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A Fast Scheme for Image Size Change in the
Compressed Domain
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Abstract—Given a video frame in terms of its8 x 8 block-DCT  over the high-priority channel and an enhancement layer over
coefficients, we wish to obtain a downsized or upsized version of the low-priority channel. A solution to transmitting video over
this frame also in terms of 8 x 8 block-DCT coefficients. The 4 gwidth-constrained channels is to transmit a low-resolu-
DCT being a linear unitary transform is distributive over matrix . . . . . .
multiplication. This fact has been used for downsampling video tion version (_)f the_ video. Spf"‘t_@l sgalab|l|ty is also used in
frames in the DCT domain. However, this involves matrix multi- HDTV for maintaining compatibility with standards other than
plication with the DCT of the downsampling matrix. This multi- MPEG-2 (e.g., MPEG-1) and to allow for varied bitrate and
plication can be costly enough to trade off any gains obtained by computational capabilities of different users. Changing the size
qf)hera?ng ddlrectly In tl.he corr&prtlessed domall_n. We tﬁ)]ropose an algg- of a video frame would also be required to convert between
rnm 1or aownsampiing and also upsampling in the compresse; . .. .
domain which is computationally much faster, produces visually various _d'g'ta_l v sFandqrds like standard TV and HDTV, and
sharper images, and gives significant improvements in PSNR (typ- IS0 to fit the incoming video frame onto the user’s TV screen.
ically 4-dB better compared to bilinear interpolation). Specifically Since the original video data is typically stored in compressed
the downsampling method requires 1.25 multiplications and 1.25 format (use of$ x & block-DCT along with motion compen-
additions per pixel of original image compared to 4.00 multipli- -~ 5446 for compression is most widespread) and the scaled (in

cations and 4.75 additions required by the method of Changet . L . . .
al. Moreover, the downsampling and upsampling schemes com- size) version is also typically required in (the same) compressed

bined together preserve all the low-frequency DCT coefficients of format, we see that there is a need for changing the size of
the original image. This implies tremendous savings for coding the a video frame in the compressed domain. The straightforward

difference between the original frame (unsampled image) and its approach of decompressing, carrying out the downsampling in

prediction (the upsampled image). This is desirable for many ap- ; ; ; : ;
plications based on scalable encoding of video. The method pre-.Spatlal domain and then recompressing, is computationally too

sented can also be used with transforms other than DCT. such as INtensive for real-time operation on currently available worksta-
Hadamard or Fourier. tions. Hence, recently there has been much work done [1]-[5]

in carrying out downsampling, as well as other operations, on
video sequences directly in the compressed domain without re-
quiring decompression and recompression.

Letcy, ¢, c3, ¢4 denote four adjacemdtx 8 blocks in the spa-
. INTRODUCTION tial domain as shown in Fig. 1(a). Consider replacing eaxl2

UE to the advances in digital signal processing and digitBlock (of each of thes x 8 blocks) by its average to get the
D networks, more and more video data is available todggg)wnsampleﬂxés blockcshown in Fig. 1. This downsampling
in digital format. For economy of storage and transmissioﬁPeration can also be represented in matrix notation as follows
digital video is typically stored in compressed format. Howeve[rd,']: [1], [2]:
for many applications, one needs to produce a compressed 4
bitstream containing the video at a different resolution than the _

o . ) . c= Z hicigi 1)

original bitstream. For example, for browsing a remote video ~
database, it would be more economical to send low-resolution
versions of the video clips to the user and then, if there vghere the downsampling filters;, g; are given by
interest, progressively enhance the resolution. The same is true

Index Terms—Compressed domain processing, DCT, downsam-
pling, image size change, superresolution, upsampling.

about browsing a remote image database. A typical video-con- . . Wixs

ferencing application requires compositing video bitstreams at hy =91 =93=h1 = |:04><8:|

different resolutions into one bitstream containing the video

frames from all bitstreams but possibly at lower or higher hy=gt =g =hs= {:’éiﬂ (2)

resolutions. Similarly, for transmitting video over dual-priority

networks, we can transmit a low-resolution version of the video ) ] o )
where uyxs is defined in Fig. 1(b) andbyxs is a4 x 8

. . . . , zero matrix. Now consider implementing the same operation
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[4], [5]. Let T denote thes x 8 DCT operator matrix. Since

Tt =TT = I, we have cl c2
8x8 8x8

4 (=
DCT(c) = TeT* = > DCT(h;) DCT(c;) DCT(g:). (3) 8x8
i=1 c3 cd

8x8 8x8

DCT(h;) andDCT(g;) for i = 1 to 4 can be precomputed.

Hence, giverDCT(¢;) for ¢ = 1 to 4, DCT(¢) can be com-

puted as matrix multiplication. However, even though the filter

matricesh,; andg; are sparseDCT(h;) andDCT(g;) are not

sparse at all. Hence, the matrix multiplication in (3) can have (a)
complexity comparable (the Appendix gives a more quantitative

reasoning) to downsampling in spatial domain (by first taking

inverse DCT, filtering, and taking DCT) using fast algorithms

for computation of the DCT [6]. 5 5 000000

It can be shown that even if a fast algorithm (tailored for |0 0 5 5 0 0 0 0
8-point DCT) is used for forward and inverse DCT computa- Hixs = 00 0 0 5 5 0 0
tion, the computational complexity of the straightforward ap- 00000 0 5 5

proach of computing the inverse DCT, then scaling in the spa-
tial domain using (1) and (2), and then taking the forward DCT (b)
would be 3.44 multiplications and 9.81 additions per pixel (of
the original image). Specifically, note that this procedure do%?- 1. {(a) Downsampling four consecutive blocks to get a single block.
. f . . Definition of uy x5 used in (2).
not exploit the spatial redundancy presentin the image (the same
number of computations will be required, even if the image is
white noise).

