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Abstract

Generalized cylinder (GC) is a class of parametric shapes that is very flexible and capable of modeling many different

types of real-world objects, and have subsequently been the focus of considerable research in the vision community.

Most of the related works proposed previously have dealt with the recovery of 3D shape description of objects based on

the GC representation from one or more 2D image data. Different from the objective of the previous works, in this

paper, we will propose a new approach to obtain a GC-based shape description of 3D objects. The proposed approach

of deriving the GC axis is a further extension of the potential-based skeletonization approach presented in (IEEE Trans.

Pattern Anal. Mach. Intell. 22(11) (2000) 1241). Simulation results demonstrate that the derived GC representation will

yield better approximation of object shape than that based on simpler subclasses of GC since there is, in principle, no

restriction on the topology of the GC axis and the shape of the cross-sections.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

It is well accepted that a good way to represent a

complex 3D object is to decompose it into simpler

volumetric parts and then describe the parts and the

relationships among them [2]–[5]. A popular representa-

tion for such volumetric parts is to use generalized

cylinder (GC)-based shape representations [2]. A GC is a

solid defined by its axis, a cross-section curve, and a

scaling function. The solid is obtained by sweeping a

planar region, its cross-section, as the region is moved
e front matter r 2004 Elsevier Ltd. All rights reserve
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and deformed according to the scaling function along a

space curve, its axis. Fig. 1 shows examples of three

simple subclasses of GCs whose axes are planar curves

while the cross-sections are orthogonal to the local axis

direction. For the straight homogeneous generalized

cylinder (SHGC) [6,7], their cross-sections have the same

shape but may vary in size along a straight axis. For the

planar right constant generalized cylinders (PRCGCs),

their cross-sections are fixed both in shape and size while

the axis can be any planar curve. For the circular planar

right generalized cylinders (circular PRGCs), their axes

are planar curves while the cross-sections are fixed in

shape (circular) but not in size. In short, each of the

above three subclasses has (i) a constant axis direction

(SHGC), (ii) a constant size of cross-section (PRCGC),

or (iii) a fixed shape of cross-sections (PRGC).

GCs were first proposed by Binford [2] as a class

of parametric shapes that is very flexible and capable of

modeling many different types of real-world objects, and
d.
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Fig. 1. Three major subclasses of GCs : SHGC, PRCGC, and Circular PRGC.
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have subsequently been the focus of considerable

research in the vision community. Most of the related

works proposed previously have dealt with the recovery

of 3D shape description of objects from image data

(shape from contour). Recovering 3D shape of objects in

a scene from image data remains an important and

difficult problem in computer vision. The difficulty

arises from the fact that an image is a 2D projection of

the scene and the process is not invertible without

making some assumptions. Thus, most methods pro-

posed for recovering generalized cylinder descriptions

have implicitly or explicitly relied on the assumption

that GCs project onto 2D images with some degree of

symmetry, and use this assumption as the basis for their

recovery algorithms. On the other hand, the algorithms

are restricted to some subclasses of GCs such as SHGC,

PRCGC, and circular PRGC.

Agin [8], and Nevatia and Binford [3] used occluding

(partial viewed) contours to recover generalized cylinder

description from range data. Their methods assume

implicitly that the occluding contours of a generalized

cylinder are symmetric with respect to its axis. Complete

generalized cylinder descriptions are obtained by group-

ing hypothesized local generalized cylinders, whose axes

are found as the midpoints of pairs of occluding contour

points. Marr proposed an algorithm in [9] to recover

shape from GC contours while assuming that the

projection is orthographics and that the occluding

contours of an observed SHGC (which he called a

generalized cone) are planar.

Horaud and Brady [10] proved that the contours of a

solid of revolution (SOR), an important subclass of

SHGCs, are symmetric with respect to the image of its

axis. An algorithm was given for recovering the position

and orientation of a solid of revolution from a single

image of its contours using this property. They also

argued that the method could be extended to the case of

an arbitrary SHGC by approximating it by some best-

fitting ‘‘perceived surface of revolution’’. Nalwa’s

method [11] was limited to the analysis of solids of

revolution and gave some properties of such objects, but
does not provide a method for complete reconstruction.

