1 nn,(1 — cos ) — n,sin 6
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Fig. 5. Finding fixed points for two-view rotation.

allel to the symmetrical axis of the fixed cone, define the
precession angular frequency ¢ to be the angular fre-
quency at which the symmetrical axis of rolling cone ro-
tates about the precession axis, define the ith body vector
m; to be a unit vector parallel to the symmetrical axis of
the rolling cone at time ¢;, and define the body rotation
angular frequency 0 to be the angular frequency at which
the rolling cone rotates about its symmetrical axis (see
Fig. 6).

From image sequences we find estimates of two-view
motion parameters. They are the ith two-view rotation axis
vector n;, a unit vector parallel to the two-view rotation
axis between time instants ¢#; _, and ¢;; the corresponding
ith two-view rotation angle y; and ith two-view translation
vector T;. Fig. 6 shows the precession parameters of con-
tinuous motion and discrete two-view motion.

Let R(n, 0) = [r;] denote the rotation matrix repre-
senting a rotation with axis unit vector n = (n,, n,, n,)
and rotation angle 0, i.e., [2];

nn,(1 — cos §) — n,sin6 nn,(1 — cos 6) + n,sin 0

(24)

nn(1 — cos §) — n,sin 6 nn,(1 — cos 0) + n,sin 6 (n2 = 1)(1 — cos 8) + 1

also rotates about / by a constant angle between consec-
utive frames. So we have the following theorem.

Theorem 3: For a body undergoing the precessional
motion of the LCAM model, the two-view rotation axis
between constant time intervals changes by rotating about
the precession vector by a constant angle.

Without loss of generality, we assume the time inter-
vals between consecutive image frames are of unit length.
We define the precession vector to be a unit vector [/ par-

Theorem 4: The continuous precession parameters and
discrete two-view motion parameters are related by

R(l, ¢) R(m;_y, 0) = R(n;, ¥;) (25)
R(mi’ 0) R(l’ d’) = R(ni’ \01) (26)

Proof: From time ¢; _;, to time #;, the body moves from
its previous position to a new position. From Fig. 6 the
new position of the rolling cone (or the body) can be
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Fig. 6. Parameters of continuous precession and discrete two-view mo-
tion.

reached in the following way: First, the rolling cone ro-
tates about its body vector m;_; by angle . Then, the
rolling cone rotates about the precession vector / by angle
¢. The two-view motion combines these two motions into
one, which is the rotation about the two-view rotation axis
vector n; by angle ;. We get (25). Similarly, if we change
the order of these two rotational components we get (26).

From Theorem 3, the two-view rotation axis rotates
about the precession vector. So the precession vector [ is
perpendicular to n; — n; _ and n;_; — n;_,. The sign of
[ is arbitrary. So / can be determined by

(ni = mi_y) X (mioy — niy) |
(ni = ni—y) X (mioy — ni—Z)h

The precession angular frequency ¢ can be determined
by finding the angle by which n; _ | rotates about [ to reach
n;. The projections of n; _ | and n; onto a plane that is per-
pendicularto laren;_ — (n;_,* [)land n; — (n; - 1),
respectively. The angle between these two projections
gives the absolute value of ¢:

1=" (27)

= eoet Wiz = (miy - D)) - (m = (n - 1))
|¢| - ”ni—l_(n,'_1’l)l“”ni—(ni‘l)lu

(28)

The sign of ¢ is the same as the sign
(nioy Xm) -1 (29)
After [ and ¢ are found by (27), (28), and (29), R(l,
¢) can be calculated by (24). R(m; _, 0) and R(m;, 0)
can be determined by (25) and (26):
R(m;_y, 0) = Rﬂl(l’ ¢) R(ni, ¥;) (30)
R(my, 6) = R(n;, ;) R7'(1, ¢). (31)

We can determine m;_;, m; and 6 by (30) and (31),
because n and § can be determined from R(n, 0) [2]:

ry trp =1
2

6 = +cos™! < (32)

t
723, '3 — 131, 1 — r12]

—"12]“.

_ [rs —

”[r32 — 13, T3 T 13 21

(33)

So, we get the following.

Theorem 5: The precession vector, precession angular
frequency, body axes, and body rotation angular fre-
quency which define the precession part of the LCAM
model can all be determined from three consecutive two-
view motions, or four consecutive image frames.

In addition to these basic parameters which uniquely
determine the motion of the model, some other parame-
ters can also be determined from these basic parameters.
For example, the generating angles o and 8 of the fixed
cone and the rolling cone, respectively, in Fig. 4 can also
be determined from I, ¢, m;, 8, and (23).

III. EsTIMATION, UNDERSTANDING, AND PREDICTION

The LCAM model is applied to subsequences of the
images successively. The parameters of the model are es-
timated for every (overlapping) subsequence. The esti-
mated model parameters can then be used to describe the
current local motion. The following questions can be an-
swered. Is there precession? If so, what are the precession
parameters? What are the current or previous body vec-
tors? What is the body rotation angular frequency? What
is the probable motion of the next several time intervals?
What are the probable locations of the feature points at
the next several time instants? If the moving object were
occluded in some of the previous image frames, what are
the motion and the locations of these feature points during
that time period?