The spatial redundancy can be exploited by working in tHmsis vectors is to resample the original continuous-time basis
DCT domain where the block-DCT of the image would bé&unctions more coarsely. An anti-aliasing filter can be imple-
sparse. This also avoids the expensive operations of forwanmeénted simultaneously by zeroing out the high-frequency coef-
and inverse DCT. Using (3), grouping the terms properljicients during the synthesis process. Such an idea was utilized
and further assuming thaCT(c;) is 75% sparse (i.e., thein [7] to implement anti-aliasing filtering, downsampling, and
high-frequency coefficients are all zero), it is shown in [2] thatking a forward transform in one step. The same ideais utilized
the computational complexity is reduced to 4 multiplicationi [8] to obtain computational savings when the downsampled
and 4.75 additions per pixel (of original image). We sesignal is desired in the same format (e.g., 8-point DCT coeffi-
that, for the special case of 8-point block-DCT, the tradeofients) as the original signal. However, in their case, the high-
between working in the spatial domain and using the methé@quency coefficients are not zeroed out. The coefficients in
of [2] depends critically on how expensive a multiplicatiorthe final transformation are approximated with inverse powers
is compared to an addition. Note that though the spatial filtef two for further computational efficiency.
matricesh; are sparseDCT(h;) is not sparse at all, and this Suppose that the original DCT basis vectors consists of
plays a significant role in increasing the computations. In theght samples. When downsampling by a factor of two, one
paper, we shall introduce a scheme in whiok'T(h;) are would resample the original continuous-time basis functions at
sparse which yields dramatic improvements in computatiofour uniformly spaced points. This results in basis vectors of a
This is achieved without compromising the quality of the filteA-point DCT transform. When the high-frequency coefficients
h;. In fact we shall see that our scheme is subjectively amgle zeroed out during downsampling, we see that the above
PSNR wise better compared to the usual (bilinear interpolatiogscribed method is same as taking the 4-point inverse DCT
scheme described above in (1)-(2). of the four low-frequency coefficients in a 8-point DCT of the

In [1], a fast algorithm has been developed for the compuoriginal 8-point signal. This will result in four samples, which
tation of (3) based on factorization of the DCT matrix corwould be a downsampled version of the original eight samples.
responding to the Winograd algorithm. However, their alg&@uch a scheme was described in [9], though the interpretation in
rithm is mainly aimed at the downsampling matrix in (2) (biterms of coarsely sampling the continuous-time basis functions
linear interpolation) and it has been stated in the paper thatias not provided there.
is not guaranteed that for every reasonable anti-aliasing filter,The scheme presented in this paper relies on the point of
the method would have smaller complexity than spatial deiew presented in [9] (which also implies that we shall be
main methods. zeroing out the high-frequency DCT coefficients). However,

A signal can be synthesized by linearly combining the DCdur goal is to obtain the downsampled signal in the same
basis vectors using the DCT coefficients of the signal. Hendermat as the original signal. We shaltove the sparseness
one way to obtain a downsampled version of the signal woutdoperties of the matrices involved by appealing to the
be to use downsampled versions of the basis vectors in the sgrthogonality and symmetry properties of the DCT matrices
thesis process. One way to obtain a downsampled version of ilved. This means that the sparseness properties will
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hold true for other transformations as well if they satisf , , < B samples 8 samples
.. . . (1) Spatial domain. }— JI —f
similar orthogonality and symmetry properties. Moreove bi b2
our approach also allows us to introduce a correspondi lBDCT l8—DCT
upsampling scheme that preserves all the low-frequen
components of the original signal. |« Bsamples | § samples
. . (2) DCT domain. I T i
We see that most previous approaches view the downss B1 B2
pling operation as low-pass filtering followed by downsam 4 low-freq. samples ¢ low freq. samples
pling, and implement this in the DCT domain. The low-pas lél—IDCT lHDCT
filter is typically chosen independent of the DCT transforr
In our approach, we shall show that it is possible to desi¢ ‘3.22% et domain. L Ticemies F——
1 1 I i i f bl d b2 2 3
a low-pass filter SO that I.DC'T of the.fllter matrix is sparse JZCESeRs o7 P Y 4
rather than the filter matrix itself. This results in very higl (4, spatia1l gomain. %
computational savings. We make use of the fact that low-pe {2ocarensfson of the two ® senples
filtering and downsampling can be combined and performe :s domsampled version of lé?-DCT
e data in (1)

directly in the DCT domain [9]. Specifically, we make use o 5) pem domas /s

the fact that taking @ x 4 inverse DCT of thel x 4 I0W-pass  'sence scarting from the block 5 samples
coefficients of DCT(c) (which is 8 x 8) directly gives @  hot per ot aommemmrad ceceton

low-passed and half-decimated version «ofHence, in our  °f the data.

method, the downsampled image retadtishe low-frequency _ _ o _
Fig. 2. Schematic of our approach for downsampling in the DCT domain.

components of the original image. _ Starting with the block DCT [in (2)] of data [in (1)], we get the DCT of
The previous methods mentioned above do not discugsvnsampled version of data in (5). The crucial point is the 4-point IDCT
any upsampling scheme corresponding to the downsampliﬂ%f)i_”g from (2) to (3) and the 8-point DCT in going from (4) to (5) can be
h Upsambling is important for anplications inVolvmco bined together to gain significant reduction in computations. Also note that
sc e_me' p pling p 3 pp . e 8-samples in (5) contain all the low-frequency coefficients of the original
multiscale image representations, e.g., spatially scalallgain (1).
encoding of video where a prediction or estimation of a
high-resolution frame is obtained by upsampling its low
resolution version (which is transmitted as the base layer).
We shall present an upsampling scheme which also WorksT

in the compressed domain. When the upsampling schemeB|s

used together with our downsampling scheme, all the IOW'p.atﬁ%cksbl andb,. We wish to generate the 8-point D@&of the

coefficients of the original image are preserved. This implies . . . :
significant savings in the bits allocated for transmitting trﬁpomt block gotby downsamplin: , b) with an appropriate

[I. DOWNSAMPLING IN THE DCT DOMAIN

he outline of our schemeis shownin Fig. 2for 1-D signals. Let
andB.; denote the 8-point DCT of two consecutive 8-sample

. ) : r. The downsampling h rri far iblein
enhancement layer, which carries the difference between e e downsamplinghasto be carried outasfaras possible

original and its prediction (i.e., the result of upsampling the compressed domain. Inprinciple, the proposed scheme can be

downsampled image); only the high-frequenc coefficienvsl,ewed as follows. Take 4-pointinverse DCT of the four low-pass
P .g » only 9 q Y oefficients inBy, and similarly forB,. Concatenate these two
need to be transmitted in the enhancement layer. However,

molin hem n also b 4 on its own without r FointblocksandtpentakeitsS-pointDCT.Theresultingblock
upsampling scheme can aiso be usedon its o OUtTeGRAMhe desired blocB. It turns out that this series of operations

to the downsampling scheme presented here. Our experim négrting fromB, andB, in DCT-domain toB also in DCT

S
main) can be implemented in a computationally much more

show that the upsampling scheme produces visually a
PSNR-wise better images (compared to bilinear interpolatio icient manner compared to matrix multiplication by the DCT

ien\g? glgzgndg_vggs?gglﬁs i;mizrir?e;tg;? iﬁrzatel?c;tisclyai \k/)v'::gfcﬁ‘rthe downsampling filter [cf., (3)]. The scheme works because
P ' P PP { Fing 4-point inverse DCT of the four low-pass coefficients of

the user has no f:ontrol over the dovyn.sam.pllng spheme, LA 8-point DCT of a block gives a low-passed and downsampled
one is interested in upsampling the original image itself.