Other recovery methods for surfaces of revolution were

also considered by Richetin et al. [12] and LaVest [13].

In [7], Shafer proved several general properties of

straight homogeneous generalized cylinders, and derived

the general equation that a point must satisfy to belong

to the occluding contour of a SHGC, without any

restriction on the viewing direction. Rao and Nevatia

[14] used Shafer’s result that the occluding contours of a

linear SHGC are planar and symmetric with respect to

its axis to segment sparse range data. Ponce et al. [15]

proved several new projective invariant properties of the

contours of SHGCs, and used these properties in two

implemented algorithms for recovering generalized

cylinder descriptions from contour data. These proper-

ties were then used to recover SHGCs in several

researches. Sato and Binford [16] described a system

for recovery of SHGCs in an edge image. Zerroug and

Nevatia [17] presented an approach which addressed the

problem of shape description and scene segmentation

(figure-ground problem) for SHGCs in the presence of

broken contours, markings and occlusion. The approach

exploited projective invariant properties of SHGCs in

order to guide the segmentation and description

processes. The method used these rigorous properties

in a bottom up, perceptual grouping approach to handle

a hierarchy of three levels of features: curves, symmetries

and SHGC surface patches. Gross and Boult [18]

proposed a methodology which is useful for the recovery

of object classes like tubes, where contour and heuristic

constraints are shown to be insufficient for shape

recovery. They proved that SHGC contours generated

under orthography have exactly two degrees of freedom,

and showed that the remaining free parameters can be

resolved using reflectance-based (intensity) constraints

in addition to contours. The reflectance-based recovery

algorithm is demonstrated on both synthetic and real

SHGC images.

Ulupinar and Nevatia [19] presented techniques for

the recovery of two broader classes of curved objects,

namely SHGCs and PRCGCs, and proved that they
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exhibit certain symmetry properties. The method is

based on, and is a major generalization of, the technique

they had described for inferring 3D shape from contours

of zero-Gaussian curvature (or ZGC) surfaces [20]. In

[21], Zerroug and Nevatia extended the approach in [17]

to handle PRCGCs and circular PRGCs so as to address

more complex, compound, objects which consist of parts

of some generic shapes which has both straight and

curved axes. They derived a number of rigorous

geometric invariant and quasi-invariant properties of

these parts and developed a system that automatically

detects their projections and recovers their 3D shapes

from a 2D image. Havaldar and Medioni [22] addressed

the problem of recovering high-level, volumetric and

segmented (or part-based) descriptions of objects from

three intensity images. They derived a way of inferring

volumes in terms of GCs, when, in reality, the unseen

parts of the object may be quite different from the

inferred ones. In such cases, integrating multiple triplets

of images from different positions can provide more

accurate volumetric descriptions.

More recently, Zerroug and Nevatia described a

method in [23] that detects and describes complex

objects (i.e., those containing multiple parts). The

method recovered descriptions of single-part objects in

terms of three subclasses of GCs (SHGCs, PRCGCs,

and circular PRGCs). The method addressed the figure-

ground problem and part-based shape description

problem at the same time and in a generic way (i.e.,

without prior knowledge of the specific objects being

viewed). It has successfully extracted generic 3D

volumetric descriptions composed of certain subclasses

of generalized cylinders and of their joint relationships,

in the presence of noise, boundary breaks, markings,

shadows, and partial occlusion.

Different from the objective of the previous works, in

this paper, we will propose a new approach to obtaining

a GC-based shape description of 3D objects. The

proposed approach of deriving the GC axis is a further

extension of the potential-based skeletonization ap-

proach presented in [1]. Assume the object surface and

its two end cross-sections are given in advance, the GC

axis can simply be generated by identifying the potential

valley connecting the centroids of them. Cross-sections

at different locations along the GC axis are then

obtained by a simple algorithm.