The number of frames covered by a LCAM model can
be made adaptive to the current motion. The number can
be changed continuously to cover as many frames as pos-
sible so long as the constant angular momentum assump-
tion is approximately true during the time period to be
covered. The value of the number of frames chosen can
be based on the accuracy with which the model describes
the current set of consecutive frames. The residuals of
least-squares solutions and the variances of the model pa-
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rameter samples indicate the accuracy. The noise level
also affects the residuals and the variances of parameter
samples. However, the noise level is relatively constant
or can be measured. The resolution of the cameras and
the viewing angle covering the object generally deter-
mined the noise level. The noise can be smoothed by de-
termining the best time intervals and the number of frames
covered by the model, according to the current motion.
Because the LCAM model is relatively general, the time
interval a LCAM model can cover is expected to be rel-
atively long in most cases.

The following part deals with the estimation of model
parameters using overdetermination. After finding two-
view rotation axis vectors ny, n,, * * * , ny, precession vec-
tor [ should be orthogonal to n, — ny, n3 — ny, ** * , nf
— ns_;. However, because of noise, this may not be true.
So we find [ such that the sum of squares of the projec-

tions of [ onto n, — ny, hy — ny, *** , np — np_y is the
smallest. Let
(nz - nl)t
(n3 — ny)'
g B (34)
("f - nf—l)t_
We are to find unit vector [, such that
|Al]| = min. (35)
Or equivalently,
I'A'Al = min. (36)

The solution [/ of (36) is the unit eigenvector corre-
sponding to the smallest eigenvalue of A'A. (See for ex-
ample, [3].)

Let the precession angular frequency determined from
(28) and (29) be ¢,. The precession angular frequency of
the model ¢ can be estimated by the mean

Ly
¢ = f-1i= o

Let the body rotation angular frequency determined by
(31) be 6;. Body rotation angular frequency of the model
can be estimated by the mean

(37)

M~

9 = 9. (38)

-~

1

1]

i
Body vectors are estimated by averaging two consecu-
tive two-view motion using (30) and (31), respectively.

Two-view angular frequency can also be estimated by
mean

1 f
1 =}i§l vi.

According to the motion mode, the f + 1st two-view
rotation axis vector ny, is R(l, (f — i + 1)¢)n; for any

(39)

379

1 < i < f. In the presence of noise, we use the weighted
sum over all previous two-view motions to predict the next
two-view rotation axis vector:

1 f
ey = 7 'Z:l
>

i=1

(f—i+ 1!

“R(L (f— i+ 1)¢)n,. (40)

From (9) the next position of point X; in frame Fy is
predicted by

Xpy1 = R(nf+l> \[/)(Xf - Qf) + O (41)

where Qrand @y, , are determined by (7). The prediction
can be made for more than p = 2 frames by using the
following equations successively.

nf+p = R(l’ ¢)nf+p-l (42)
Xeip = R(npypy V) (Xpipo1 = Qpep—1) + Qpsp. (43)

The variances of samples in the summations of (37),
(38), and (39) as well as the residuals in (35) and (14)
indicate the accuracy of the model for the current set of
frames. They also depend on the noise level.

If the object was occluded in parts of image sequences,
the positions and orientations of the object as well as the
locations of the feature points on the object can be re-
covered by an interpolation similar to the prediction pro-
cedure discussed above. For the motion of the rotation
center, occlusion just means that some rows in the coef-
ficient equations are missing. The solution can still be
found if we have enough rows. For the precession part of
the motion, the interpolation can be made in a way similar
to prediction or extrapolation. When making interpolation
we use both the ‘‘history’’ and the ‘‘future’’ of the miss-
ing part. For prediction, only the ‘‘history’’ is available.
Furthermore, we can also extrapolate backwards to find
“‘history’’, i.e., to recall what has not been seen before.
The essential assumption is that the motion is smooth.

IV. MoNocULAR VISION

For the monocular case, 3-D positions can be predicted
only up to a global scale factor. However the image co-
ordinates of the points can be predicted without knowin
the scale factor. ‘

Let us assume a point P is located at P; = [x;, y;, z;]'
attime t;, i = 0, 1, 2, - - - . Without loss of generality,
we assume the focal length is unity. The image coordi-

nates of P; are:
(xi/2is yi/2)- (44)

Let the depth (z component) of Py, be an unknown con-
stant ¢, i.e., zo = c. Define a c-scaled version of P;:

= 1

B, =-P. (45)
C

Once P; is determined, we have determined the 3-D co-
ordinates of P; up to a global scale factor c. Applying the
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motion prediction algorithm using P; as 3-D coordinates
instead of P; (8 or more c-scaled versions of points are
needed to estimate the motion parameters [24], [31]), we
can predict the 3-D position of the point P up to a global
scale factor ¢. The image coordinates are still unambig-
uously predicted since the global scale factor ¢ is canceled
out in image coordinates [see (44)]. In fact it is true that
we can determine P, i = 1,2, - - + as we show below.

