
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 4, APRIL 2001 461

A Fast Scheme for Image Size Change in the
Compressed Domain

Rakesh Dugad, Student Member, IEEE,and Narendra Ahuja, Fellow, IEEE

Abstract—Given a video frame in terms of its8 8 block-DCT
coefficients, we wish to obtain a downsized or upsized version of
this frame also in terms of 8 8 block-DCT coefficients. The
DCT being a linear unitary transform is distributive over matrix
multiplication. This fact has been used for downsampling video
frames in the DCT domain. However, this involves matrix multi-
plication with the DCT of the downsampling matrix. This multi-
plication can be costly enough to trade off any gains obtained by
operating directly in the compressed domain. We propose an algo-
rithm for downsampling and also upsampling in the compressed
domain which is computationally much faster, produces visually
sharper images, and gives significant improvements in PSNR (typ-
ically 4-dB better compared to bilinear interpolation). Specifically
the downsampling method requires 1.25 multiplications and 1.25
additions per pixel of original image compared to 4.00 multipli-
cations and 4.75 additions required by the method of Changet
al. Moreover, the downsampling and upsampling schemes com-
bined together preserve all the low-frequency DCT coefficients of
the original image. This implies tremendous savings for coding the
difference between the original frame (unsampled image) and its
prediction (the upsampled image). This is desirable for many ap-
plications based on scalable encoding of video. The method pre-
sented can also be used with transforms other than DCT, such as
Hadamard or Fourier.

Index Terms—Compressed domain processing, DCT, downsam-
pling, image size change, superresolution, upsampling.

I. INTRODUCTION

DUE to the advances in digital signal processing and digital
networks, more and more video data is available today

in digital format. For economy of storage and transmission,
digital video is typically stored in compressed format. However,
for many applications, one needs to produce a compressed
bitstream containing the video at a different resolution than the
original bitstream. For example, for browsing a remote video
database, it would be more economical to send low-resolution
versions of the video clips to the user and then, if there is
interest, progressively enhance the resolution. The same is true
about browsing a remote image database. A typical video-con-
ferencing application requires compositing video bitstreams at
different resolutions into one bitstream containing the video
frames from all bitstreams but possibly at lower or higher
resolutions. Similarly, for transmitting video over dual-priority
networks, we can transmit a low-resolution version of the video

Manuscript received April 8, 1999; revised October 16, 2000. This work was
supported by the Office of Naval Research under Grant N00014-96-1-0502. This
paper was recommended by Associate Editor S.-F. Chang.

The authors are with the Department of Electrical and Computer Engi-
neering, Beckman Institute, University of Illinois, Urbana, IL 61801 USA
(e-mail: dugad@vision.ai.uiuc.edu; ahuja@vision.ai.uiuc.edu).

Publisher Item Identifier S 1051-8215(01)03014-2.

over the high-priority channel and an enhancement layer over
the low-priority channel. A solution to transmitting video over
bandwidth-constrained channels is to transmit a low-resolu-
tion version of the video. Spatial scalability is also used in
HDTV for maintaining compatibility with standards other than
MPEG-2 (e.g., MPEG-1) and to allow for varied bitrate and
computational capabilities of different users. Changing the size
of a video frame would also be required to convert between
various digital TV standards like standard TV and HDTV, and
also to fit the incoming video frame onto the user’s TV screen.

Since the original video data is typically stored in compressed
format (use of block-DCT along with motion compen-
sation for compression is most widespread) and the scaled (in
size) version is also typically required in (the same) compressed
format, we see that there is a need for changing the size of
a video frame in the compressed domain. The straightforward
approach of decompressing, carrying out the downsampling in
spatial domain and then recompressing, is computationally too
intensive for real-time operation on currently available worksta-
tions. Hence, recently there has been much work done [1]–[5]
in carrying out downsampling, as well as other operations, on
video sequences directly in the compressed domain without re-
quiring decompression and recompression.

Let denote four adjacent blocks in the spa-
tial domain as shown in Fig. 1(a). Consider replacing each
block (of each of the blocks) by its average to get the
downsampled block shown in Fig. 1. This downsampling
operation can also be represented in matrix notation as follows
[4], [1], [2]:

(1)

where the downsampling filters are given by

(2)

where is defined in Fig. 1(b) and is a
zero matrix. Now consider implementing the same operation
directly in the DCT domain, i.e., consider obtaining
given, for to . Most previous approaches for
downsampling in the compressed domain (say, in the DCT do-
main) rely on the fact that the DCT, being a linear orthonormal
transform, is distributive over matrix multiplication [1], [2],

1051–8215/01$10.00 © 2001 IEEE

462 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 4, APRIL 2001

[4], [5]. Let denote the DCT operator matrix. Since
, we have

(3)

and for to can be precomputed.
Hence, given for to can be com-
puted as matrix multiplication. However, even though the filter
matrices and are sparse, and are not
sparse at all. Hence, the matrix multiplication in (3) can have
complexity comparable (the Appendix gives a more quantitative
reasoning) to downsampling in spatial domain (by first taking
inverse DCT, filtering, and taking DCT) using fast algorithms
for computation of the DCT [6].

It can be shown that even if a fast algorithm (tailored for
8-point DCT) is used for forward and inverse DCT computa-
tion, the computational complexity of the straightforward ap-
proach of computing the inverse DCT, then scaling in the spa-
tial domain using (1) and (2), and then taking the forward DCT
would be 3.44 multiplications and 9.81 additions per pixel (of
the original image). Specifically, note that this procedure does
not exploit the spatial redundancy present in the image (the same
number of computations will be required, even if the image is
white noise).

The spatial redundancy can be exploited by working in the
DCT domain where the block-DCT of the image would be
sparse. This also avoids the expensive operations of forward
and inverse DCT. Using (3), grouping the terms properly,
and further assuming that is 75% sparse (i.e., the
high-frequency coefficients are all zero), it is shown in [2] that
the computational complexity is reduced to 4 multiplications
and 4.75 additions per pixel (of original image). We see
that, for the special case of 8-point block-DCT, the tradeoff
between working in the spatial domain and using the method
of [2] depends critically on how expensive a multiplication
is compared to an addition. Note that though the spatial filter
matrices are sparse, is not sparse at all, and this
plays a significant role in increasing the computations. In this
paper, we shall introduce a scheme in which are
sparse which yields dramatic improvements in computation.
This is achieved without compromising the quality of the filter

. In fact we shall see that our scheme is subjectively and
PSNR wise better compared to the usual (bilinear interpolation)
scheme described above in (1)–(2).