The remainder of this article is organized as follows.

The generalized potential model in the 3D space is

reviewed in the next section. The potential-based

skeletonization algorithm is adopted to derive the GC

axis of a 3D object in Section 3, where the algorithm for

the derivation of cross-sections will also be presented.

Section 4 gives some experimental results and discussion

of the proposed approach to deriving the potential-based

GC representation. Section 5 concludes this chapter and

outlines some possible directions for future research.
2. A review of generalized potential fields in the 3D space

In [24], a potential-based modelling of 3D workspace

for collision avoidance is proposed. It is shown that the

Newtonian potential, being harmonic in the 3D space,

can not prevent a point charge from running into an

object surface which is uniformly charged. This is

because the value of such a potential function is finite

at the continuously charged surface. Subsequently,

generalized potential models are developed to assure

collision avoidance between a point and polyhedral

surfaces in the 3D space. The potential function is

inversely proportional to the distance between two point

charges to the power of an integer (m) and the potential

and thus its gradient due to a 3D polygon can be

calculated analytically. In particular, it is shown that the

repulsive force exerted on a point charge p located at

ðx; y; zÞ due to a 3D polygon S can be obtained

analytically by evaluating the gradient of the following

potential function, for m ¼ 3:

Fðx; y; zÞ ¼
X

i

½fðxi
2; y

i
2; zÞ � fðxi

1; y
i
1; zÞ� þ

a
z

(1)

with

fðx; y; zÞ ¼
1

z
tan�1

xz

y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p ; (2)

where the xi � yi � z coordinate system is determined

by the right-hand rule for each edge i of S such that

z is measured along the normal direction of S and xi

is measured along edge i of S, respectively. As for a; it is
the angular extent of the projection of p on S, which is

lying inside S. For example, a ¼ 2p if the projection is

inside S, a ¼ p if the projection is on an edge of S, and a
is equal to the angle between two edges if the projection

is on a vertex of S where the two edges are connected.

Hence, the repulsive force exerted at p due to polygon j

can be denoted as

f j
!
¼ ðf j

x; f
j
y; f

j
zÞ ¼

@Fj

@x
;
@Fj

@y
;
@Fj

@z

� �
: (3)

Using the above analytical expressions, the evaluation of

the resultant repulsion between a 3D object, a m charged

polygonal surfaces, and a seed point can be estimated in

closed form through superposition. Thus, the resultant

repulsion force can be denoted as

Xm

j

f j
!
¼

X
f j

x;
X

f j
y;
X

f j
z

� �
: (4)

The repulsion will be used to generate the potential-

based GC axis for a 3D object, as discussed next.
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Fig. 2. The two phases for obtaining the GC description of an

object.
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3. A new generalized cylinder approach

In this section, we will propose a new approach to

derive a GC-based shape description of 3D objects

based on the generalized potential model reviewed in the

previous section. The GC representation consists of a

GC axis and a cross-section function defined along this

axis. Assume the two ends (cross-sections) of a 3D

object are given in advance, the GC axis can be derived

by identifying the potential valley connecting the

centroid points of them. Cross-sections at different

locations along the GC axis are then obtained by a

simple algorithm. Thus, given object surface and its two

end cross-sections, the proposed approach to deriving its

GC representation can be divided into two phases, as

shown in Fig. 2. In the first phase, the GC axis is

generated using the potential-based skeletonization

algorithm by connecting the two seeds. Then, the

cross-sections at different locations along the derived

GC axis are obtained in the second phase.