Let the two-view motion from frame F; _| to F; be rep-
resented by rotation matrix R; and translation vector T;;
we have

P, =RP,_, +T. (46)
Assuming || T; || # 0, we get
P Pi_y T;
i =R b (47)
17| Iz 7|

Using eight or more point correspondences between F; _
and F;, we determine R;, the translation direction T, =
T,/ |l T;|| and the relative 3-D coordinates of the points P;,
and P;, satisfying

P, = HITJ—” Py = |1|pT_|1| (48)
(47) becomes
P, =RP, + T, (49)
Using (45) and (48) and letting i = 1, we have
cPy = Py = |T\| Py (50)
or,
7 - e dk 51

From (44) and (45) we know Py = [xo/20, Yo /20, 11" So
P, can be determined by the image coordinates of P,. T,
then is determined up to a scale factor ¢ in (51). From
(48) and (51) we have

[P0

P1= “Tl”Plz:CHP”” P12‘ (52)
Thus using (45), we get
pl = LPO H Py, (53)
(2gh

Similarly, we can determine P,, P;, - - - , successively.

One point should be mentioned here. In the binocular
case the set of corresponding points may be different from
different consecutive image frame pairs. This means that
some points used in point correspondences in some im-
ages are allowed to be invisible in other images. The same
is still true for the monocular case. In the above discus-
sion we implicitly assume the point P is visible through
all the image frames. However, it is not necessary.

For example, assume P is not visible in frame F, and
another point Q is visible in Fy, F;, F,. Q can be used to
convey the constant ¢ further when P is invisible. Letting
Q replace P in (46) and using (51) we have

. Pl .
O — R Q= H LT =c III|P:)1‘|l‘ T,. (54)
Letting Q; = [u;, v;, w;1', i = 0, 1, 2, and using (54), we
have
ul/Wl Uy / wo HF ”
Wi UI/W] "RIWO UO/WO =C”P || ’f‘ (55)
1
1 1

In (54), the two column vectors to the left side are deter-
mined by the image coordinates of Q, and Q,, respec-
tively. The unknowns in (55) are numbers w,, w,, and c.
Equation (55) is a set of three linear equations for these
unknowns. The solutions of (55), with w, and wy as un-
knowns and ¢ as a parameter, are proportional to the pa-
rameter ¢, i.e., we can find w, such that w, = ow,. Then,
letting Q) = W, [u, /w, yl/wl, 17, we have Q, = CQI
As for determining || 73 ||, O, here can take the role of P,
using the following equation similar to (51):

104 ]
e

where || 0y, || is determined in two-view motion analysis
[see (49)].

In summary, the c-scaled version of the translation vec-
tor can be determined from the c-scaled version of the 3-
D position vector of a point at the time before two-view
motion; the c-scaled version of the 3-D position vector of
every 3-D point (used in the point correspondences) be-
fore and after the two-view motion can be determined
from the c-scaled version of the translation vector. So,
we choose the depth of any point at time #, as the un-
known scalar c. All the 3-D points and the translation vec-
tors are then determined up to that single constant c. It is
easy to see from the above discussion that as long as every
three consecutive frames have at least one common visi-
ble point, all the 3-D coordinates of the points used to
estimate the motion parameters as well as the translation
vectors can be determined up to a global scale factor c.

||| = ¢ (56)

V. SIMULATIONS

Two simulation experiments to test the analysis were
performed on a VAX 11/780. In the first case the image
data were computer generated. In the second case, binoc-
ular image sequences of a model airplane undergoing a
smooth motion were recorded using video cameras.

In the first experiment, a sequence of 3-D coordinates
of points on a moving cube were generated by a program.
The motion of the rotation center is characterized by the
coefficient vectors a; in (7). By Theorem 3, the rotation
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ERRORS OF PRECESSION PARAMETERS

NUMBER OF TWO-VIEW MOTIONS COVERED

Fig. 7. Errors of [ (precession vector) and ¢ (precession angular fre-
quency) versus the number of two-view motions covered. Number of
point correspondences: 3. Frame predicted: next. Image resolution: 256

by 256.

of the body is about the two-view rotation axis n by angle
0 between consecutive frames. The two-view rotation axis
rotates about a fixed precession vector [ by angle ¢. The
object is assumed to be a transparent cube of side length
10 cm. Simulated cameras are 100 cm away from the ob-
ject. The viewing lines from the two cameras to the object
form an angle of 45°. The feature points used for point
correspondences are the vertices of the cube. As the ob-
ject is undergoing motion, these points generate a se-
quence of 3-D coordinates. These 3-D coordinates are
digitized by simulated cameras of resolution from 64 by
64 up to 512 by 512. The cube covered about one fourth
of the area of the whole image. So, the actual image res-
olution is reduced by a factor of 2, i.e., if the image res-
olution is denoted as 64 by 64 in the following figures,
actually about 32 by 32 resolution is used.