In [1], a fast algorithm has been developed for the compu-
tation of (3) based on factorization of the DCT matrix cor-
responding to the Winograd algorithm. However, their algo-
rithm is mainly aimed at the downsampling matrix in (2) (bi-
linear interpolation) and it has been stated in the paper that it
is not guaranteed that for every reasonable anti-aliasing filter,
the method would have smaller complexity than spatial do-
main methods.

A signal can be synthesized by linearly combining the DCT
basis vectors using the DCT coefficients of the signal. Hence,
one way to obtain a downsampled version of the signal would
be to use downsampled versions of the basis vectors in the syn-
thesis process. One way to obtain a downsampled version of the

Fig. 1. (a) Downsampling four consecutive blocks to get a single block.
(b) Definition ofu used in (2).

basis vectors is to resample the original continuous-time basis
functions more coarsely. An anti-aliasing filter can be imple-
mented simultaneously by zeroing out the high-frequency coef-
ficients during the synthesis process. Such an idea was utilized
in [7] to implement anti-aliasing filtering, downsampling, and
taking a forward transform in one step. The same idea is utilized
in [8] to obtain computational savings when the downsampled
signal is desired in the same format (e.g., 8-point DCT coeffi-
cients) as the original signal. However, in their case, the high-
frequency coefficients are not zeroed out. The coefficients in
the final transformation are approximated with inverse powers
of two for further computational efficiency.

Suppose that the original DCT basis vectors consists of
eight samples. When downsampling by a factor of two, one
would resample the original continuous-time basis functions at
four uniformly spaced points. This results in basis vectors of a
4-point DCT transform. When the high-frequency coefficients
are zeroed out during downsampling, we see that the above
described method is same as taking the 4-point inverse DCT
of the four low-frequency coefficients in a 8-point DCT of the
original 8-point signal. This will result in four samples, which
would be a downsampled version of the original eight samples.
Such a scheme was described in [9], though the interpretation in
terms of coarsely sampling the continuous-time basis functions
was not provided there.

The scheme presented in this paper relies on the point of
view presented in [9] (which also implies that we shall be
zeroing out the high-frequency DCT coefficients). However,
our goal is to obtain the downsampled signal in the same
format as the original signal. We shallprove the sparseness
properties of the matrices involved by appealing to the
orthogonality and symmetry properties of the DCT matrices
involved. This means that the sparseness properties will

DUGAD AND AHUJA: A FAST SCHEME FOR IMAGE SIZE CHANGE IN THE COMPRESSED DOMAIN 463

hold true for other transformations as well if they satisfy
similar orthogonality and symmetry properties. Moreover,
our approach also allows us to introduce a corresponding
upsampling scheme that preserves all the low-frequency
components of the original signal.

We see that most previous approaches view the downsam-
pling operation as low-pass filtering followed by downsam-
pling, and implement this in the DCT domain. The low-pass
filter is typically chosen independent of the DCT transform.
In our approach, we shall show that it is possible to design
a low-pass filter so that DCT of the filter matrix is sparse
rather than the filter matrix itself. This results in very high
computational savings. We make use of the fact that low-pass
filtering and downsampling can be combined and performed
directly in the DCT domain [9]. Specifically, we make use of
the fact that taking a inverse DCT of the low-pass
coefficients of (which is) directly gives a
low-passed and half-decimated version of. Hence, in our
method, the downsampled image retainsall the low-frequency
components of the original image.

The previous methods mentioned above do not discuss
any upsampling scheme corresponding to the downsampling
scheme. Upsampling is important for applications involving
multiscale image representations, e.g., spatially scalable
encoding of video where a prediction or estimation of a
high-resolution frame is obtained by upsampling its low
resolution version (which is transmitted as the base layer).
We shall present an upsampling scheme which also works
in the compressed domain. When the upsampling scheme is
used together with our downsampling scheme, all the low-pass
coefficients of the original image are preserved. This implies
significant savings in the bits allocated for transmitting the
enhancement layer, which carries the difference between the
original and its prediction (i.e., the result of upsampling the
downsampled image); only the high-frequency coefficients
need to be transmitted in the enhancement layer. However, the
upsampling scheme can also be used on its own without regard
to the downsampling scheme presented here. Our experiments
show that the upsampling scheme produces visually and
PSNR-wise better images (compared to bilinear interpolation),
even if the downsampled images are created using bilinear
interpolation. This feature is important in applications where
the user has no control over the downsampling scheme, or if
one is interested in upsampling the original image itself.

Section II presents the downsampling scheme for 1-D
signals and then extends it to 2-D signals. It also shows
how the scheme is equivalent to designing a downsampling
filter whose DCT is sparse rather than the filter itself being
sparse. Section III presents details of the upsampling scheme,
and we shall see how the downsampling and upsampling
schemes combined together preserve all the low-frequency
components of the original image. Section IV gives an anal-
ysis of aliasing effects for our scheme. Section V presents
results showing the subjective and PSNR improvement of
our scheme over the bilinear scheme. Section VI presents our
conclusions. Finally, the Appendix gives detailed derivations
of the exact computations required by our downsampling
and upsampling schemes.

Fig. 2. Schematic of our approach for downsampling in the DCT domain.
Starting with the block DCT [in (2)] of data [in (1)], we get the DCT of
downsampled version of data in (5). The crucial point is the 4-point IDCT
in going from (2) to (3) and the 8-point DCT in going from (4) to (5) can be
combined together to gain significant reduction in computations. Also note that
the 8-samples in (5) contain all the low-frequency coefficients of the original
data in (1).