Section Il presents the downsampling scheme for 1_bersionoftheoriginal8-pointb|ock[9].
. : pres (downsampling We shall now elaborate on the downsampling scheme and
signals and then extends it to 2-D signals. It also shows

how the scheme is equivalent to desianing a downsamoli ive a computationally efficient algorithm for it. We shall de-
, 'S €q gning . PIHTe the relevant equations in 1-D and then extend them to 2-D.
filter whose DCT is sparse rather than the filter itself belnge,[b1 andbs denote two consecutive 8-pixel blocks in the spa-

sparse. Section Il presents details of the upsampling SChe.rtTi]ﬁ’domain. LeB; andB, be their 8-point DCTs, respectively.

and we shall see how the downsampling and upsamphE th — [bl] Let B, and B, denote the first four (low-pass)
schemes combined together preserve all the low-frequency bz *

components of the original image. Section IV gives an andi®MmpPonents dB, andB.. Letb, andb, denote the 4-pointin-
ysis of aliasing effects for our scheme. Section V presenfgsé DCT o3, andB,. Hencep, andb; are Iow-p?sse(]jsand
results showing the subjective and PSNR improvement @pwnsampled versions bf andb,, respectively. Leb = [} ]
our scheme over the bilinear scheme. Section VI presents and letB be the 8-point DCT ob. Henceb is a low-pass fil-
conclusions. Finally, the Appendix gives detailed derivatiortered downsampled versionlefWe need to computé directly
of the exact computations required by our downsamplifgpom B, andB (i.e., fromB; andB,). Let T’ (8 x 8) denote
and upsampling schemes. the 8-point DCT operator matrix and I&; (4 x 4) denote the
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4-point DCT operator matrix. Then we have the following equa- C+D or C— D. Hence, the number of multiplications in-
tion: volved is reduced drastically. Another way to look at this
is that instead of computing expressions lik& + o~y in

B-Tb=T [‘?1} =Ty Tzl [ng]?’l} (7), we are computing(3 + ) in (8).
b2 ;B 4) SinceT” and T, are DCT matrices, it is our belief that
= TLTilél + TRTiEQ (4) much faster procedures (based on fast DCT algorithms
[10]) could be designed for the scheme [cf., (4)] presented
whereT;, andTr are8 x 4 matrices denoting the first and last here. But we shall not pursue this in the current paper.

four columns, respectively, of the 8-point DCT operdforLet  Derivation of the exact number of multiplications and additions
us have a look &t 7'{ andTz T} and see how about 50% of therequired by our method is given in the Appendix. It is shown
terms in the product turn out to be zeros. The following pointaat the amount of computation for the 2-D case is 1.25 multi-

can be noted immediately from the expressiofts 7" and7’; plications and 1.25 additions per pixel of the original image.
as given in (5), shown at the bottom of the page, and in (6), as

follows: A. The Downsampling Filter
1 1 1 1 In this section, we shall derive the downsampling filter, which
cosT® o3 —cos3E  _cosT corresponds to the downsampling operation mentioned above.
= k > > 8 1. (6) We showthati h, the d ling filter i h
4 oS %ﬁ cos %ﬁ cos %ﬁ cos 2% e show that in our approach, the downsampling filter is suc
cos %ﬂ cos % — cos % — cos 3?77 that the DCT of the filter matrix is sparse rather than the filter

itself being sparse. This is more desirable from the point of view
1) Fork = 0,1,2,3, the(2k)th row of I, is same as théth of reducing thg computgtions in the compressed domain. We
row of T}, and the thé2%)th row of T’ is negative of the have the following equation:
kth row of T}. R R
2) Since the rows df; are orthogonal, point 1 above implies P1 = TiB1 =Ti[I OBy =T4[I OlT'by = T;M"Th,
thatevery2kth row of of I, (and also o r) is orthogonal  ; ; def [ I } ©)
to everyrow of 7}y except thekth row fork = 0,1,2,3. O
Hence, inth&x 4 matricesl 7, T} andTrTY, every(2k)th
row has all its entries as zeros exceptitieentry. Hence, wherel andO denoted x 4 identity and zero matrices, respec-
we see that about 50% of the entries of these matrices &uely. Hence, we have
zero. .
3) Odd rows off’ are anti-symmetric and even rows are sym- [ by
metric. Also, odd rows df’; are anti-symmetric and even 0
rows are symmetric. These two facts together imply that
all the corresponding entries 81,7 andTrT} are iden- where0 is a4 x 1 zero vector. Hencéy(8 x 8) gives the down-
tical excepPt possibly for a change of sign. Specificallgampling filter matrix corresponding to our scheme. Compare
TLTi(i,§) = (—1)"HTRrTi(, 5) fori = 0,1,...,7and this with the filter matrixi, in (2) for the bilinear schemé., is
4 =0,1,2, 3. This fact can be exploited to further reduc&hosen without considering the fact that finally, in (3), it is the
the computations in (4). Grouping the terms for whicfPCT of 2; thatis used. Itis more desirable to ha¥eT(h; ) to
i + j is even into one matriX’ and the remaining terms be sparse than to havig as sparse. In our approach, the down-
into another matrixD, we haveTLTi = C+ D and sampling filterh in (10) is derived from the DCT basis functions

} = MT!M'Th, = hby; h < MTIM'T  (10)

TrT! = C — D. Hence, from (4), we have so thatDCT(h) is guaranteed to be very spatse
B=(C+D)B,+(C-D)B; (") DCT(h) =ThI' =[T), TRIMTIM'TT' =T, T:M".
= C(B1 +B:2) + D(B; — Bs). (8)

(11)
The expression in (8) is much faster to compute com- - .
pared to that in (7) because each of the matrigesmdD We have already seen above thafl’; is very sparse. Th&/* at

of DCT(b;) are used in the computation bf. The product
IThe normalizing constants in these expressions have been omitted since they

do not affect our conclusions. 2Note thatDCT(kb,) = Thb, = ThT*Tb, = DCT(L)DCT(b:).
1 1 1 1 | 1 1 1 1
™ 3 5T N s % 3 ™
COS {5  COS 16 Cos TG COS 7o | —cos 6 —Co0sig — COS?)E — COS {g
T=[Tr|Tr]l= | cos § cos —cosF —cosy | —cosy —cosT cos cos g )
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e v [ —(—~t—Orm,
SSamplesV )
\ \, | / / @, D)

(a) (b)

Fig. 3. Downsampling. (a) Here each 4-sample block of the outpuy is derived from the corresponding 8-sample block of the ingut) through a linear
transformation given by a matrix. (b) Downsampling operation in (a) is represented here as a filter bank structure. The right side of the structure consisting of
the upsamplers followed by delays and adders corresponds to sampling the outputs of the downsamplers in succession{ THeTiftearespond to the rows

of the linear transformation matrix in (a) written in reverse order.

det

TrT: appears in the computation k{fz ], whichwhen addedto 20
H ~ — FOF4
[lg] gives the desired low-pass downsampled vebtor o Fare

B. Extension to 2-D

Let by, bs, b3z andb, denote four consecutive x 8 blocks
numbered in the same way as, co,c3, and ¢q in Fig. 1.
Following the same notation as in the 1-D caseBetB», Bs
and B denote the DCTs of these blocks, respectively. Lig 2
Bl,BQ,Bg, and B4 denote thed4 x 4 matrices containing £
the low-pass coefficients dB;, B2, Bs and By, respectively.