The errors in the image coordinates of the feature points
arise from several sources such as digitization noise, cor-
ner detector errors and lens distortion errors, etc. In a well
calibrated data acquisition system, lens distortion is well
compensated and so could be ignored. The corner detec-
tor errors can be approximated as digitization noise. For
example, an error range of plus or minus one pixel in the
corner detector could be approximated by the reducing the
image resolution by a factor of two. The resolution of 64
by 64 approximates the case of a 512 by 512 image with
the additional corner detector error of range +4 pixels.
For the simulations, the object covers only about one
fourth of the images. So, if the object covered the whole
image, the errors shown in the simulation data should cor-
respond to images at half the resolutions.

So in the simulation the noise is represented by the
choice of image resolution, i.e., noise is due to the spatial
quantization of the image plane. An increase in noise can
be represented by a decrease in image resolution. Because
of digitization errors, the set of points ceases to satisfy
the rigid body constraint. Therefore, to find the best two-
view motion parameters, a least-squares solution is ob-
tained [21], [11].

In the experiments presented, the following motion pa-
rameters are used. Precession vector: [ = [0, 0, 17];
precession angular frequency: ¢ = 0.4; two-view rotation
axis of first two-view motion: n, = (1/+v17) [1, 0, 4]".
Coefficient vectors: a; = [—2, =3, =171, a, = [0.5,
0.5, 0.251, a; = [0.005, 0.005, 0.0025])". The results
given are the mean values from 20 trials, each of which
randomly chooses the original orientation of the cube.

Fig. 7 describes the estimation errors of / and ¢. The
errors of [ are defined as the length of the difference vector
of the estimated and the real unit vectors. The errors ap-
proach zero very fast as the number of two-view motions
increases. Based on the estimated model parameters, the
predictions of the 3-D coordinates of each point at the
next several time instants are made. The predicted and the
actual digitized positions are compared. Their distances
are considered as the prediction errors. The relative errors
are defined as the prediction errors divided by the length
of the diagonal of the cube. The results of the predicting
more frames are presented in Fig. 8. Fig. 9 shows the
mean relative prediction errors at time ¢5 versus image res-
olution for diffferent numbers of point correspondences.
Fig. 10 shows the mean relative prediction errors versus
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Frame predicted: next frame. Number of two-view motions covered: 5.
Degree of polynomial k¥ — 1 in (7): 2.

image resolution for different number of two-view mo-
tions covered. Fig. 11 gives the mean relative prediction
errors versus the number of two-view motions covered for
different numbers of point correspondences.

The data for the second experiments were taken from a
model airplane. The setup of the real cameras is the same
as that in the simulation experiment discussed above.

Without translation, the model airplane rotates about a
vertical line by about 15° per frame. Simultaneously it
also rotates about its head-tail central line by about 8° per
frame as shown in Fig. 12. The feature points used for
point correspondences are at the tips of the wings, stabi-
lizers and rudder of the airplane. Since not all of these
five tips are visible in all images, four currently visible
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dences (npts). Frame predicted: next frame. Image resolution: 128 by
128. Degree of polynomial k — 1 in (7): 3.

tips are used as feature point sets through the image se-
quence. The number of point correspondences is then 4.
The feature points and their correspondences are deter-
mined manually based on the gray tone of the digitized
images. The corner detector error here is then the error of
manual detection based on the gray tone of the pixels. The

camera resolution is 512 by 512. Starting from the fourth
frame, the prediction is made for the 3-D coordinates of
the feature points at the next time instant. The relative
maximum prediction errors are shown in Fig. 12. The rel-
ative errors are defined by the error divided by the maxi-
mum distance between feature points. Compared with the
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Fig. 12. Image frame sequence of a model airplane. Left column: left view;
right column: right view. (From the fifth frame, the maximum relative
prediction errors are shown to the left of the corresponding frame pairs.)

synthetic data case, the additional error source is lens dis-
tortion. The relative errors in this experiment are close to
the synthetic data case.

VI. SUMMARY

We have described an approach to modeling and esti-
mating general 3-D motion of an object from image se-
quences. The dynamics of the moving object is modeled
by two components. First, the rotation of the object is
assumed to be a precession which can be modeled by such
motion: the rotation about a fixed-on-body axis that ro-
tates about a spatially fixed axis. One of the conditions of
object dynamics leading to such motion is that the object
under motion is symmetric and its angular momentum is
constant. Second, the object is assumed to undergo a
smooth translational motion. In particular, we assume that
the location of the rotation center of the object can be
represented by a vector polynomial in time. The motion
of any points on the object can be expressed by the su-
perposition of these two components. The problem of
modeling motion then amounts to estimating the param-
eters of precession with respect to the rotation center, and
the parameters of translation of the rotation center. This
estimation can be performed from either point correspon-
dences or optical flow over a sequence of image frames.
We discuss the former. Using the technique of two-view
motion analysis, estimates of two-view rotational and
translational parameters can be derived. To reduce the

sensitivity to noise, least-squares estimates are obtained
from multiple features in two-view motion analysis. Based
on the parameters of two-view motion, the parameters of
LCAM model are estimated so as to understand the local
motion and predict the future motion. Again, the least-
squares method is used for model parameter estimation
from multiple image frames to combat noise.