II. DOWNSAMPLING IN THE DCT DOMAIN

TheoutlineofourschemeisshowninFig.2 for1-Dsignals.Let
and denote the 8-point DCT of two consecutive 8-sample

blocks and . We wish to generate the 8-point DCTof the
8-point block got by downsampling with an appropriate
filter. The downsampling has to be carried out as far as possible in
thecompresseddomain. Inprinciple, theproposedschemecanbe
viewedas follows. Take 4-point inverseDCTof the four low-pass
coefficients in , and similarly for . Concatenate these two
4-point blocks and then take its 8-point DCT. The resulting block
is the desired block . It turns out that this series of operations
(starting from and in DCT-domain to also in DCT
domain) can be implemented in a computationally much more
efficient manner compared to matrix multiplication by the DCT
of the downsampling filter [cf., (3)]. The scheme works because
taking 4-point inverse DCT of the four low-pass coefficients of
an 8-point DCT of a block gives a low-passed and downsampled
versionof theoriginal8-pointblock [9].

We shall now elaborate on the downsampling scheme and
give a computationally efficient algorithm for it. We shall de-
rive the relevant equations in 1-D and then extend them to 2-D.
Let and denote two consecutive 8-pixel blocks in the spa-
tial domain. Let and be their 8-point DCTs, respectively.
Let . Let and denote the first four (low-pass)

components of and . Let and denote the 4-point in-
verse DCT of and . Hence, and are low-passed and
downsampled versions of and , respectively. Let

and let be the 8-point DCT of . Hence is a low-pass fil-
tered downsampled version of. We need to compute directly
from and (i.e., from and). Let denote
the 8-point DCT operator matrix and let denote the

464 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 4, APRIL 2001

4-point DCT operator matrix. Then we have the following equa-
tion:

(4)

where and are matrices denoting the first and last
four columns, respectively, of the 8-point DCT operator. Let
us have a look at and and see how about 50% of the
terms in the product turn out to be zeros. The following points
can be noted immediately from the expressions1 for and
as given in (5), shown at the bottom of the page, and in (6), as
follows:

(6)

1) For , the th row of is same as theth
row of and the the th row of is negative of the

th row of .
2) Since the rows of are orthogonal, point 1 above implies

thatevery th row of of (and also of) is orthogonal
to everyrow of except the th row for .
Hence, in the matrices and , every th
row has all its entries as zeros except theth entry. Hence,
we see that about 50% of the entries of these matrices are
zero.

3) Odd rows of are anti-symmetric and even rows are sym-
metric. Also, odd rows of are anti-symmetric and even
rows are symmetric. These two facts together imply that
all the corresponding entries of and are iden-
tical excepPt possibly for a change of sign. Specifically,

for and
. This fact can be exploited to further reduce

the computations in (4). Grouping the terms for which
is even into one matrix and the remaining terms

into another matrix , we have and
. Hence, from (4), we have

(7)

(8)

The expression in (8) is much faster to compute com-
pared to that in (7) because each of the matricesand
have only half the number of nonzero entries compared to

1The normalizing constants in these expressions have been omitted since they
do not affect our conclusions.

or . Hence, the number of multiplications in-
volved is reduced drastically. Another way to look at this
is that instead of computing expressions like in
(7), we are computing in (8).

4) Since and are DCT matrices, it is our belief that
much faster procedures (based on fast DCT algorithms
[10]) could be designed for the scheme [cf., (4)] presented
here. But we shall not pursue this in the current paper.

Derivation of the exact number of multiplications and additions
required by our method is given in the Appendix. It is shown
that the amount of computation for the 2-D case is 1.25 multi-
plications and 1.25 additions per pixel of the original image.

A. The Downsampling Filter

In this section, we shall derive the downsampling filter, which
corresponds to the downsampling operation mentioned above.
We show that in our approach, the downsampling filter is such
that the DCT of the filter matrix is sparse rather than the filter
itself being sparse. This is more desirable from the point of view
of reducing the computations in the compressed domain. We
have the following equation:

(9)

where and denote identity and zero matrices, respec-
tively. Hence, we have

(10)

where is a zero vector. Hence, gives the down-
sampling filter matrix corresponding to our scheme. Compare
this with the filter matrix in (2) for the bilinear scheme. is
chosen without considering the fact that finally, in (3), it is the
DCT of that is used. It is more desirable to have to
be sparse than to have as sparse. In our approach, the down-
sampling filter in (10) is derived from the DCT basis functions
so that is guaranteed to be very sparse2

(11)

We have already seen above that is very sparse. The at
the end makes sure that only the first four low-pass components
of are used in the computation of . The product

2Note thatDCT(hb) = Thb = ThT Tb = DCT(h)DCT(b).

...
...

(5)

DUGAD AND AHUJA: A FAST SCHEME FOR IMAGE SIZE CHANGE IN THE COMPRESSED DOMAIN 465

Fig. 3. Downsampling. (a) Here each 4-sample block of the outputy(n) is derived from the corresponding 8-sample block of the inputx(n) through a linear
transformation given by a matrixA. (b) Downsampling operation in (a) is represented here as a filter bank structure. The right side of the structure consisting of
the upsamplers followed by delays and adders corresponds to sampling the outputs of the downsamplers in succession. The filtersfh g correspond to the rows
of the linear transformation matrixA in (a) written in reverse order.

appears in the computation of , which when added to

gives the desired low-pass downsampled vector.

B. Extension to 2-D

Let and denote four consecutive blocks
numbered in the same way as and in Fig. 1.
Following the same notation as in the 1-D case, let
and denote the DCTs of these blocks, respectively. Let

and denote the matrices containing
the low-pass coefficients of and , respectively.
Let and denote the inverse DCT of

and , respectively. Then denotes

the low-pass and downsampled version of .

Let . We need to compute directly from
, and (i.e., from , and). We have

(12)

(13)

(14)

(15)

We have already seen that and are very
sparse. We know from 1-D case that and

, where each of and contain only half
as many nonzero entries as or . Let us see how
this can be used to reduce the computations further, as was
done in the 1-D case. We have

(16)

Fig. 4. Magnitude response ofF ’s in (32) with z = exp(j2�f), wheref
denotes frequency in Hz.