The algorithms for the derivation of the GC axis and

the associated cross-sections of a 3D object will be

presented in Sections 3.1 and 3.2, respectively. In Section

3.3, the possibilities of using alternative seed points in

the deriving GC representation are discussed.
2In some complex cases where the line segment intersects the

object boundary, a more refined estimation based on the

visibility graph method is necessary. See [1] for more detailed

discussion.
3.1. GC axis generation

Since the GC axis usually lies in the middle of

an object, which is in a way similar to an object skeleton,

the proposed approach adopts the potential-

based skeletonization algorithm presented in [1], as

reviewed next, to obtain the GC axis. The potential-

based skeletonization algorithm identifies the potential

valleys connecting several input seed points, which are

selected as the convex vertices of the object (i.e., end

points of the derived object skeleton), to obtain the

object skeleton. The algorithm for generating the GC

axis is essentially the same as the skeletonization

algorithm except that the input seeds are selected as

the centroids of two cross-sections of the object instead

the convex vertices. With the boundary of a polyhedron

charged according to the generalized potential model

described in the previous section, the basic requirement

for skeletonization, i.e., the potential will diverge at

boundaries of polyhedral objects, is guaranteed. Inside

the object boundary, the potential valley corresponds to

3D locations where the potential has locally minimal

value in the 2D subspace perpendicular to the direction

of the potential gradient. The skeletonization approach

proposed in [1] obtained the object skeleton by, starting

from selected seed points, traversing the corresponding

potential valleys until a potential minimum is reached.

The basic computation of the MAT skeleton,

starting with one of the seed point, is described in the
following algorithm :

Algorithm Potential_Skeleton

Step 1: Follow the direction of the force to traverse the

skeleton (potential valley) until a zero force is

obtained, i.e., a potential minimum is reached.

Step 2: Repeat Step 1 for each of the seed points.

Step 3: End the skeleton computation if there is only

one potential minimum.

Step 4: Derive additional skeleton branches by identi-

fying potential valleys connecting neighboring

potential minima.

In Step 1, the force following is performed inside the

polyhedral boundary. For a closed polyhedron, there

exists at least one potential minimum since the potential

and thus the force field will diverge at its surface [24]. If

the number of potential minima obtained from the

above force following procedure is equal to one, the

complete skeleton is generated and Step 4 is not

necessary. Otherwise, the potential minima need to be

connected to form the complete MAT skeleton. To

estimate the potential skeleton between these potential

minima, we first connect each pair of neighboring

minima with a virtual line segment.2 Equally spaced

point samples are then selected along the line segment as

initial guesses of point samples along the associated

skeleton branch. The potential valley between the two

minima is then estimated by searching the minimum

potential location in the 2D subspace perpendicular to

the virtual line segment at each of these samples.

Fig. 3(a) shows the skeleton of a rectangular

hexahedron obtained with Potential_Skeleton. The seed
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Fig. 3. (a) A rectangular hexahedron and its MAT skeleton. (b)

A GC axis of the rectangular hexahedron.
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points, where the force following procedure of the

algorithm start, are selected as the eight convex corners

of the object. (In the computer implementation, the

selected seed points are located inside the object

boundary and are slightly away from those convex

corners.) The derived skeleton is closely related to the

media surface derived in [25], as discussed in [1].

Obviously, the derived skeleton differs from the GC

axis which is defined in Section 1 as the principal axis in

reflecting the topology of an object. However, if we

select the seed points as the centroid points of the two

ends (cross-sections) of the object instead of the eight

corners, a GC axis will be obtained directly with the

same algorithm, as shown in Fig. 3(b).3

The main difference between the GC axis and the

object skeleton in describing the object shape can be

stated most conveniently by considering prismatic

objects. While the axis and the cross-section of GC will

simply be the principal axis and the cross-section of a

prism, respectively, the object skeleton obtained with the

proposed approach are more complex near the two ends

of the prism where the topology of the skeleton is

determined through the selection of seeds (which are

convex vertices of the cross-sections in our case). In

general, for an object consists of elongated parts, both

representations will reflect similar topological (skeletal)

properties of each part of the object, except for the

above differences, and in turn those of the whole object.