Let bl,bg,bg and b4 denote the4 x 4 mverse DCT of
def

Bl,BQ,Bg andB.,, respectively. Theh < [ ! ] denotes
the low-pass and downsampled versmnbof = [bl 2.

3
Let B & DCT(b) We need to computB directly from -50,

B1,B,, B3, andB, (i.e., fromBl,BQ,Bg, andB4) We have A  frequency ->
R R Fig. 4. Magnitude response &f.’s in (32) with = = exp(j27f), wheref
B =1bT" (12) denotes frequency in Hz.
by by [T
=1L Tg] [Bl bQ} { L} (13) . .
8 PelloR ) +[(C+ D)By + (C — D)B4J(C — D)* 17)
t t A A A A~
i |y nen] | ] (14  =[C(Bi+Bo)+D(B, - By))(C + D)’
T T By (T, 7?:' 4 4T 4Tt4 B ; )" +[0B: + By) + D(Ba ~ By — DY =
= (Tz 4) A( o1i)’ +( 1T}) ‘{( #T3) f X(C+D) +Y(O D)t (19)
t t AN
We have already seen th&l,77%) and (TrTY) are very h
sparse. We know from 1-D case th@t,7}) = C + D and where
(TrT}) = C — D, where each of” and D contain only half
as many nonzero entries €5, 7}) or (TrT}). Let us see how N N N N
this can be used to reduce the computations further, as was X =C(B1+Bs) + D(B1 — Bs) (21)
done in the 1-D case. We have Y = C(B; +B,) + D(B; — By). (22)

N _ » t » _ t
B=(C+ D)BIA(C +D) Jtr €+ D)BQA(C D) . We know from the 1-D case that it is faster to compute the ex-
+(C=D)Bs(C+ D) +(C~ D)B4(C = D)" (16) pression in (17) as shown in (18). Again, from the 1-D case, we
=[(C+ D)B; +(C — D)B;3](C + D)* know that is faster to compute the expressions in (19) as shown
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20

— det
~ ~ bilinear

magnitude in dB —>

-oA50 L L L L ; L . 0 0.1 0.2 0.3 0.4 05 08 0.7 08 09 1
frequency ->

Fig. 5. Time-domain samples of the filtéf, in (32) along with the filters Fig. 6. Comparing thé’, [see (32)] for our (dct) case with the bilinear case.
H, throughH ;. Note how the significant taps df, throughH; coincide in  For the bilinear casé&}, consists of just two consecutive taps, each of magnitude
location after the appropriate shifts. Adding these filters after the shifts iyes 0.5, and hence the magnitude decays down sinusoidally.

Note thatFy is even length and symmetric and hence has (generalized) linear

phase.

steploc=6, wiqth=5

in (20). Hence, for the 2-D case, the procedureemputeX
andY as in (21) and (22), and then compieas in (20). As
mentioned before, it is shown in the Appendix that the dowr
sampling scheme takes 1.25 multiplications and 1.25 additio
per pixel of the original image.

Comparing (20)—(22) to (8), it can be seen that the 2-I
scheme is separable. Equations (21)—(22) imply tkiaand
Y can be computed by applying the 1-D scheme along ea
of the columns of[ '] and[ 2], respectively. TherB can -02
be computed by applylng the 1-D scheme along the rows (a)

[X Y]. (The same computation can also be performed L 12p _SteP,|9Q76,,W!¢th,,5,,
applying the 1-D scheme along the rows @, B and ' :
[Bg B4] respectively, and then applying the 1-D scheme alor 1
the columns of the concatenation of the row outputs.) This

another way of interpreting (20)—(22) and does not improve tt g.gk..
computational complexity over that mentioned above.

255 260 265 270 275

[ll. UPSAMPLING

In many applications, it is required to obtain an upsample 0.4

version of an image from its downsampled version. For e
ample, for spatially scalable encoding of video [11], [12], a pre 0.2
diction of the original frame is obtained by upsampling the lowe
resolution frame and the difference is encoded in the enhanc &
ment or low-priority layer. We have seen that the downsamplir -
scheme preserves all the low-frequency information of the ori--0.2 255 2é0
inal image. Hence, a natural question is whether we can desig

an upsampling scheme that works in the compressed domai{:)

and can keep all the low-frequency components of the orig-

inal image in the upsampled image. That way, the residual erfd§: 7- (b) Outputs (after downsampling and upsampling using our scheme)
corresponding to each of the input edges shown in (a), respectively. We see that

the ripples in the output die down with decrease in the slope of the input edge

SActually due to the different sizes of the DCTs there would be a factor efd almost no ripples are seen for the four and five pixel wide edges. Similar,
half that we have not accounted for so far. Hence, in practice, we Nave  but not identical, responses are observed as the starting location of the input
(1/2)[C(B1 4+ Bs)+ D(B:1 —Bg); Y = (1/2)[C(B2 + B4) + D(B; —  edges is changed. This implies that Gibbs phenomenon will be observed only
B.)]. Note that the factor of /2 can be absorbed i@ andD, which would be near very sharp edges. The output is delayed with respect to the input due to our

pre-computed. filter-bank implementation.