(17)

(18)

(19)

(20)

where

(21)

(22)

We know from the 1-D case that it is faster to compute the ex-
pression in (17) as shown in (18). Again, from the 1-D case, we
know that is faster to compute the expressions in (19) as shown

466 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 4, APRIL 2001

Fig. 5. Time-domain samples of the filterF in (32) along with the filters
H throughH . Note how the significant taps ofH throughH coincide in
location after the appropriate shifts. Adding these filters after the shifts givesF .
Note thatF is even length and symmetric and hence has (generalized) linear
phase.

in (20). Hence, for the 2-D case, the procedure is3 compute
and as in (21) and (22), and then computeas in (20). As
mentioned before, it is shown in the Appendix that the down-
sampling scheme takes 1.25 multiplications and 1.25 additions
per pixel of the original image.

Comparing (20)–(22) to (8), it can be seen that the 2-D
scheme is separable. Equations (21)–(22) imply thatand

can be computed by applying the 1-D scheme along each
of the columns of and , respectively. Then can
be computed by applying the 1-D scheme along the rows of

. (The same computation can also be performed by
applying the 1-D scheme along the rows of and

, respectively, and then applying the 1-D scheme along
the columns of the concatenation of the row outputs.) This is
another way of interpreting (20)–(22) and does not improve the
computational complexity over that mentioned above.

III. U PSAMPLING

In many applications, it is required to obtain an upsampled
version of an image from its downsampled version. For ex-
ample, for spatially scalable encoding of video [11], [12], a pre-
diction of the original frame is obtained by upsampling the lower
resolution frame and the difference is encoded in the enhance-
ment or low-priority layer. We have seen that the downsampling
scheme preserves all the low-frequency information of the orig-
inal image. Hence, a natural question is whether we can design
an upsampling scheme that works in the compressed domain
and can keep all the low-frequency components of the orig-
inal image in the upsampled image. That way, the residual error

3Actually due to the different sizes of the DCTs there would be a factor of
half that we have not accounted for so far. Hence, in practice, we haveX =
(1=2)[C(B̂ + B̂) +D(B̂ � B̂)]; Y = (1=2)[C(B̂ + B̂) +D(B̂ �

B̂)]. Note that the factor of1=2 can be absorbed inC andD, which would be
pre-computed.

Fig. 6. Comparing theF [see (32)] for our (dct) case with the bilinear case.
For the bilinear caseF consists of just two consecutive taps, each of magnitude
0.5, and hence the magnitude decays down sinusoidally.

(a)

(b)

Fig. 7. (b) Outputs (after downsampling and upsampling using our scheme)
corresponding to each of the input edges shown in (a), respectively. We see that
the ripples in the output die down with decrease in the slope of the input edge
and almost no ripples are seen for the four and five pixel wide edges. Similar,
but not identical, responses are observed as the starting location of the input
edges is changed. This implies that Gibbs phenomenon will be observed only
near very sharp edges. The output is delayed with respect to the input due to our
filter-bank implementation.

DUGAD AND AHUJA: A FAST SCHEME FOR IMAGE SIZE CHANGE IN THE COMPRESSED DOMAIN 467

Fig. 8. PSNR values after downsampling and upsampling using bilinear
interpolation and our scheme.

Fig. 9. PSNR values after downsampling using bilinear interpolation and
upsampling using (a) bilinear interpolation and (b) our scheme. This table
differs from the one in Fig. 8 in that the “our” scheme in Fig. 8 uses our
scheme for downsampling whereas in this table the downsampling scheme is
bilinear interpolation (averaging). Comparing the two tables makes it evident
that the upsampling scheme presented here can be used to gain significant
PSNR improvements even if one has no control or knowledge of how the
downsampled image was created. Figs. 10–13 make a visual comparison.

(difference between original and upsampled images) would be
same as the energy in the high-frequency components, which is
typically very low. Such an upsampling scheme can indeed be
designed as we shall soon see. For creating the downsampled
image, we took inverse DCT of low-frequency compo-
nents of four consecutive blocks and then took the forward
DCT of the concatenation of these blocks. This gives us
the downsampled image in the DCT domain, and we saw how
this could be implemented very efficiently. Hence, in principle,
we can get an upsampled image from this downsampled image
as follows: For each block in the downsampled image,
compute . Split into sub-blocks so that

. Now compute (DCT) etc.

contains all the low-frequency DCT coefficients of the corre-
sponding block in the original image and these are the only
coefficients that we can recover from the downsampled image.
Hence, let , where denotes a zero matrix.
Then is the block (in DCT domain) corresponding to the
block in the original image. Similarly, one can get
and . This way, we have obtained an upsampled image from
the downsampled image. Note that the process of downsampling
and then upsampling has the effect of truncating to zero all the
high-frequency components in each DCT block in the orig-
inal image while preserving all the low-frequency components
of such blocks. One would expect such truncation to give rise
to ringing artifacts due to the Gibbs phenomenon. It is shown in
Section IV that ringing is negligible except around very steep
edges. Since most natural images do not exhibit sharp discon-
tinuities, there are no visually noticeable ringing artifacts. This
is verified subjectively in Section V. As in the case of down-
sampling, it turns out that the upsampling procedure can also
be implemented very efficiently. In terms of our notation, in
the previous section the problem is whether we can get back

and from . and , etc., are related as in
(15). To get the inverse relationships, we need to derive some or-

thogonality relationships between the matrices involved in that
equation. We have

(23)

Hence, we have

(24)

From these equations, we get

(25)

Similarly, the following relations can be proven:

(26)

Using (25)–(26) in (15), we get4

(27)

(28)

Then etc. give us the four blocks in the up-
sampled image corresponding to the blockin the downsam-
pled image. Note that the upsampling scheme can be applied
to any given image, irrespective of whether or not the given
image is obtained by the downsampling scheme outlined in Sec-
tion II. Again, using and ,
(27)–(28) can be implemented efficiently by first computing

and . Then, obtaining etc. is
only a matter of adding these four matrices with different signs.
It is shown in the Appendix that the computational complexity
of the upsampling scheme is 1.25 multiplications and 1.25 ad-
ditions per pixel of the upsampled image.