In addition, different from the object skeleton, the GC

representation is not unique in general. For example, the

GC axis can have either horizontal or vertical direction

for a rectangle in the 2D space. As shown in Fig. 4(a),

we may select points X and Y as two seeds and generate

the GC axis XY : Similarly, points M and N can also be

selected as seeds to generate the GC axis in a different

direction, as shown in Fig. 4(b). Figs. 4(c) and (d) show

the GC cross-sections corresponding to XY and MN;
respectively. In Section 3.3, some suggestions for seed
3Theoretically, the MAT skeleton and GC axis are both

continuous curves, however, they are searched step by step in

our implementation and then yield a discrete form of MAT

skeleton and GC axis.
point selection will be given from the observation on the

different GC axes and cross-sections.

3.2. Cross-sections generation

The algorithm for obtaining the cross-sections of a

generalized cylinder is based on the definition proposed

by Binford: a cross-section of an object is called a cross-

section of a generalized cylinder if its surface normal is

parallel to the GC axis. For example, polygon ABCD

shown in Fig. 5 is one of the GC cross-sections of the

rectangular solid since the normal of ABCD is parallel to

the GC axis.

Given object surface and the derived GC axis, a

simple procedure for obtaining the GC cross-sections for

the sequence of n sampling points Si; 1pipn; of the
derived GC axis can be summarized as follows.

Algorithm Cross_Section_Gen

Variables: Si Sampling Point i; Pi Plane i; n number of

sampling points;

Step 1: Set i ¼ 1:
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Fig. 6. GC representation of rectangular hexahedron: (a) GC

axis, (b) cross-sections.

(a)

(c)

(e)(d)

(b)

Fig. 7. The MAT skeleton and different GC representations of

a rectangular hexahedron (see text).
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Step 2: Find the plane Pi which is perpendicular to

SiSiþ1

���!
at Si:

Step 3: Compute all intersection points and line

segments of Pi and the object surfaces.

Step 4: Connect these intersections sequentially to

form a polygon, i.e., one cross-section of the

object.

Step 5: i i þ 1; repeat Step 3 if ipn:
Step 6: End of the algorithm.

Fig. 6(a) shows the GC axis of a rectangular

hexahedron obtained by using Potential_Skeleton in

Phase 1. The two centroids of the two ends of the object

are selected as seeds. Based on the derived GC axis,

a complete shape description of the object is then

obtained in Phase 2 using Cross_Section_Gen, as shown

in Fig. 6(b). Obviously, the selection of seed points, will

greatly affect the result of the derived GC axis and cross-

sections. A more detailed discussion about this issue will

be given in the next subsection.

3.3. Selection of seed points

In this subsection, we will discuss the influence of seed

point selection on the derived GC axis and cross-

sections. Consider the rectangular hexahedron shown in

Fig. 7. The MAT skeleton of the hexahedron obtained

by Potential_Skeleton using eight convex corners as seed

points is shown in Fig. 7(a). As for the GC axis of the

object, Fig. 7(b) shows the axis obtained using two of

the eight corner points as seeds whereas centroids of the

front and back end surfaces of the object are selected for

the axis shown in Fig. 7(c). The corresponding cross-

sections obtained by Cross_Section_Gen for Figs. 7(b)

and (c) are shown in Figs. 7(d) and (e), respectively.

Obviously, the cross-sections shown in Fig. 7(d) are

too complex due to the large curvature of the GC axis at

two locations, as shown in Fig. 7(b). On the other hand,

the GC axis shown in Fig. 7(c) goes straight from the

front to the back end of the object while maintaining

maximum distances from the other four sides of the

object. Thus, the cross-sections derived for the GC axis

shown in Fig. 7(c) are much simpler (all of identical
shape and size) and more appropriate as the representa-

tion of the rectangular solid.