We have presented a linear algorithm that implements
our approach. The experiments have been performed on
image sequences obtained from simulated as well as ac-
tual moving objects. To test the accuracy of the model,
the predictions of the locations of object points were ob-
tained and the errors between the predicted and actual lo-
cations were measured. The errors of estimated model pa-
rameters have been presented for different numbers of
image frames. The prediction errors have been shown for
different image resolutions, different numbers of object
points, different numbers of image frames covered, and
different numbers of frames predicted.

Recently, Broida and Chellappa [5], [6] have proposed
a framework to deal with more general 3-D motion than
their early work [4]. One of the major differences between
our work and their work is that our model is based on
dynamics but those in [4]-[6] are not. It is assumed in
[4], [6] that the complete geometrical structure of the ob-
ject is known. For the cases where angular velocity varies
with time (this is the case in our formulations and exper-
iments) Broida and Chellappa [6] proposed numerical in-
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tegration but neither specific algorithms nor experiments
were given. The approach presented in our paper assumes
a general precessional motion. The relatively weak as-
sumption of a symmetrical object is a sufficient (but not
necessary) condition for such a precessional motion. The
symmetry assumption can be dropped as long as the mo-
tion can be modeled in the short term by the precessional
motion discussed.

APPENDIX 1

Lemma 1: Define
k—l+1

O [k
- 1§0(_1) <l> m=1_jI+2 R
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Differentiating both sides and then multiplying by x again,
we get

(1 +x) 72 (k(k -

k
k .
= Z '2<.>x1.
j=11 J

Generally, doing this m times, 1 < m < k, gives

1) x> + k(1 + x) x)

(1+x) " "[k(k = 1) -+ (k= m+1)x"

+ (1 +x)P(x)] = Z] < >xf (A.4)

LetIl),_; R, = 1, if i > j. Then where P(x) is an (m — 1)th degree polynomial. This can
A be readily proved by induction on m. Let x = —1. For 1
SiR, — i = S}
P k= Ok+1
Proof:
L7k Fo k
e st 30 () T k- B0 Ik
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Using the identity (¥) + (,%;) = (5'1), (A.1) becomes
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Lemma 2: Letk = 2,1 <m < k — 1. Then

o)
R

Proof: From the binomial equation

- éo C ) v

By differentiating both sides, then multiplying by x, we
have

(A2)

(A3)

(1+ x)*

k
(1 -l~x)k—1 kx = §1J<f> xJ

<k — 1, (A.4) gives

— 0= éj’"@ (-1) = é. (‘1)—jjm<§>'

Multiplying both sides by (—1)" yields (A.2). Form =
k, (A.4) gives

a1 = 3 ()

Multiplying both sides by (—1 y* yields (A.3). [
‘Theorem 1: Let f = k in coefficient equations. Define
S’ to be a 3 by 3 matrix:
k—j k-1
: k
=2 (-1)
si= 2 0'(})

II R,

m=j+1

j=0,1,2,---,k
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J
where H R, = I, if i > j. Define number u:

uj = 2 (—l)i_mmj'l<l>
m=1 m
j=i+1,i+2, -+ k.
Then
k
s

I

Sia,
1 i k
a; =__'<Z S;"Tm+5?a1 - Z uuaj>
11 \m=1 j=i+2
i=k—-1,k—-2,---,2,1

Proof: We first prove

k
S%a, = —El SiT,. (A.5)

Let c(t) be the position vector of the rotation center at
time ¢, ¢; be the position vector of the rotation center at
time t;. For conciseness, we define T, = ¢,. (Note ¢, =
a;.) We have

Cy = TO
C = R1C0 + Tl = RITO + Tl
C = RzCl + T2 = RleTo + R2T1 + T2

We get

=2 Il R, T, 0<is<k

=0 m=1I1+1

(A.6)

The (k — 1)th degree vector polynomial that goes through

¢, i=1,2,"°°, ¢, is
II (¢t—-1¢
k 1=sj<k ( j)
J#i
c(t) = 2
(?) =1 I (4, — )
1<j=<k
FEX!
Or, using (A.6)
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k i 1§j§k ( J) i
=2 % 2= I R,T,. (A7
<(®) i§I=0 IT (4= t)m=ter ™ (A7)
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Since the time intervals are the same constant ¢, we have
t; —t; =c(i —j). Letting t = £, in (A.7), we get

k i k—1 . i
CO= Z Z k(_l_l) k'/l H
i=11=0(—1)" (i — 1)k — i)l m=t+1
k i i k i
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Since Ty = ¢y = a;, (A.8) gives

a, = i Z (—1)“"('?)

i=11=1 1

I R,T,

m=1+1

k ) k i
+ ;(—1)'_1<i> I R,a.