IV. A NALYSIS OF ALIASING

In this section, we shall analyze the anti-aliasing properties
of our downsampling scheme for the 1-D case. The same anal-
ysis applies to the 2-D case since the 2-D scheme is separable
(see Section II-B). The scheme can be represented as shown in
Fig. 3(a). Thus, each block of eight samples of the input is
linearly transformed with matrix to get a corresponding block
of four samples of the output . For example, for the bilinear
case the matrix is given by the first four rows of the matrix
in (2). For our scheme is given by the first four rows of the
matrix in (10). Evaluating the matrix as given in (10) shows
that, unlike the rows of in (2), the rows of the matrix are
not shifted versions of each other. This implies that unlike the
bilinear scheme our scheme can not be represented as a filter
followed by downsampling by two. Hence, it is not immedi-
ately clear as to what “filter” serves as an equivalent pre-filter

4As mentioned in footnote 3, we have to account for a factor of half due to
different sizes of the DCTs involved, and hence, in practice, the equations used
for upsampling would bêB = 2(T T) B̂(T T), etc.

468 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 4, APRIL 2001

(a) (b)

(c) (d)

Fig. 10. Lena downsampled using (a) our method and (b) bilinear interpolation (i.e., replacing every2 � 2 block of pixels by its average). (c) The scheme in
[8] using exact computation for theS andT matrices in their scheme. (d) The scheme in [8] where the entries ofS andT matrices are approximated by inverse
powers of two. Artifacts can easily be seen in (d) (e.g., look at the shoulder region and the black strip in the background).

for our downsampling scheme. We shall see that the rows of the
matrix (they are plotted in Fig. 5) are approximately shifted

versions of each other and an average of these rows with the
corresponding shifts serves as an equivalent pre-filter.

The scheme in Fig. 3(a) can be represented as a filter bank
structure as shown in Fig. 3(b). Here, the filter5 is given by
the th row of the matrix written in reverse order. Hence,
using standard results from multirate signal processing [13],
the -transform of the output can be written as (capital let-
ters are used to denote the-transforms of the corresponding
small-letter time-domain signals)

(29)

5This section uses its own notation and should not be confused with the no-
tation used in Sections I and II and referred in the previous paragraph.

(30)

(31)

where and

(32)

From this expression and the definition of, it is clear that

for through (33)

Equation (31) can be written as

(34)

DUGAD AND AHUJA: A FAST SCHEME FOR IMAGE SIZE CHANGE IN THE COMPRESSED DOMAIN 469

(a) (b)

(c) (d)

Fig. 11. Lena: (a) Original; (b) downsampled and upsampled by our method; (c) downsampled and upsampled using bilinear interpolation (as in [4], [2]); and
(d) downsampled by bilinear interpolation and upsampled by our method. We see that the image in (b) is sharper compared to that in (c); this can be particularly
noticed in the feather and eye regions. The image in (d) is also sharper compared to (c) and has almost the same visual features as that in (b), even thoughwe use
the bilinear scheme for downsampling. PSNR values with respect to the original are: (b) 34.69 dB; (c) 30.04 dB; and (d) 34.06 dB.

where

(35)

Putting , we have

(36)

The following points can be noted from this equation.

1) Using and (33), we see that the last four terms
of the summation in (36) contribute the same as the first
four terms shifted by . This makes periodic with
a period of . Hence, [see (34)] would be periodic
with a period of , as expected. We only need to look at

between 0 and to get .

2) The ’s have been plotted in Fig. 4 for the case when our
scheme is used for downsampling. Let us concentrate on
the first four terms in (36). In the low-frequency regime
(0 to and to), we see that the magnitudes
of through are more than 20-dB below that of .
Hence, if has predominantly low-pass components,
we see that the shaping of (and hence, of)
is predominantly decided by . Since has al-
most a flat response in the low-pass regime and decays
fast outside that regime, we see that the low-pass compo-
nents of are preserved in (we shall consider
phase characteristics of shortly). From (32), it is clear
that is obtained by adding through successively
shifted by multiples of two. These filters, along with,
are shown in Fig. 5 for the case when our scheme is used
for downsampling. We see that is even length and sym-
metric, i.e., it is a type-II FIR filter [14], and hence has
(generalized) linear phase. Note how the shift by multi-

470 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 4, APRIL 2001

(a) (b)

(c) (d)

Fig. 12. Watch image: (a) Original; (b) downsampled and upsampled by our method; (c) downsampled and upsampled using bilinear interpolation; and (d)
downsampled by bilinear interpolation and upsampled by our method. We see that the image in (b) is sharper compared to that in (c), e.g., the numbers on the dial
at left in (b) are much clearer compared to those numbers in (c). Also the numbers toward the rim of the watch are also much clearer in (b) than (c). The image in
(d) is also sharper compared to (c) and has almost the same visual features as that in (b) even though we use bilinear scheme for downsampling. PSNR values with
respect to the original are: (b) 29.09 dB; (c) 25.15 dB; and (d) 28.63 dB.

ples of two “aligns” the significant magnitude taps of
through .

3) In the high-frequency regime, the magnitudes of
through are more than 10-dB below the magnitude
of in the low-frequency regime. According to (36)
to obtain is multiplied by and

successively and shifted by and ,
respectively, and then added to the product of and

. Looking at the filters and in Fig. 4, we
see that the shifts by and , respectively,
would cause all the corresponding products to have high
magnitude at the knee (around) of . The last four
terms in (36) will produce a similar effect at the knee of

at . Hence, we see that if has significant

high-frequency content, then those frequencies will
contribute to at (and at by periodicity),
and hence to the output at (and). Hence,
significant high-frequency content in the input will cause
aliasing in the output.

4) Now consider the ’s for the bilinear case. Here, we can
showthat for . The response of

incomparisonwithourschemeisshowninFig.6.
Fromthefigure,weseethat decaysveryslowlyforthebi-
linearcase.Hence,inthiscase,though ,and donot
cause thehigh frequencies in toaggregateat theknee
of itself has high magnitude in the high-frequency
region. Hence, if has significant high-frequency
content,wewillseealiasingintheoutput.

DUGAD AND AHUJA: A FAST SCHEME FOR IMAGE SIZE CHANGE IN THE COMPRESSED DOMAIN 471

Fig. 13. Cap: (a) Original; (b) downsampled and upsampled by our method; (c) downsampled and upsampled using bilinear interpolation; and (d) downsampled
by bilinear interpolation and upsampled by our method. We see that the image in (b) is sharper compared to that in (c)., e.g., the letters on the cap are sharper in
(b). Also, (b) has more texture on the left side of the image. The image in (d) is also sharper compared to (c) and has almost the same visual features as that in (b),
even though we use bilinear scheme for downsampling. PSNR values with respect to the original are: (b) 34.22 dB; (c) 32.08 dB; and (d) 33.73 dB.