According to the above discussion, one can see clearly

that, the selection of seed points plays a crucial role in

the GC algorithm proposed in this paper. In general,

seed points should be selected such that a GC axis with

smaller curvature can be generated and the correspond-

ing cross-sections will be simpler and neater for

representing the object. This is especially the case for

elongated object with cross-sections of identical size and

shape. However, a systematic way of identifying optimal

seed points for an object of arbitrary shape is yet to be

established.
4. Experimental results and discussion

In this section, we will show simulation results for

generating the potential-based GC axes and cross-

sections of simple as well as more complex objects using

the algorithm presented in the previous section. In each

of the examples, the seed points used in the force

following procedure are assumed to be given in advance

that an appropriate GC representation of each object

can be generated. In general, it takes more computation
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(a) (b)

Fig. 8. GC representation of echelon hexahedron: (a) GC axis,

(b) cross-sections. (a) (b)

Fig. 9. GC representation of dodecahedron: (a) GC axis, (b)

cross-sections.

(a) (b)

Fig. 10. GC representation of icosahedron: (a) GC axis, (b)

cross-sections.

(a) (b)

Fig. 11. GC representation of 3D polyhedron with three long

rectangular polyhedra crossed over: (a) GC axis, (b) cross-

sections.
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time to derive the GC representation for more complex

objects. In some cases, for objects containing multiple

parts, a decomposition of an object into some simple

parts is needed for the proposed approach to work

properly. The algorithm is implemented with the C

programming language and all examples are tested on a

Sun Sparc Ultra-1 workstation with SunOS 4.1.4 and

128MB Main Memory.

4.1. Simple models

In this subsection, the proposed approach is applied

to obtain the GC representations of objects of simple

shapes. For each object, it is assumed that the two end

cross-sections, as well as the two ends of the GC axis, are

given in advance. Accordingly, the latter are used as

seed points in the force following procedure of

Potential_Skeleton in each example.

Fig. 8(a) shows the GC representation obtained with

the proposed approach for an echelon hexahedron.

Since only one potential minimum is obtained with Step

1 of Potential_Skeleton, the connecting process given in

Step 4 is not needed. Due to the symmetry of the object

shape, the GC axis corresponds to a line segment.

Similar results can be obtained for the potential-based

GC representations shown in Figs. 9 and 10. The

computation times for the above examples are summar-

ized in Table 1.4 Note that Figs. 6 and 8 give the SHGC

representation (but not Figs. 9 and 10) since there is no

change in shape for the cross-sections. In Fig. 10, two

object vertices, instead of face centers, are used as seed

points, i.e., the area of the two end cross-sections of its

GC representation is equal to zero.

The 3D objects considered so far have only one

potential minimum in their interior; therefore, addi-

tional connecting process given in Step 4 of Potential_

Skeleton is not required. Figs. 11 and 12 show two

examples in which more than one potential minimum

can be found. In Fig. 11(a) (Fig. 12(a)), distance between

the two potential minima obtained with Step 1 of
(a) (b)

Fig. 12. GC representation of tetrahedron: (a) GC axis, (b)

cross-sections.

4For the examples considered in this section, only a subset of

the total number of cross-sections calculated are shown in the

corresponding figures for better illustrations.
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(a) (b)

Fig. 13. GC representation of adapter: (a) GC axis, (b) cross-

sections.

(a) (b)

Fig. 14. GC representation of cap: (a) GC axis, (b) cross-

sections.

Table 1

Computation times for different GC representations

Process Objects Vertices Polygons Total Numbers CPU Time (s)