Moving the term of a, to the left yields
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i=11=1

(A.9)

sum the same terms, we get

(A.10)

Multiplying both sides by (—1)* and letting j = k — i,
we have

(B-r()n

(A.11)

Using the definition of SL(A.11) gives (A.S).

We now prove the rest of the equations. Let2 < i <
k — 1. Consider the first i equations in (13). Moving the
terms of ;. 4, * * * , a; to the right side, we get a set of i
equations similar to (13) with the terms on the right side
changed. Using the results in (A.5) for this set of equa-
tions to solving a;, we have
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So, (A.12) yields

i k
S?al = — Z S:nTm + Z uijaj
m=1 j=i+1
or,
i k
Ui+ 1Ydi+1 = 2 Si'T, + S?al - 2 u;a;.
m=1 j=i+2
By Lemma 2, u;; ) = i! So we have
1 i . . k
a; —;—!<m§1 Si Tm +S,~a1 —j=§2 uijaj .
(A.13)
Lettingi =k — 1,k —2, - ,2,1, we get the equations
of Theorem 1 presented in Section II-C. O
APPENDIX 2

Theorem 2: In the case of rotation without precession,
letting w be any vector parallel to the rotation axes, then,

Siw =0 (A.15)
and for any vector a
(S%a) - w=0. (A.16)

Proof: We prove (A.16). The proof of (A.15) is
very similar. We are to prove another equation at the same
time: under the same condition, for any vector b the fol-
lowing equation holds (see Lemma 1) in Appendix 1)

(S¢p) - w = 0. (A.17)

We use induction on k.
Letk =1.(S%) - w=((I~-R))a) w=(a~— Ra)
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w. R, is rotation matrix with rotation axis w. So the
difference of the original vector a and the rotated vector
R,a is orthogonal to the rotation axis, i.e., (a — Rja) -
w = 0. Similarly ($%) - w = 0.

Assume (Sga) - w = 0and (f?b) -w=0fork < n.
Letk =n + 1. From Lemma 1, S, , = §2R1 - 8% we
have

(Sn+1a) * w = (S)Ra — Sha)
“w=(S%Ra)-w—(8%) - w=0=0=0
Similarly (A.17) holds for k = n + 1. O

APPENDIX 3

Let R, and R, be the rotation matrices with rotation axes
n, and n,, rotation angle 6, and 6,, respectively. 4 = R, R,
— 2R, + Iis singular if and only if n; and n, are parallel
Or01 = 0, 0r02 = 0.

Proof: Without loss of generality, let r, and n, be
unit vectors. Since the points on the rotation axis do not
change the positions after motion, we have R;n; = n;, i
=1, 2.

If 6, = 0, then R, = I and we have An, = Ryn, — 2n,
+ n, = 0. So A is singular if §; = 0. Similarly if §, = 0,
A is singular. If n; and n, are parallel, we have R,n; =
n; = Rin;. Thus Any = Ryn; — 2Rn; + n; = 0, and so
A is singular.

Conversely, assume A4 is singular. There is a unit vector
x such that Ax = (Ry,R, — 2R, + I)x = 0. Or,

RRx = 2Rx — x (A.18)

There exists a unit vector £ which is perpendicular to x
such that Rx can be represented by R\ x = ax + bf, where
a and b are real numbers. Since Rx is a unit vector, a
+ b* = 1. From (A.18) we get

L= 2] = |RRux] = [ 2R0x — 2]
= [(2a — 1) x + 2b% 2
= (2a - 1)’ + (2b)°
=4a’ —4a + 1 +4b> =5 — 4a

Thusa = 1. So b = 0. We have

R].x =X (A.19)
Using (A.18) and (A.19) yields
sz = R2R1x = 2R1x - X = 2x - X = X. (A20)

Unless 8, = 0 or 8, = 0, (A.19) and (A.20) imply that x
is parallel to the rotation axes of R; and R,. So, n; and n,
are parallel unless 8, = O or §, = 0. O

ACKNOWLEDGMENT

The authors would like to thank Y. S. Shim for the dis-
cussions on shortening the proofs presented in Appendix
1 and Appendix 3.



388

REFERENCES

[1] G. Adiv, ‘‘Determining three-dimensional motion and structure from
optical flow generated by several moving objects,’’ IEEE Trans. Pat-
tern Anal. Machine Intell., vol. PAMI-7, pp. 348-401, 1985.

[2] O. Bottema and B. Roth, Theoretical Kinematics. New York: North-
Holland, 1979.

[3] W. L. Brogan, Modern Control Theory.
Prentice-Hall, 1982.

[4] T.J. Broida and R. Chellappa, ‘‘Estimation of object motion param-
eters from noisy images,”’ IEEE Trans. Pattern Anal. Machine In-
tell., vol. PAMI-8, pp. 90-99, 1986.

[5] —, “‘Kinematics and structure of a rigid object from a sequence of
noisy images,”’ in Proc. IEEE Workshop on Motion: Representation
and Analysis, Charleston, SC, May 1986, pp. 95-100.