A similar analysis can be carried out for the upsampling
scheme and is not given here. The outputs for the upsampling
scheme corresponding to edges of different slopes is shown
in Fig. 7 (the outputs are similar, but not the same when the
starting location of the step edges is changed). We see that there
are ripples in the outputs corresponding to strong edges (steep
slopes), but they die down as the slope of the edge is decreased,
and almost no ripples are seen for the outputs corresponding to
4- and 5-pixel-wide edges.

V. RESULTS

It is shown in the Appendix that our downsampling scheme
requires 1.25 multiplications and 1.25 additions per pixel of the
original image. It is also shown in the Appendix that the straight-
forward spatial domain approach using very fast DCT algorithm
would take 3.44 multiplications and 9.81 additions per pixel
and the compressed domain approach of [2] takes 4.00 multi-
plications and 4.75 additions per pixel. Hence, we see that our
scheme is computationally very efficient. We also presented a
computationally fast upsampling scheme that works in the com-
pressed domain.

In this section, we shall see that the subjective and PSNR
quality of the images obtained by downsampling and upsam-
pling using our scheme is much better compared to bilinear

interpolation. Since we preserve most of the significant energy
(the low-pass coefficients of each block) of the image, the
image obtained after downsampling and upsampling looks
much sharper compared to the image obtained after bilinear
interpolation; the latter looks blurred. Comparing the PSNR
shows that the image obtained by our downsampling and
upsampling scheme is typically about 4-dB better than the
image obtained by bilinear interpolation.

Fig. 11(a) shows the original Lena image and Fig. 10
shows the Lena images obtained after downsampling. From
Figs. 10(a)–(c), we see that the downsampled images using
our scheme, the bilinear scheme, and the scheme in [8] with
full-precision matrices look about the same and there are no
visual artifacts. But artifacts can easily be seen in Fig. 10(d),
which is obtained using the scheme in [8] with the transforma-
tion matrices’ entries approximated by inverse powers of two
for computational efficiency. Since the images in Fig. 10(a)–(c)
look about the same, we have not shown the downsampled
images for the Watch and Cap images.

Results for the upsampling scheme with Lena image are
shown in Fig. 11. We see that the Lena image obtained by our
method [Fig. 11(b)] is much sharper compared to the bilinearly
interpolated Lena image [Fig. 11(c)]. This is particularly
noticeable in the feather and eye regions. The PSNR values are

472 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 4, APRIL 2001

tabulated in Fig. 8. We see an improvement of 4.65 dB with
our method compared to the conventional bilinear interpolation
method [4], [1], [2]. Fig. 11(d) is described later.

Similar results for the Watch and Cap image are shown in
Figs. 12 and 13.6

Now consider another possibility in which the upsampling
scheme is used without any knowledge or control of the
downsampling scheme. Does the upsampling scheme presented
here still give visual and PSNR improvements even if the
downsampling scheme used is not the one presented in this
paper? For example, the user may have no control over the
video frames being broadcast from a studio, but it might still be
desirable to upsample those frames to fit the user’s TV screen.
It turns out that the upsampling scheme provides visual as
well as PSNR improvement, even if the downsampling scheme
used was something different (from our scheme) like bilinear
interpolation. Fig. 9 gives the PSNR values when the original
image is downsampled using bilinear interpolation and then
upsampled using bilinear interpolation and our upsampling
scheme (cf., Section III). Comparing the second rows of the
tables in Figs. 8 and 9, we see that the upsampling scheme
preserves the PSNR gains even if bilinear interpolation is
used for the downsampling scheme. Figs. 11(d), 12(d), and
13(d) show the corresponding upsampled images. We see that
the visual quality is still much better compared to bilinear
interpolation scheme and is close to the case when our scheme
is used forbothdownsampling and upsampling (part (b) of the
corresponding figures).

Another possibility is to use our downsampling scheme and
bilinear interpolation for upsampling. It turns out that in this
case the visual quality, as well as PSNR values of the resulting
upsampled images, is very close to the case in which bilinear
interpolation is used for both downsampling and upsampling
(see the “bilinear” row in Fig. 8). Hence, we have considered
all four possibilities: using bilinear or our scheme for downsam-
pling, and then using bilinear or our scheme for upsampling. We
see that the upsampling scheme plays the deciding role for the
final image quality. This also implies that the decision regarding
which downsampling scheme to use should be made depending
on the domain in which the original images are available. For
example, if the original images are available in raw format, then
the bilinear scheme should be used for downsampling as that
would be faster. However, if the original images are available
in compressed (DCT) format, then our scheme should be used
as it is faster in the compressed domain. In either case, the up-
sampling scheme presented here should be used for upsampling
to minimize the energy in the residual (difference between the
original and the upsampled image) and obtain visually better
image quality.

VI. CONCLUSION

Most previous approaches to downsampling in the com-
pressed domain start with the problem stated in the time
domain and then carry out its equivalent operation in the
compressed domain. We showed in this paper that thinking of

6Detailed results can also be seen at http://vision.ai.uiuc.edu/~dugad/
draft/dct.html. The improvement in visual quality is more clearly seen here.

TABLE I
COMPUTATIONAL REQUIREMENTSPER PIXEL OF THE

ORIGINAL IMAGE FOR DOWNSAMPLING IN THE COMPRESSEDDOMAIN

TABLE II
ACCOUNT OFCOMPUTATIONS

the downsampling operation directly in the compressed domain
leads to computationally much faster algorithms. We proposed
an algorithm which takes this viewpoint and showed that it is
computationally more efficient. In particular, we showed that
in our case, it is the DCT of the downsampling filter matrix
which is sparse rather than the filter matrix itself being sparse
(which is the case with schemes that start from the time-domain
definition of the problem). The increased efficiency is due to
using a filter matrix whose entries depend on the DCT basis
functions. Previous approaches pick a filter matrix without
regard to the characteristics of the DCT basis functions.