Sis CSs GC axis CS

Connection not required Rectangular hexahedron 8 6 94 47 0.098 0.08

Echelon hexahedron 8 6 34 17 0.071 0.028

Dodecahedron 20 12 114 57 0.51 0.146

Icosahedron 14 20 156 78 0.786 0.344

Adapter 79 50 32 16 0.569 0.116

Cap 639 386 30 15 3.54 0.895

Ball2 994 1024 62 31 16.207 1.681

Propane 128 66 110 55 2.333 1.281

SHGC 650 1238 250 125 64.357 7.619

PRCGC 456 908 194 97 38.565 4.011

Circular PRGC 456 908 194 97 36.708 4.057

Connection required 3D cross 24 30 178 89 0.981 0.269

Tetrahedron 6 5 128 64 12.122 0.108

Column1 392 262 112 56 45.038 2.063
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Potential_Skeleton is equal to 3/4 (slightly less than 3/5)

the length of the GC axis. Due to additional connecting

process (Step 4 of Potential_Skeleton) required in

generating the GC axis, more computation time (see

Table (1) is needed. More in depth analysis of

computational complexity will be discussed later in

Section 4.3. As for the cross-sections, since there is no

restriction on the changes of their size, shape, etc., the

changes may not be continuous, e.g., in Fig. 11.

4.2. Complex models

In this subsection, the object models are obtained

from a database of 3D objects, which can be found at

the website http://sampl.eng.ohiostate.edu/
s-ampl/

data/3DDB/Models/. Each object in the database is

stored in a file format specifying its vertices, polygons,

and surfaces. The main difference between simple and

complex object models is the latter use a lot of polygons

to describe an object surface such that the object looks

more real.

Figs. 13–16 show experimental results of the proposed

approach for some objects represented by complex

models wherein one potential minimum is obtained with

Potential_Skeleton for each example. The computation

times for the above examples are summarized in Table 1.

Due to more complex boundary description, these

computation times are in general longer than those for

the simple models. Fig. 17 shows another example which

requires additional connecting process to connect the

two potential minima while deriving the GC axis. It is

obvious that the GC representation shown in Fig. 17 can

be regarded as two simple SHGCs connected back-to-

back. (Similar observations can be made for Fig. 11 but
not for Figs. 9 and 10.) In this case, the axes of the two

SHGC are connected into a single line segment.

In general, for an object with complex geometry,

decomposing the object into simpler parts then obtain-

ing the GC representation for each part may be

necessary. One way of obtaining the GC representation

http://sampl.eng.ohiostate.edu/s-ampl/data/3DDB/Models/
http://sampl.eng.ohiostate.edu/s-ampl/data/3DDB/Models/
http://sampl.eng.ohiostate.edu/s-ampl/data/3DDB/Models/
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(a) (b)

Fig. 15. GC representation of ball2: (a) GC axis, (b) cross-

sections.

(a) (b)

Fig. 16. GC representation of propane: (a) GC axis, (b) cross-

sections.

(a) (b)

Fig. 17. GC representation of column1: (a) GC axis, (b) cross-

sections.
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for such a complex shaped object is to decompose the

object into simpler parts after the GC axis of the

complete object is derived, Then, cross-sections of each

part of the object are obtained. For example, Fig. 18

shows a Y-shaped object composed of two pipes: a slim

and short pipe and a wider and longer one. First, the GC

axis can be derived by selecting three seed points5 for

Potential_Skeleton. The connecting process is not

required since the force following procedure yields
5It is readily observable that the resultant GC representation

is not good enough if we select only two seed points. Therefore,

three seed points are manually identified corresponding to three

end cross-sections (circular faces) in this case.
an unique potential minimum, as shown at the top of

Fig. 18. The resultant GC axis is generated within

10.256 s. Secondly, the object as well as its GC axis (the

separated GC axes are not shown in the figure) are

divided into two parts. Thirdly, the two parts are

processed separately to derive their cross-sections using

Cross_Section_Gen. Finally, the entire GC representa-

tion of the object is obtained by merging the two GC

representations, as shown at the bottom of Fig. 18. The

computation time spent on obtaining the 22 cross-

sections of the left part is 0.256 s, while the right part

takes 0.114 s to generate 9 cross-sections.