265 270 275
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Image | Lena | Watch | Cap | F-16 thogonality relationships between the matrices involved in that
equation. We have

bilinear | 30.04 | 25.15 | 32.08 | 28.11
our 34.69 | 29.09 | 34.22 | 32.28

Tt T:Tr, TiT,
_ ptrp _ L+t L LLR
Isxs =T'T = {Tt} [T Tg] = [T@TL TETR} . (3)

Fig. 8. PSNR values after downsampling and upsampling using bilinear
interpolation and our scheme. ence, we have

TETL = I4><4 = T}%TR; TETR = O4><4 = T}%TL. (24)

Image Lena | Watch | Cap | F-16 From these equations, we get
(a)bilinear | 30.04 | 25.15 | 32.08 | 28.11

(b)our 34.06 | 28.63 | 33.73 | 31.53

Lisa = Ty (TET) Tt = (Tp 1) (TLTE) . (25)

Similarly, the following relations can be proven:
Fig. 9. PSNR values after downsampling using bilinear interpolation and
upsampling using (&) bilinear interpolation and (b) our scheme. This table : :
differs from the one in Fig. 8 in that the “our” scheme in Fig. 8 uses our [4xq4 = (TRTD (TRTD i O4xq= (TLTD (TRTD
scheme for downsampling whereas in this table the downsampling scheme is Mt "
bilinear interpolation (averaging). Comparing the two tables makes it evident Oyxq = (TRT4) (TLT4) (26)
that the upsampling scheme presented here can be used to gain significant
PSNR improvements even if one has no control or knowledge of how the . .
downsampled image was created. Figs. 10-13 make a visual comparison. lj’smg (25)_(26) In (15)’ we gét

= (1) B (1uTh); By = (1010 B (TRTY) (27)

B,
(difference between original and upsampled images) would be
(TrT:) (28)

same as the energy in the high-frequency components, whichBs = (TRTDt B (T0.13) ; B, = (Tr )
typically very low. Such an upsampling scheme can indeed be

designed as we shall soon see. For creating the downsamfleén B, = ] etc. give us the four blocks in the up-
image, we tookl x 4 inverse DCT of low-frequency compo-sampled image correspondlng to the bld&kn the downsam-
nents of four consecutiviex & blocks and then took the forwardpled image. Note that the upsampling scheme can be applied
DCT of the concatenation of thedex 4 blocks. This gives us to any given image, irrespective of whether or not the given
the downsampled image in the DCT domain, and we saw hdwage is obtained by the downsampling scheme outlined in Sec-
this could be implemented very efficiently. Hence, in principleion II. Again, using7;, 7 = C + D andTgrT} = C — D,

we can get an upsampled image from this downsampled |me(ge) (28) can be implemented efficiently by first computing
as foIIows For eacB X8 B block in the downsampled image, CtBC CtBD D!BC andD!'BD. Then, obtammgajL etc. is
computeb IDCT(B). Splitb into 4 x 4 sub-blocks so that only a matter of adding these four matrices with different signs.
b= [bl ] Now computeBl DCT(bl) (4 x 4 DCT) etc. Itis shown in the Appendix that the computational complexity

B, contalns all the low-frequency DCT coefficients of the corref the upsampling scheme is 1.25 multiplications and 1.25 ad-
spondings x 8 block in the original image and these are the onl§fitions per pixel of the upsampled image.

coefficients that we can recover from the downsampled image.
Hence, leB; = [ ] whereO denotes @ x 4 zero matrix.
ThenB; is the bIock (in DCT domain) corresponding to the In this section, we shall analyze the anti-aliasing properties
block B; in the original image. Similarly, one can gBb, Bs  of our downsampling scheme for the 1-D case. The same anal-
andB,. This way, we have obtained an upsampled image froysis applies to the 2-D case since the 2-D scheme is separable
the downsampled image. Note that the process of downsampl{rge Section II-B). The scheme can be represented as shown in
and then upsampling has the effect of truncating to zero all thég. 3(a). Thus, each block of eight samples of the infut) is
high-frequency components in ek 8 DCT block inthe orig- linearly transformed with matrix to get a corresponding block

inal image while preserving all the low-frequency componentd four samples of the outpy{»). For example, for the bilinear

of such blocks. One would expect such truncation to give risase the matrix is given by the first four rows of the; matrix

to ringing artifacts due to the Gibbs phenomenon. It is showniim (2). For our schemd is given by the first four rows of the
Section IV that ringing is negligible except around very steepatrix in (10). Evaluating thé matrix as given in (10) shows
edges. Since most natural images do not exhibit sharp disctimt, unlike the rows of; in (2), the rows of thé, matrix are
tinuities, there are no visually noticeable ringing artifacts. Thiwot shifted versions of each other. This implies that unlike the
is verified subjectively in Section V. As in the case of downbilinear scheme our scheme can not be represented as a filter
sampling, it turns out that the upsampling procedure can aldlowed by downsampling by two. Hence, it is not immedi-
be implemented very efficiently. In terms of our notation, itely clear as to what “filter” serves as an equivalent pre-filter
the previous section the problem is whether we can get back

'As mentioned in footnote 3, we have to account for a factor of half due to
Blv B2v B3 andB4 from B B andBl! etc., are related as in different sizes of the DCTs involved, and hence, in practice, the equations used

(15). To get the inverse relationships, we need to derive somefar-upsampling would b&;, = 2(T,T)*B(T.T}), etc.

B
B

k3

IV. ANALYSIS OF ALIASING
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(b)

© (d)

Fig. 10. Lena downsampled using (a) our method and (b) bilinear interpolation (i.e., replacin@ evenplock of pixels by its average). (c) The scheme in
[8] using exact computation for th& andT" matrices in their scheme. (d) The scheme in [8] where the entrifsamid T matrices are approximated by inverse
powers of two. Artifacts can easily be seen in (d) (e.g., look at the shoulder region and the black strip in the background).

for our downsampling scheme. We shall see that the rows of the 1 =2 I < L
h matrix (they are plotted in Fig. 5) are approximately shifted - N Z X(Wz) Z z Hi(W'Vz) (30)
versions of each other and an average of these rows with the o =0
corresponding shifts serves as an equivalent pre-filter. U S &
The scheme in Fig. 3(a) can be represented as a filter bank - N kz_o XWTWa R(W V) (31)

structure as shown in Fig. 3(b). Here, the filtgf is given by

the ith row of the matrixA written in reverse order. Hence . .
i . . . 'whereN =8, M =N/2,j=+/-1,W = j27 /N) and
using standard results from multirate signal processing [13], /27 exp(j2r/N)

the z-transform of the output can be written as (capital let- M—1
ters are used to denote theransforms of the corresponding Fr(z) = Z 22 H ()W 2k (32)
small-letter time-domain signals) =0

M1 N1 From this expression and the definitionidf, it is clear that

-1
Y(2)= > 2= Y X(W ™ /2)H,W™*/z) (29
( ) ; N kz—:—o ( \/_) ( \/_) ( ) Fk-l—]\l =F, fork= OthroughM — 1. (33)
Equation (31) can be written as

5This section uses its own notation and should not be confused with the no-
tation used in Sections | and Il and referred in the previous paragraph. Y(z) = U(/>?) (34)
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(b)

(c) (d)