The downsampled image obtained by our method contains all
the low-frequency DCT-coefficients of the original image. This,
in turn, implies that one can obtain an upsampled image (a pre-
diction for the original image) which contains all the low-fre-
quency DCT-coefficients of the original image from the down-
sampled image. Since typical images have very little energy
in their high-frequency DCT coefficients, this property implies
tremendous savings for coding the residual image in scalable
video coding. In particular, it is possible to design a scalable en-
coding scheme for video which can have the benefits of both
spatial scalability and frequency scalability [15] without the at-
tendant complexity of spatial scalability. We are currently re-
searching on this possibility.

The method presented here mainly uses the orthogonality and
symmetry properties of the DCT to claim most of the computa-

DUGAD AND AHUJA: A FAST SCHEME FOR IMAGE SIZE CHANGE IN THE COMPRESSED DOMAIN 473

tional savings. Hence, it is clear that similar computational sav-
ings can be obtained even if other transforms (having similar or-
thogonality and symmetry properties) like Fourier or Hadamard
are used. The scheme presented here works for increasing or
decreasing image size by a factor of two and hence by exten-
sion works for any power of two. A large number of nonpower
of two and noninteger scaling factors are possible if the output
image is desired in the spatial domain. For example to obtain a
signal th the size of original signal when the original is given
in terms of 8-point DCT coefficients one can apply six-point
inverse DCT on the six low-frequency coefficients. Similarly,
padding with zeros can be used for upsampling. Another ap-
proach for upsampling and downsampling by arbitrary ratios
when the output image is desired in spatial domain in given in
[16].

APPENDIX

In this section, we shall obtain quantitative estimates of
the computation required by our scheme for downsampling
and upsampling in the compressed domain. We are given the
block-DCT coefficients of an image and we wish to
obtain the block-DCT (also) coefficients of a
downsampled version of this image. Consider the amount of
computation required if a fast7 DCT algorithm like the one in
[6] is used which takes 11 multiplications (denoted) and
29 additions (denoted) for computing 1-D 8-point DCT.
Since a 2-D DCT can be implemented as 1-D DCT along each
row and then along each column, for 2-D DCT we would
need and .

A. Straightforward Spatial Domain Approach

First consider the straightforward approach of taking the in-
verse block-DCT (involves 4 inverse DCT), downsampling
in the time domain and then taking a forward DCT. Assume
that the original image is of size so that the downsam-
pled image would be of size . The amount of computation
is as follows.

• Four inverse DCT: .
• Averaging: three additions per four pixels. Hence

. Since the scaling is by four, it can be im-
plemented with a shift and we do not count it.

• One forward DCT: and .
• Total: .
• Total per pixel of original image: .

Compare this with the compressed domain approach of
Changet al. [2] based on (3). Assuming that the block-DCT
of an image is 75% sparse (i.e., only the upper left low
freqrency coefficients are nonzero), their approach takes 4 mul-
tiplications and 4.75 addtions per pixel of original image (these
figures are obtained by putting and in Table I
in [2]). Hence, we see that for the case of block-DCT
(which is by far the most widely used), the compressed domain
processing approach of [2] has a difficult time competing with

7Note that the algorithm of Araiet al.[17], which combines the DCT and the
quantizer, cannot be used here because we need to process the spatial domain
pixels to get the downsampled image, i.e., we need the actual pixel values and
not their quantization levels for this purpose.

the spatial domain approach due to the existance of very fast
DCT algorithms tailored for the 8-point DCT.

B. Our Approach

Now consider the computational complexity of our approach.
Actual computation shows that the matricesand in (21) are
given below as

(37)

Now consider the amount of computation in computing
where is a vector. Since there are ten nonzero entries
in we need ten multiplications. Also there are four rows in
each containing two nonzero entries, and hence, the number of
additions is four. Total: . Similarly for . Now
consider (21)

(38)

Here, etc. are . Hence, each of the takes . Each
of the takes . The third and seventh rows
of (and hence those of) and the first and
fifth rows of (and hence those of) are zero.
Hence, no additions are required for adding the 1st, 3rd, 5th,
and 7th rows of the operands of. Hence, involves only
instead of . Summing up the total for computing becomes

. Ditto for . Now consider computing in (20)

(39)

Here, and are . Hence, each requires
operations. Each requires . As before, due to the

zero rows in and requires only instead of .
Hence, for computation from and is .
Adding this to the computation for and , we see that the
overall total for is , i.e.,

. Dividing this by the total number of pixels in
the original imageviz.256, we get the count as
per pixel of the original image.

A summary of the computational requirements per pixel of
the original image for downsampling in the compressed domain
is shown in Table I.

Now consider the complexity of the upsampling scheme de-
scribed in Section III. Let

474 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 4, APRIL 2001

and . Then using and
(27)–(28) become

(40)

(41)

To compute and , we first compute and then com-
pute and . This way we com-
pute only once. Similarly, to compute and , we first
compute . Consider computing , i.e., where

is vector. Since has ten nonzero entries this takes
. Also, two columns of have four nonzero entries each

and other columns have only one nonzero entry. Hence, we
need additions amounting to total computation of

. Considering that is and is ,
etc., we have the following account of computations. The fig-
ures in the right columns show the computations for the or

operation in the left column—see Table II.)
Hence, our overall total is ,

i.e., . Dividing this by the number of pixels in the
upsampled imageviz.256, we get 1.25 multiplications and 1.25
additions per pixel of the upsampled image.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
whose comments have greatly improved the presentation of this
paper.

REFERENCES

[1] N. Merhav and V. Bhaskaran, “Fast algorithms for DCT-domain image
down-sampling and for inverse motion compensation,”IEEE Trans. Cir-
cuits Syst. Video Technol., vol. 7, pp. 468–476, June 1997.

[2] S.-F. Chang and D. G. Messerschmitt, “Manipulation and compositing
of MC-DCT compressed video,”IEEE J. Select. Areas Commun., vol.
13, pp. 1–11, Jan. 1995.

[3] B. C. Smith and L. Rowe, “Algorithms for manipulating compressed
images,”IEEE Comput. Graph. Applicat. Mag., vol. 13, pp. 34–42, Sept.
1993.