In describing the simple parts of a complex shaped

object, some important subclasses of GCs such as

SHGC, PRCGC, and Circular PRGC are commonly

used. Examples of these three subclasses of GCs are

shown in Fig. 1. In the following examples, some of such

models are created by 3D Studio Max to test the

proposed approach. Figs. 19(a) and (b) show the GC

axis and cross-sections of a SHGC, respectively,

generated by the proposed approach. Similar results

are shown in Figs. 20 and 21 for a PRCGC and a

circular PRGC, respectively.
4.3. Computation complexity

The proposed approach is not only easy to implement,

the associated algorithm is also of low-time complexity

because the generalized potential field is analytically

tractable. Suppose a polyhedron is composed of n

polygons. For each step of the force following proce-

dure, the complexity for calculating the repulsive force

exerted on a point sample on the GC axis due to those

polygons is OðnÞ: Thus, for obtaining m0 point samples

of the GC axis through force following, the time

complexity is Oðnm0Þ: Similarly, it is not hard to show

that if m00 points are needed to connect the potential

minima obtained from the force following procedure,

the time complexity for finding these m00 samples of the

GC axis is Oðnm00Þ: Thus, the time complexity for finding
the complete GC axis is OðnmÞ; where m ¼ m0 þm00 is

equal to the total number of point samples of the GC

axis. Therefore, the computation time for deriving the

GC axis is approximately a linear function of the

product of the number of object polygons and that of

point samples of the GC axis. For example, Fig. 22

shows the computation time for deriving the GC axis of

experimental examples listed in Table 1 for which the

connection process is not required. The additional

points marked by ‘X’ are derived from the same SHGC

but different sample points. As for the generation of

cross-sections, since the computational complexity

highly depend on the shape of an object as well as the

distribution of surface polygons, its analysis is not

straightforward in general.
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Fig. 18. Generating the GC representation of a complex shaped object which need to be divided into two parts and processed

separately.

(a) (b)

Fig. 19. SHGC (a) GC axis, (b) cross-sections.

(a) (b)

Fig. 20. PRCGC (a) GC axis, (b) cross-sections.

(a) (b)

Fig. 21. Circular PRGC (a) GC axis, (b) cross-sections.
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4.4. Alternative surface description for GC derivation

In the previous section, the approach of GC axis

generation uses two seed points, the two ends of the axis,

for Potential_Skeleton. In some cases, an alternative

surface description may be adopted for more efficient
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Fig. 22. The computation time of axis generation for some GC representations.

(a) (b)

Fig. 24. GC representation of the tetrahedron obtained by

using an alternative surface description: (a) GC axis, (b) cross-

sections.

(a) (b)

Fig. 23. (a) A tetrahedron and its GC axis generated using two

seed points, (b) the trajectory of a seed point for an deleted end

surface.
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GC derivations. Fig. 23(a) shows a tetrahedron and its

GC axis derived using two seed points, a vertex and the

centroid of an end surface. Alternatively, if one deletes

the end surface and use only the above vertex as seed

point for Potential_Skeleton, the seed point will move

outside the object region as shown in Fig. 23(b). Fig. 24

shows the resultant GC axis, which corresponds to the

trajectory of the seed point inside the tetrahedron, and

the associated GC cross-sections. The computation time

spent on deriving the GC axes of the tetrahedron for 54

axis points are equal to 0.084 and 0.063 s, respectively,

for Figs. 23(a) and 24(a).
5. Conclusions and future works

In this paper, we have proposed a new approach to

derive a GC-based shape description of 3D objects using

the generalized potential model. The proposed approach

of deriving the GC axis is an extension of the potential-

based skeletonization approach introduced in [1]. The

GC representation which consists of this GC axis and

corresponding cross-sections can be generated automa-

tically for the two ends of the axis given as inputs. In
general, the derived GC representations will yield better

approximation of object shape than that based on

simpler subclasses of GC since there is, in principle, no

restriction on the topology of the GC axis and the shape

of the cross-sections. On the other hand, any simpler

subclass of GC which has a simpler GC topology may

also be obtained from the potential-based GC represen-

tation through appropriate simplifications, in cross-

section/axis descriptions, of the latter.
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