Fig. 11. Lena: (a) Original; (b) downsampled and upsampled by our method; (c) downsampled and upsampled using bilinear interpolation (asamd4], [2])
(d) downsampled by bilinear interpolation and upsampled by our method. We see that the image in (b) is sharper compared to that in (c); this cdarlge partic
noticed in the feather and eye regions. The image in (d) is also sharper compared to (c) and has almost the same visual features as that in (b)yeuesethough
the bilinear scheme for downsampling. PSNR values with respect to the original are: (b) 34.69 dB; (c) 30.04 dB; and (d) 34.06 dB.

where 2) ThefFy’s have been plotted in Fig. 4 for the case when our
scheme is used for downsampling. Let us concentrate on
the first four terms in (36). In the low-frequency regime
(0 tow/2 and3w /2 to 27), we see that the magnitudes
of I} throughF3 are more than 20-dB below that 6.
Hence, ifz(n) has predominantly low-pass components,
we see that the shaping 6f(w) (and hence, ol (w))
is predominantly decided h¥, (=F,). SinceF; has al-
most a flat response in the low-pass regime and decays
fast outside that regime, we see that the low-pass compo-
nents ofX (w) are preserved ity (w) (we shall consider
phase characteristics éf shortly). From (32), itis clear
thatFy is obtained by addingl, throughH3 successively

N-1
1 —k —k
U(z) = % > XW R F(WF2). (35)
k=0
Puttingz = exp(jw), we have
N-1
1 27 27
Ulw) = l;) X <w - Nk) B <w - Nk) . (36)
The following points can be noted from this equation.

1) Using N = 8 and (33), we see that the last four terms

of the summation in (36) contribute the same as the first
four terms shifted byr. This maked/(w) periodic with

a period ofr. Hence,Y (w) [see (34)] would be periodic
with a period of2r, as expected. We only need to look at
U(w) between 0 and to getY (w).

shifted by multiples of two. These filters, along witfy,

are shown in Fig. 5 for the case when our scheme is used
for downsampling. We see thay is even length and sym-
metric, i.e., it is a type-ll FIR filter [14], and hence has
(generalized) linear phase. Note how the shift by multi-
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Fig. 12. Watch image: (a) Original; (b) downsampled and upsampled by our method; (c) downsampled and upsampled using bilinear interpolation; and (d)
downsampled by bilinear interpolation and upsampled by our method. We see that the image in (b) is sharper compared to that in (c), e.g., the Imeiglibérs on t

at left in (b) are much clearer compared to those numbers in (c). Also the numbers toward the rim of the watch are also much clearer in (b) than (e)inThe imag
(d) is also sharper compared to (c) and has almost the same visual features as that in (b) even though we use bilinear scheme for downsampling vViRBNR value
respect to the original are: (b) 29.09 dB; (c) 25.15 dB; and (d) 28.63 dB.

ples of two “aligns” the significant magnitude tapsié§
throughHs.

high-frequency content, then those frequencies will
contribute tol/(w) at«/2 (and at3=/2 by periodicity),

3) In the high-frequency regime, the magnitudes Kf

through F5 are more than 10-dB below the magnitude
of Fy in the low-frequency regime. According to (36)
to obtain U/(w), X(w) is multiplied by F,F> and
I3 successively and shifted by/4,#/2 and 37 /4,
respectively, and then added to the produckdt.) and
Fy. Looking at the filtersFy, F5, and F5 in Fig. 4, we
see that the shifts by /4,7 /2 and 3w /4, respectively,
would cause all the corresponding products to have high
magnitude at the knee (aroud/2) of Fy. The last four
terms in (36) will produce a similar effect at the knee of
F, at 7/2. Hence, we see that iX(w) has significant

4)

and hence to the outpdt(w) at = (and —=). Hence,
significant high-frequency content in the input will cause
aliasing in the output.

Now consider thé},’s for the bilinear case. Here, we can
showthatt;, = Ofork = 1,2,3,5,6,7. Theresponse of
Ly (=Ly)incomparisonwithourschemeisshowninFig. 6.
Fromthefigure,we seethBg decaysvery slowlyforthe bi-
linearcase.Hence, inthis case, tholighF>,andl3 donot
cause the high frequenciesif{w) to aggregate atthe knee
of Fy, Fy itself has high magnitude in the high-frequency
region. Hence, ifX(w) has significant high-frequency
content, we willsee aliasinginthe output.
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(e] (d}

Fig. 13. Cap: (a) Original; (b) downsampled and upsampled by our method; (c) downsampled and upsampled using bilinear interpolation; and (@pdownsam
by bilinear interpolation and upsampled by our method. We see that the image in (b) is sharper compared to that in (c)., e.g., the letters on tlaepeaprare sh
(b). Also, (b) has more texture on the left side of the image. The image in (d) is also sharper compared to (c) and has almost the same visual featl®s as tha
even though we use bilinear scheme for downsampling. PSNR values with respect to the original are: (b) 34.22 dB; (c) 32.08 dB; and (d) 33.73 dB.

A similar analysis can be carried out for the upsamplinigiterpolation. Since we preserve most of the significant energy
scheme and is not given here. The outputs for the upsamplittige low-pass coefficients of each block) of the image, the
scheme corresponding to edges of different slopes is showrage obtained after downsampling and upsampling looks
in Fig. 7 (the outputs are similar, but not the same when tineuch sharper compared to the image obtained after bilinear
starting location of the step edges is changed). We see that thieterpolation; the latter looks blurred. Comparing the PSNR
are ripples in the outputs corresponding to strong edges (stesbpws that the image obtained by our downsampling and
slopes), but they die down as the slope of the edge is decreasgdampling scheme is typically about 4-dB better than the
and almost no ripples are seen for the outputs correspondingni@ge obtained by bilinear interpolation.

4- and 5-pixel-wide edges. Fig. 11(a) shows the original Lena image and Fig. 10
shows the Lena images obtained after downsampling. From
Figs. 10(a)—(c), we see that the downsampled images using

It is shown in the Appendix that our downsampling schenmaur scheme, the bilinear scheme, and the scheme in [8] with
requires 1.25 multiplications and 1.25 additions per pixel of tHell-precision matrices look about the same and there are no
originalimage. Itis also shown in the Appendix that the straightisual artifacts. But artifacts can easily be seen in Fig. 10(d),
forward spatial domain approach using very fast DCT algorithmhich is obtained using the scheme in [8] with the transforma-
would take 3.44 multiplications and 9.81 additions per pixéion matrices’ entries approximated by inverse powers of two
and the compressed domain approach of [2] takes 4.00 multir computational efficiency. Since the images in Fig. 10(a)—(c)
plications and 4.75 additions per pixel. Hence, we see that daok about the same, we have not shown the downsampled
scheme is computationally very efficient. We also presentedraages for the Watch and Cap images.
computationally fast upsampling scheme that works in the com-Results for the upsampling scheme with Lena image are
pressed domain. shown in Fig. 11. We see that the Lena image obtained by our

In this section, we shall see that the subjective and PSNiethod [Fig. 11(b)] is much sharper compared to the bilinearly
quality of the images obtained by downsampling and upsainterpolated Lena image [Fig. 11(c)]. This is particularly
pling using our scheme is much better compared to bilineaoticeable in the feather and eye regions. The PSNR values are

V. RESULTS
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tabulated in Fig. 8. We see an improvement of 4.65 dB with TABLE |
our method compared to the conventional bilinear interpolation COMPUTATIONAL REQUIREMENTS PER PIXEL OF THE

. . . ORIGINAL IMAGE FOR DOWNSAMPLING IN THE COMPRESSEDDOMAIN
method [4], [1], [2]. Fig. 11(d) is described later.