[4] Q. Hu and S. Panchanathan, “Image/video spatial scalability in com-
pressed domain,”IEEE Trans. Ind. Electron., vol. 45, pp. 23–31, Feb.
1998.

[5] A. Neri, G. Russo, and P. Talone, “Inter-block filtering and downsam-
pling in DCT domain,”Signal Processing: Image Commun., vol. 6, pp.
303–317, Aug. 1994.

[6] C. Loeffer, A. Ligtenberg, and G. S. Moschytz, “Practical fast 1-D
DCT algorithms with 11 multiplications,” inIEEE Int. Conf. Acoustics,
Speech and Signal Processing, vol. 2, May 1989, pp. 988–991.

[7] J. M. Adant, P. Delogne, E. Lasker, B. Macq, L. Stroobants, and L. Van-
dendorpe, “Block operations in digital signal processing with applica-
tion to TV coding,”Signal Processing, vol. 13, pp. 385–397, Dec. 1987.

[8] B. K. Natarajan and B. Vasudev, “A fast approximate algorithm for
scaling down digital images in the DCT domain,” inIEEE Int. Conf.
Image Processing, vol. 2, Oct. 1995, pp. 241–243.

[9] K. N. Ngan, “Experiments on two-dimensional decimation in time
and orthogonal transform domains,”Signal Processing, vol. 11, pp.
249–263, 1986.

[10] W. B. Pannebaker and J. L. Mitchell,JPEG Still Image Data Compres-
sion Standard. New York: Van Nostrand, 1993.

[11] A. Puri and A. Wong, “Spatial domain resolution scalable video coding,”
in Proc. SPIE Visual Communications and Image Processing, Boston,
MA, Nov. 1993, pp. 718–729.

[12] Generic Coding of Moving Pictures and Associated Audio, ISO/IEC
13 818-2—Rec. ITU-T H.262, Nov. 1994.

[13] P. P. Vaidyanathan,Multirate Systems and Filter Banks. Englewood
Cliffs, NJ: Prentice-Hall, July 1992.

[14] A. V. Oppenheim and R. W. Schafer,Discrete-Time Signal Pro-
cessing. Englewood Cliffs, N.J.: Prentice-Hall, Nov. 1990.

[15] B. G. Haskell, A. Puri, and A. N. Netravali,Digital Video: An Introduc-
tion to MPEG-2, ser. Digital Multimedia Standards Series. New York:
Chapman & Hall, 1997.

[16] S. P. Kim and W. Su, “Direct image resampling using block transform
coefficients,”Signal Processing: Image Commun., vol. 5, pp. 259–272,
May 1993.

[17] Y. Arai, T. Agui, and M. Nakajima, “A fast DCT-SQ scheme for im-
ages,”Trans. Inst. Electron. Commun. Eng. Jpn., pt. A, vol. E71, pp.
1095–1097, Nov. 1988.

Rakesh Dugad(S’97) received the B.Tech. degree
in electrical engineering from the Indian Institute of
Technology, Bombay, India, in 1996, the M.S. de-
gree in electrical engineering in 1998 from the Uni-
versity of Illinois at Urbana-Champaign where he is
currently working toward the Ph.D. degree.

He received the M. E. VanValkenburg Graduate
Research Award in Electrical and Computer Engi-
neering for 2001–2002 and the Rambus Electrical
and Computer Engineering Fellowship for the

1999–2000 academic year. In the summer of 1999, he was a summer intern at
the IBM T. J. Watson Research Center, Yorktown Heights, NY. His research in-
terests are in digital image/video processing, communications, and networking.

Narendra Ahuja (F’92) received the B.E. degree
(Hons.) in electronics engineering from the Birla
Institute of Technology and Science, Pilani, India, in
1972, the M.E. degree with distinction in electrical
communication engineering from the Indian Institute
of Science, Bangalore, India, in 1974, and the Ph.D.
degree in computer science from the University of
Maryland, College Park, in 1979.

From 1974 to 1975, he was a Scientific Officer in
the Department of Electronics, Government of India,
New Delhi. From 1975 to 1979, he was at the Com-

puter Vision Laboratory, University of Maryland. Since 1979, he has been with
the University of Illinois at Urbana-Champaign, where he is currently Donald
Biggar Willet Professor in the Department of Electrical and Computer Engi-
neering, the Coordinated Science Laboratory, and the Beckman Institute. His
interests are in computer vision, robotics, image processing, image synthesis,
sensors, and parallel algorithms. His current research emphasizes integrated use
of multiple image sources of scene information to construct 3-D descriptions of
scenes, the use of integrated image analysis for realistic image synthesis, parallel
architectures and algorithms and special sensors for computer vision, extraction
and representation of spatial structure, e.g., in images and video, and use of the
results of image analysis for a variety of applications, including visual commu-
nication, image manipulation, video retrieval, robotics, and scene navigation. He
has co-authored the booksPattern Models(New York: Wiley, 1983), andMo-
tion and Structure from Image Sequences(New York: Springer-Verlag, 1992),
and co-edited the bookAdvances in Image Understanding(IEEE, 1996).

Dr. Ahuja is on the Editorial Boards of the IEEE TRANSACTIONS ON

PATTERN ANALYSIS AND MACHINE INTELLIGENCE; Computer Vision, Graphics,
and Image Processing; the Journal of Mathematical Imaging and Vision; the
Journal of Pattern Analysis and Applications; the International Journal of
Imaging Systems and Technology; and theJournal of Information Science and
Technology. He is also Guest Co-Editor of theArtificial Intelligence Journal’s
Special Issue on Vision. He received the 1999 Emanuel R. Piore Award of
the IEEE and the 1998 Technology Achievement Award of the International
Society for Optical Engineering. He was selected as Associate (1998–1999)
and Beckman Associate (1990–1991) in the University of Illinois Center for
Advanced Study. He received the University Scholar Award (1985), Presiden-
tial Young Investigator Award (1984), National Scholarship (1967–1972), and
President’s Merit Award (1966). He is a fellow of the American Association for
Artificial Intelligence, the International Association for Pattern Recognition,
the Association for Computing Machinery, the American Association for the
Advancement of Science, and the International Society for Optical Engineering,
and a member of the Optical Society of America.