[6] —, ‘‘Kinematics and structure of a rigid object from a sequence of
noisy images: A batch approach,’’ in Proc. IEEE Conf. Computer
Vision and Pattern Recognition, Miami Beach, FL, June 1986, pp.
176-182.

[7] H. H. Chen and T. S. Huang, ‘‘Maximal matching of two three-di-
mensional point sets,”’ in Proc. 8th Int. Conf. Pattern Recognition,
Paris, France, Oct. 1986.

[8] B. A. Conway, J. E. Tulinglowski, and P. D. Webber, ‘‘Dynamics
of remote orbital capture,’’ in Proc. AAS/AIAA Astrodynamics Spe-
cialist Conf., 1983.

[9] L. Dreschler and H.-H. Nagel, ‘‘Volumetric model and 3-D trajec-
tory of a moving car derived from monocular TV frame sequences of
a street scene,”” Comput. Graphics Image Processing, vol. 20, pp.
199-228, 1982.

[10] J. Q. Fang and T. S. Huang, ‘‘Some experiments on estimating the
3-D motion parameters of a rigid body from two consecutive image
frames,’’ IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-6,
pp. 547-554, 1984.

[11] O. D. Faugeras and M. Hebert,”” A 3-D recognition and positioning
algorithm using geometrical matching between primitive surfaces,”’
in Proc. 8th Int. Joint Conf. Artificial Intell., Karlsruhe, West Ger-
many, Aug. 1983, pp. 996-1002.

[12] G. R. Fowles, Advanced Mechanics, 3rd ed. New York: Holt, Rine-
hart and Winston, 1977.

[13] W. E. Grimson, ‘‘Computational experiments with a feature based
stereo algorithm,”’ IEEE Trans. Pattern Anal. Machine Intell., vol.
PAMI-7, pp. 17-34, 1985.

[14] W. Hoff and N. Ahuja, ‘‘Depth from stereo,’’ in Proc. 4th Scandi-
navian Conf. Image Analysis, Trondheim, Norway, June 1985.

[15] T. S. Huang and S. D. Blostein, ‘‘Robust algorithm for motion esti-
mation based on two sequential stereo image pairs,’’ in Proc. IEEE
Conf. Computer Vision and Pattern Recognition, San Francisco, CA,
1985, pp. 518-523.

[16] M. H. Kaplan and A. A. Nadkarni, ‘‘Control and stability problems
of remote orbital capture,’’ Mechanism and Machine Theory, vol. 12,
pp. 57-64, 1977.

[17] C. L. Lawson and R. J. Hanson, Solving Least Squares Problems.
Englewood Cliffs, NJ: Prentice-Hall, 1974.

[18] Z. Lin, H. Lee, and T. S. Huang, ‘‘Finding 3-D point correspon-
dences in motion estimation,’’ in Proc. 8th Int. Conf. Pattern Rec-
ognition, Paris, France, Oct. 1986.

[19] H. C. Longuet-Higgins, ‘‘A computer program for reconstructing a
scene from two projections,’’ Nature, vol. 293, pp. 133-135, Sept.
1981.

[20] W. D. Macmillan, Dynamics of Rigid Bodies.
Hill, 1936.

[21] M. D. Shuster, ‘‘Approximate algorithms for fast optimal attitude
computation,’’ in Proc. AIAA Guidance and Control Specialist Conf. ,
Palo Alto, CA, Aug. 1978, pp. 88-95.

[22] R. Y. Tsai and T. S. Huang, ‘‘Estimating 3-D motion parameters of
a rigid planar patch,’’ IEEE Trans. Acoust., Speech, Signal Process-
ing, vol. ASSP-29, pp. 1147-1152, 1981.

[23] R. Y. Tsai, T. S. Huang, and W. L. Zhu, ‘‘Estimating 3-D motion
parameters of a rigid planar patch, II: Singular value decomposition.”’
IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-30, pp.
525-534, 1982.

[24] R. Y. Tsai and T. S. Huang, ‘‘Uniqueness and estimation of 3-D
motion parameters of rigid bodies with curved surfaces,’’ IEEE Trans.
Pattern Anal. Machine Intell., vol. PAMI-6, pp. 13-27, 1984.

[25] S. Ullman, The Interpretation of Visual Motion. Cambridge, MA:
M.IL.T. Press, 1979.

Englewood Cliffs, NIJ:

New York: McGraw-

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-9, NO. 3, MAY 1987

[26] A. M. Waxman and J. H. Duncan, ‘‘Binocular image flows,’” in Proc.
Image Understanding Workshop, Miami, FL, 1985, pp. 340-347.

[27] A. M. Waxman and S. Ullman, ‘‘Surface structure and 3-D motion
from image flow: A kinematic analysis,”” Center for Automation Re-
search, Univ. Maryland, College Park, Tech. Rep. 24.