Similar results for the Watch and Cap image are shown in
Figs. 12 and 13.

Now consider another possibility in which the upsampling
scheme is used without any knowledge or control of the Chang et al. [2] | 4.000 4.7500
downsampling scheme. Does the upsampling scheme presented
here still give visual and PSNR improvements even if the
downsampling scheme used is not the one presented in this
paper? For example, the user may have no control over the
video frames being broadcast from a studio, but it might still be
desirable to upsample those frames to fit the user’s TV screen. Ct+B 8 x (10M + 6A)
It turns out that the upsampling scheme provides visual as
well as PSNR improvement, even if the downsampling scheme
used was something different (from our scheme) like bilinear Q=C'BxD|4x (10M +64)
interpolation. Fig. 9 gives the PSNR values when the original

Scheme #multiplications | #additions

Spatial 3.4375 9.8125

Our 1.2500 1.2500

TABLE 1
ACCOUNT OF COMPUTATIONS

P=C'BxC |4x(10M + 64)

. ) ) - . _ D'xB 8 x (10M +6A)

image is downsampled using bilinear interpolation and then - :

upsampled using bilinear interpolation and our upsampling R=D'BxC|4x(10M +64)

scheme (cf., Section Ill). Comparing the second rows of the S=DBxD |4x (10M +64)

tables in Figs. 8 and 9, we see that the upsampling scheme

preserves the PSNR gains even if bilinear interpolation is Subtotal 32 > (10M + 64)

used for the downsampling scheme. Figs. 11(d), 12(d), and

13(d) show the corresponding upsampled images. We see that P+Q 164

the visual quality is still much better compared to bilinear P-Q 164

interpolation scheme and is close to the case when our scheme R+S 164

is used forbothdownsampling and upsampling (part (b) of the

corresponding figures). R-S 164
Another possibility is to use our downsampling scheme and 13{1 23,4 (see Bas.(40) — (41)) | 4 x 164

bilinear interpolation for upsampling. It turns out that in this —

case the visual quality, as well as PSNR values of the resulting Subtotal 8 x 164

upsampled images, is very close to the case in which bilinear

interpolation is used for both downsampling and upsamplinBe downsampling operation directly in the compressed domain
(see the “bilinear” row in Fig. 8). Hence, we have considerggads to computationally much faster algorithms. We proposed
all four possibilities: using bilinear or our scheme for downsamm algorithm which takes this viewpoint and showed that it is
pling, and then using bilinear or our scheme for upsampling. Wemputationally more efficient. In particular, we showed that
see that the upsampling scheme plays the deciding role for theour case, it is the DCT of the downsampling filter matrix
final image quality. This also implies that the decision regardinghich is sparse rather than the filter matrix itself being sparse
which downsampling scheme to use should be made dependi@ich is the case with schemes that start from the time-domain
on the domain in which the original images are available. Fgefinition of the problem). The increased efficiency is due to
example, if the original images are available in raw format, theing a filter matrix whose entries depend on the DCT basis
the bilinear scheme should be used for downsampling as thgictions. Previous approaches pick a filter matrix without
would be faster. However, if the original images are availablegard to the characteristics of the DCT basis functions.
in compressed (DCT) format, then our scheme should be usedhe downsampled image obtained by our method contains all
as it is faster in the Compressed domain. In either case, the the |0w-frequency DCT-coefficients of the origina| image_ This,
sampling scheme presented here should be used for upsamphngrn, implies that one can obtain an upsampled image (a pre-
to minimize the energy in the residual (difference between tiction for the original image) which contains all the low-fre-
original and the upsampled image) and obtain visually betigiency DCT-coefficients of the original image from the down-
image quality. sampled image. Since typical images have very little energy
in their high-frequency DCT coefficients, this property implies
VI. CONCLUSION tremendous savings for coding the residual image in scalable
deo coding. In particular, it is possible to design a scalable en-

Most previous approaches to downsampling in the corw— . . . .
pressed domain start with the problem stated in the tirﬁgd'ng scheme for video which can have the benefits of both

domain and then carry out its equivalent operation in tr%)atial scalability and frequency scalability [15] without the at-

compressed domain. We showed in this paper that thinking;Sepac:;qrnzo:)%ptlﬁixsitgozfs?kgﬁgal scalability. We are currently re-

6Detailed results can also be seen at http://vision.ai.uiuc.edu/~dugad/T N€ method pre_sented here mainly uses the orthogonality and
draft/dct.html. The improvement in visual quality is more clearly seen here. symmetry properties of the DCT to claim most of the computa-
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tional savings. Hence, it is clear that similar computational sathe spatial domain approach due to the existance of very fast
ings can be obtained even if other transforms (having similar @CT algorithms tailored for the 8-point DCT.

thogonality and symmetry properties) like Fourier or Hadan.waEg. Our Approach

are used. The scheme presented here works for increasing or
decreasing image size by a factor of two and hence by extenNow consider the computational complexity of our approach.
sion works for any power of two. A large number of nonpowefctual computation shows that the matri¢eandD in (21) are

of two and noninteger scaling factors are possible if the outp@iven below as

image is desired in the spatial domain. For example to obtain a
signal3/4th the size of original signal when the original is given

in terms of 8-point DCT coefficients one can apply six-point

inverse DCT on the six low-frequency coefficients. Similarly,

padding with zeros can be used for upsampling. Another ap- C =
proach for upsampling and downsampling by arbitrary ratios -0000 0000 7071 0000

when the output image is desired in spatial domain in given in 0000 —.2492 0000 3468
[16]. .0000 .0000 .0000 .0000

L.0000 .1964 .0000 .6122 |
r .0000 .0000 .0000 .00007

r.7071 .0000 .0000 .0000 7
.0000 .2960 .0000 .0162
.0000 .0000 .0000 .0000
.0000 5594 .0000 —.0690

APPENDIX 6407 0000 —.0528 0000

In this section, we shall obtain quantitative estimates of .0000 .7071 .0000 .0000

the computation required by our scheme for downsampling —.2250 .0000 .3629 .0000
and upsampling in the compressed domain. We are given the D= .0000  .0000 .0000 .0000 (37)

block-DCT (8 x 8) coefficients of an image and we wish to 1503 .0000  .5432  .0000

obtain the block-DCT (als® x 8) coefficients of a2 x 2 .0000 .0000 .0000 .7071

downsampled version of this image. Consider the amount of L—.1274 0000 —.2654 .0000 |

computation required if a falSDCT algorithm like the one in ) o )

[6] is used which takes 11 multiplications (denoteid\/) and Now consider the amount of computation in computiig V'
29 additions (denoted9.4) for computing 1-D 8-point DCT. WhereV is a4 x 1 vector. Since there are ten nonzero entries
Since a 2-D DCT can be imp'emented as 1-D DCT a|0ng eaEhC we need ten mu|tip|icati0ns. Also there are four rowg’in

row and then along each column, for 28Dx 8 DCT we would €ach containing two nonzero entries, and hence, the number of
need176 M and464.A. additions is four. Total{10M + 4A). Similarly for D - V. Now

consider (21)
A. Straightforward Spatial Domain Approach
First consider the straightforward approach of taking the in- X =C+(B1£B3)8 D «(By +By). (38)
verse block-DCT (involves 4 inverse< 8 DCT), downsampling .
in the time domain and then taking a forwards DCT. Assume Here, B etc. ared x 4. Hence, each of the: takes16A. Each
that the original image is of size6 x 16 so that the downsam- Of the + takes4 x (10M + 4A4). The third and seventh rows

pled image would be of sizex 8. The amount of computation ©f €' (and hence those af' « (B, + Bs)) and the first and
is as follows. fifth rows of D (and hence those dp = (B; + B3)) are zero.

- Four inverse8 x 8 DCT: 4 x (176M + 464A4). Hence, no additions are required for ad@ng the 1st, 3rd, 5th,
. o . and 7th rows of the operands®f Hence & involves onlyl6 A
» Averaging: three additions per four pixels. Helcel6 x . ) .
= . L : . instead oB82A. Summing up the total for computing becomes
16/4 = 1924. Since the scaling is by four, it can be Im-(8OM 80A). Ditto for Y. Now consider computin in (20)
plemented with a shift and we do not count it. + ' ' puting

* One forwardS x 8 DCT: 176M and464A.
» Total: 880M + 2512A.

* Total per pixel of original image3.4375M + 9.8125A. Here, X andY'* are4 x 8. Hence, each requiress x (10M +
Compare this with the compressed domain approach pfi) operations. Each- requires32A4. As before, due to the
Changet al. [2] based on (3). Assuming that the block-DCTzero rows inC' and D, @ requires only324 instead of64A.
of an image is 75% sparse (i.e., only the upperdeft 4 low Hence, for computatiof3 from X andY’ is (160 + 160A).
fregrency coefficients are nonzero), their approach takes 4 mplding this to the computation fak andY’, we see that the
tiplications and 4.75 addtions per pixel of original image (thessverall total forB is 2 x (80M + 80A) + (160M + 160A), i.e.,
figures are obtained by putting = 4 andN = 8 in Table | (320M/ + 320A). Dividing this by the total number of pixels in
in [2]). Hence, we see that for the casetok 8 block-DCT  the original imageiz.256, we get the count &$.25M +1.25A)
(which is by far the most widely used), the compressed domaigr pixel of the original image.
processing approach of [2] has a difficult time competing with A summary of the computational requirements per pixel of

the original image for downsampling in the compressed domain

"Note that the algorithm of Aradt al.[17], which combines the DCT and the js shown in Table |.

quantizer, cannot be used here because we need to process the spatial domwbw consider the complexity of the upsampling scheme de-
pixels to get the downsampled image, i.e., we need the actual pixel values and_ ] . dof . Jof R def
not their quantization levels for this purpose. scribed in Section Ill. Let? = C'BC,Q = C'BD,R =

B'=C+(X+Y)'@Dx*(X+Y). (39)
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D'BC and S def D'BD. Then usingTLTi = C+ D and [13] P. P. Vaidyanatharylultirate Systems and Filter Banks Englewood
t Cliffs, NJ: Prentice-Hall, July 1992.

TrTy =C-D (27)_(28) become [14] A. V. Oppenheim and R. W. SchafeDiscrete-Time Signal Pro-
N N cessing Englewood Cliffs, N.J.: Prentice-Hall, Nov. 1990.
Bi=(P+Q)+(R+S5); B=(P-Q)+(R-S5) [15] B. G. Haskell, A. Puri, and A. N. NetravalRigital Video: An Introduc-

(40) tion to MPEG-2 ser. Digital Multimedia Standards Series. New York:
Chapman & Hall, 1997.
]:3,3 — (P + Q) _ (R + S); ]:3,4 — (P _ Q) _ (R _ S). [16] S. P. Kim and W. Su, “Direct image resampling using block transform
coefficients,”Signal Processing: Image Commuwol. 5, pp. 259-272,
(41) May 1993.
) [17] Y. Arai, T. Agui, and M. Nakajima, “A fast DCT-SQ scheme for im-
To computeP and Q, we first ComputeCtB and then com- ages,”Trans. Inst. Electron. Commun. Eng. Jppt. A, vol. E71, pp.

pute P = (C'B)C andQ = (C'B)D. This way we com- 1095-1097, Nov. 1988.

puteOtB only once. Similarly, to comput& and S, we first
computeD*B. Consider computing” - U, i.e.,U* - C where
U is 8 x 1 vector. SinceC has ten nonzero entries this take
1001, Also, two columns of”' have four nonzero entries eac
and other columns have only one nonzero entry. Hence,
need2 x 3 = 6 additions amounting to total computation o
(10M + 6A). Considering thaB is 8 x 8 andC'B is 4 x &,
etc., we have the following account of computations. The fi
ures in the right columns show the computations forithe or G| M neering for 2001-2002 and the Rambus Electrical
— operation in the left column—see Table II.) dld and Computer Engineering Fellowship for the
Hence, our overall total i82 x (10M + 6A) + 8 x 16A 1999-2000 academic year. In the summer of 1999, he was a summer intern at
. 320M 390A. Dividi his by th b f ixels i ’h the IBM T. J. Watson Research Center, Yorktown Heights, NY. His research in-
I.€., +_ . ividing this by the num gr O_ PIXels In the o osts are in digital image/video processing, communications, and networking.
upsampled imagéz. 256, we get 1.25 multiplications and 1.25
additions per pixel of the upsampled image.
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