[28] Y. Yasumoto and G. Medioni, ‘‘Experiments in estimation of 3-D
motion parameters from a sequence of image frames,’’ in Proc. IEEE
Conf. Computer Vision and Pattern Recognition, San Francisco, CA,
1985, pp. 89-94.

[29] B. L. Yen and T. S. Huang, ‘‘Determining 3-D motion and structure
of a rigid body using straight line correspondences,’’ in Image Se-
quence Processing and Dynamic Scene Analysis. Heidelberg, Ger-
many: Springer-Verlag, 1983.

[30] X. Zhuang and R. M. Haralick, ‘‘Rigid body motion and optic flow
image,”’ in Proc. IEEE Ist Conf. Artificial Intell. Application, 1984,
pp. 366-375.

[31] X. Zhuang, T. S. Huang, and R. M. Haralick, ‘‘Two-view motion
analysis: A unified algorithm,’’ J. Opt. Soc. Amer., A, vol. 3, no. 9,
pp. 1492-1500, Sept. 1986.

Juyang Weng (S’85) was born in Shanghai,
China, on April 15, 1957. He received the B.S.
degree in computer science from Fudan Univer-
sity, Shanghai, China, in 1982, and M.S. degree
in computer science from the University of Illi-
nois, Urbana-Champaign, in 1985.

Currently he is a research assistant at the Co-
ordinated Science Laboratory, University of Illi-
nois, Urbana-Champaign, and is working toward
the Ph.D. degree in computer science. His current
research interests are in computer vision, image
sequence analysis, image processing, solid modeling and representation,
and artificial intelligence.

Mr. Weng is a member of Phi Kappa Phi.

Thomas S. Huang (S’61-M’63-SM’76-F’79) re-
ceived the B.S. degree in electrical engineering
from National Taiwan University, Taipei, Tai-
wan, China, and the M.S. and Sc.D. degrees in
electrical engineering from the Massachusetts In-
stitute of Technology, Cambridge.

He was on the Faculty of the Department of
Electrical Engineering at M.I.T. from 1963 to
1973, and on the Faculty of the School of Elec-
trical Engineering and Director of its Laboratory
for Information and Signal Processing at Purdue
University from 1973 to 1980. In 1980, he joined the University of Illinois
at Urbana-Champaign, where he is now Professor of Electrical and Com-
puter Engineering and Research Professor at the Coordinated Science Lab-
oratory. During his sabattical leaves, he has worked at M.I.T. Lincoln
Laboratory, IBM Thomas J. Watson Research Center, and the Rheinishes
Landes Museum in Bonn, West Germany, and held visiting Professor po-
sitions at the Swiss Institutes of Technology in Ziirich and Lausanne, the
University of Hannover in West Germany, and INRS-Telecommunications
of the University of Quebec in Montreal, Canada. He has served as a con-
sultant to numerous industrial firms and government agencies both in the
U.S. and abroad. His professional interests lie in the broad area of infor-
mation technology, especially the transmission and processing of multidi-
mensional signals. He has published 10 books, and over 200 papers on
network theory, digital filtering, image processing, and computer vision.

Dr. Huang is a Fellow of the Optical Society of America. He received
a Guggenheim Fellowship (1971-1972), an A. V. Humboldt Foundation
Senior U.S. Scientist Award (1976-1977), and a Fellowship from the Ja-
pan Society for the Promotion of Science (1986). He is an Editor of the
international journal Computer Vision, Graphics, and Image Processing,
Editor of the Springer Series in Information Sciences, published by Sprin-
ger-Verlag, and Editor of the Research Annual Series on Advances in Com-
puter Vision and Image Processing published by the JAI Press.



WENG et al.: 3-D MOTION FROM NOISY IMAGE SEQUENCES

Narendra Ahuja (S’79-M’79-SM’85) received
the B.E. degree with honors in electronics engi-
neering from the Birla Institute of Technology and
Science, Pilani, India, in 1972, the M.E. degree
with distinction in electrical communication en-
gineering from the Indian Institute of Science,
Bangalore, India, in 1974, and the Ph.D. degree
in computer science from the University of Mary-
land, College Park, in 1979.

From 1974 to 1975 he was Scientific Officer in
the Department of Electronics, Government of In-
dia, New Delhi. From 1975 to 1979 he was at the Computer Vision Lab-
oratory, University of Maryland, College Park, as a Graduate Research

389

Assistant (1975-1978), as a Faculty Research Assistant (1978-1979), and
as a Research Associate (1979). In 1979 he joined the University of Illi-
nois, Urbana-Champaign, where he is currently an Associate Professor in
the Coordinated Science Laboratory and an Associate Professor in the De-
partment of Electrical and Computer Engineering. His research interests
are in computer vision, artificial intelligence, image processing, architec-
tures for vision, and parallel algorithms.

Dr. Ahuja has received the University Scholar Award (1985) and the
Presidential Young Investigator Award (1984). He is listed in Who's Who
in Technology Today and Who’s Who in the Midwest, and is a member of
the Association for Computing Machinery and the American Association
for Artificial Intelligence.




